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Summary

An initial uncertainty in the state of a chaotic system is expected to grow even under a perfect
model; the dynamics of this uncertainty during the early stages of its evolution are investigated. A
variety of \error growth" statistics are contrasted, illustrating their relative strengths when applied to
chaotic systems, all within a perfect model scenario. A procedure is introduced which can establish
the existence of regions of a strange attractor within which all in�nitesimal uncertainties decrease with
time. It is proven that such regions exist in the Lorenz attractor, and a number of previous numerical
observations are interpreted in light of this result; similar regions of decreasing uncertainty exist in the
Ikeda attractor. It is proven that no such regions exist in either the R�ossler system or the Moore-Spiegel
system. Numerically, strange attractors in each of these systems are observed to sample regions of state
space where the Jacobians have eigenvalues with negative real parts, yet when the Jacobians are not
normal matrices this does not guarantee that uncertainties will decrease. Discussions of predictability
often focus on the evolution of in�nitesimal uncertainties; clearly, as long as an uncertainty remains
in�nitesimal it cannot pose a limit to predictability. To re
ect realistic boundaries, any proposed \limit
of predictability" must be de�ned with respect to the nonlinear behaviour of perfect ensembles. Such
limits may vary signi�cantly with the initial state of the system, the accuracy of the observations, and
the aim of the forecaster. Perfect model analogues of operational weather forecasting ensemble schemes
with �nite initial uncertainties are contrasted with both perfect ensembles and uncertainty statistics
based upon the dynamics in�nitesimal uncertainties.
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1. Introduction

While there is widespread agreement as to the best approach for predicting large

dynamical systems like the Earth's atmosphere, optimal methods for quantifying pre-

dictability itself remain the subject of debate. It has been 40 years since Thompson

focussed attention on quantifying the role which uncertainty in the initial condition

played in limiting the predictability of the atmosphere (Thompson 1957); during this

time, operational weather forecasting has progressed to the point of explicit attempts to

quantify the evolution of this uncertainty during each forecast (Toth and Kalnay (1993),

Palmer et al. (1992) and references thereof). The aims of early work by Lorenz, Epstein,

Leith and others was summarised by Tennekes (1991), who proclaimed that no forecast

was complete without an estimate of the forecast error. Over this same period, the pro-

liferation of chaotic dynamical systems with a few, or a few dozen, degrees of freedom

involved a wide community in the issues of uncertainty growth in general, and the long

time behaviour of in�nitesimal uncertainties in particular.

The present paper critically examines the spectrum of statistics which seek to quan-

tify the dynamics of uncertainty, a spectrum which ranges from the instantaneous growth

rate of in�nitesimal uncertainties to the expected increase in �nite uncertainties after a

�nite period of time; we explore the extent to which each is (or is not) relevant to es-

tablishing a global \limit of predictability" or to the lesser goal of estimating the likely

time over which observations of a particular quantity may be gainfully predicted. Among

other things, we demonstrate that positive Lyapunov exponents place no �nite limits
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on prediction per se, and prove that several common chaotic systems have �nite regions

within which all uncertainties decrease with time.

Predictability analysis based on forecast experiments requires a careful distinction

between error and uncertainty. Theoretical (internal) predictability experiments are per-

formed by identical dynamical systems leading to the so-called `perfect model scenario.'

Alternatively, practical (external) or operational experiments are made with an imper-

fect model forecasting observational data; model error exists in the particular model

employed, and measurement errors in the data. The computations presented below as-

sume a perfect model scenario with uncertain initial conditions, and then quantify the

growth of uncertainty in situations without forecast model error; that is, we only consider

the e�ect of (observational) uncertainties in the initial condition. Hence there is no error

per se; in this case predictability describes the evolution of an initial uncertainty due to

internally occurring instabilities.

The loss of superposition and the extreme inhomogeneity common in nonlinear

chaotic systems require local measures of predictability; this has resulted in the intro-

duction of a plethora of such local measures (see Lorenz (1965), Nicolis et al. (1983),

Benzi and Carnevale (1989) and references thereof). Yet the fact that this well-known

non-uniformity limits the application of global measures of predictability has been widely

overlooked. In addition to contrasting local and global measures, a variety of distinct lo-

cal measures of predictability are discussed in Section 2. Here rate-like statistics and

time-like statistics are contrasted in an inhomogeneous system, confusing the two is to

make the elementary error of assuming that the inverse of the average re
ects the average

of the inverse. This need not be the case.

Section 3 illustrates the fact that the evolution of an initial uncertainty need not

be uniform even in a uniform, linear system; following Farrell (1994), we stress the role

of non-orthogonal eigenbases on uncertainty growth. These exact results are then used

in Section 4 to interpret the numerics of common nonlinear systems and to clarify the

confusion in the literature regarding \oscillating error growth" and \super-exponential"

error growth. Considering the dynamics of uncertainty on strange attractors requires the

prescription of suitable initial conditions and distributions of uncertainties; as noted by

Haubs and Haken (1985) and quanti�ed by Nese (1989) and others (Abarbanel et al.

(1991), Kostelich and Yorke (1990), Mukougawa et al. 1991, Doerner et al. (1991),

Smith (1992,1994a)) there is structure in the variations of predictability in state space.

Following Ziehmann-Schlumbohm (1994), an analytic approach for establishing regions

of decreasing uncertainty in chaotic systems is presented in Section 5 and applied to

three common strange attractors as illustrated in �gure 9. Here we are again restricted

to in�nitesimal uncertainties, but the results apply for evolution over a �nite time. We

also consider the implications of the various orientations of likely initial uncertainty,

and show that the most relevant initial uncertainties need not be related to the most

analytically tractable; indeed the results are not only system speci�c, but also depend

on the details of the observation and aim of the particular forecast problem at hand.

In Section 6 we examine the eÆcacy of in�nitesimal measures of predictability in

re
ecting the dynamics of �nite uncertainty. Examining the behaviour of perfect ensem-

bles (Smith 1996), we quantify the role of magnitude as well as the orientation in ensem-

ble formation for two simple dynamical systems; recently, Buizza (1996) has considered

analogous e�ects in an operational atmospheric model. Unconstrained and constrained

ensembles are contrasted in this section.

What exactly is meant by \Predictability"? We shall use the word in two distinct

contexts. In the perfect model scenario, predictability is lost either (i) when an initial

uncertainty increases by a factor of q or (ii) when the forecast adds no new informa-
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tion to the climatology. As is common in meteorology (see, for example, Toth (1991)),

predictability is quanti�ed by a time scale; this time scale indicates when the forecast

uncertainty will exceed some bound in (i), while in (ii) it indicates when information of

the initial condition is lost. It is widely held that both of these time-scales are related

to the inverse of the largest Lyapunov exponent (de�ned in section 2b below). Evidence

is provided to illustrate that generally this is not the case; an explicit counterexample is

given in Smith (1994a).

The systems analysed in this paper fall within the lower levels of a hierarchy of

models of increasing complexity, the higher levels of which include operational numerical

weather prediction (NWP) and climate models. While generalization between di�erent

nonlinear systems is always hazardous, the results presented here, and in particular the

shortcomings of measures of predictability based on in�nitesimal uncertainties, should be

of use in the design and analysis of predictability experiments on more complex members

of the hierarchy.

2. Local dynamics of infinitesimal uncertainties and predictability

Practical operational forecasting is concerned with the evolution of �nite uncertain-

ties over some interval of time in a particular dynamical system. In this section we discuss

the dynamics of in�nitesimal uncertainties and motivate several natural de�nitions of dif-

ferent types of initial uncertainty, returning to �nite uncertainties in section 6. Rates and

time scales provide two distinct classes of statistic employed as predictability measures.

To de�ne a rate some duration must be chosen a priori; this duration may be in�nitesi-

mal to yield an instantaneous growth rate, or �nite to yield an \e�ective" growth rate, or

in�nite again yielding \e�ective" growth rates and their kin (e.g. global Lyapunov ex-

ponents). Alternatively we may compute time scales directly by considering uncertainty

doubling (quadrupling, etc) times, and then take averages if single value is required.

Each of these rates and times provide di�erent information about the predictability of

the system.

In general both rates and times are local: each statistic will depend both on the

initial condition and on the orientation of the uncertainty. We will contrast di�erent

distributions of orientations: if the orientation is distributed isotropically we have an

unconstrained distribution; alternatively we may consider a subset of orientations, for

example only those in locally expanding directions, and thereby restrict attention to a

constrained distribution. While the isotropic distribution is often the most analytically

tractable, it may be the least physically meaningful.

Global measures of predictability are often de�ned by averaging local measures,

weighted, of course, by the likelihood of each locality as de�ned by the climatology (or

natural measure, see Ott (1994)). When estimating such global measures, we aim to

sample initial conditions uniformly with respect to this natural measure. For systems

which evolve on a strange attractor, sampling with respect to the natural measure is

often referred to as sampling \uniformly on the attractor." The interpretation of such

averages, (e.g. contrasting geometric and arithmetic means) is discussed in section 4.

Again, we stress the limited scope of in�nitesimal uncertainties; the consideration of �nite

amplitude ensembles in section 6, exposes the limited utility of in�nitesimal measures.

(a) Uncertainty dynamics

We formulate our dynamical system as a set of m autonomous nonlinear ordinary

di�erential equations

_x= f(x) (1)
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where x 2Rm
; f :Rm!R

m. The Lorenz system (Lorenz 1963, Sparrow, 1982) provides

a concrete example obtained by retaining the nontrivial dynamics from Saltzman's ex-

pansion of thermally driven convection in a 2-D 
uid. The Lorenz system is:

_x = ��x+ �y

_y = �xz + rx� y

_z = xy � bz

(2)

where x describes the intensity of the convective motion, y characterizes the temperature

di�erence between ascending and descending 
uid elements, and z is proportional to the

deviations of the vertical temperature pro�le from its equilibrium value. The parameters

�, r and b are the Prandtl-number, Rayleigh-number and a geometrical parameter re-


ecting the shape of the convective cell. With � = 10, r = 28 and b= 8
3 one obtains the

standard Lorenz attractor with the well-known butter
y shape. The three �xed points

of the system are xf;0 = (0; 0; 0), xf;� = (�
p
b(r � 1);�

p
b(r � 1); r � 1).

Given f and an initial condition x0 � x(t= 0), the trajectory x(t) is uniquely deter-

mined. But suppose there is an uncertainty, �0 2R
m, in the initial condition x0; it is the

growth of this uncertainty we wish to quantify. The dynamics of an in�nitesimally small

uncertainty is governed by the linearization of the 
ow, that is

_�= J(x)� (3)

where J(x) is the Jacobian of f at x. In the Lorenz case

J(x) =

0
BBBBBBBBB@

�� � 0

(r � z) �1 �x

y x �b

1
CCCCCCCCCA
: (4)

Given a single forecast trajectory in the perfect model scenario, uncertainty is de�ned

in terms of the distance between the (inexact) forecast and the true state as a function of

time, that is the magnitude of the uncertainty at time t is simply �(t) = j�(t)j. Equations 1

and 3 provide a dynamical system for in�nitesimal uncertainties, from which we proceed

to de�ne e�ective rates in 2(b) and time scales in 2(c).

(b) Growth rates: E�ective and Instantaneous

An uncertainty of size �0 which after a time �t has grown to �(�t) has an e�ective

growth rate

r�t =
1

�t
log

�(�t)

�0
: (5)

The independent, and rarely satis�ed, additional assumption that the growth of the un-

certainties is uniform in time allows the relation �(t)' �0e
r�tt. The failure to distinguish

\e�ective" growth from a uniform growth has resulted in much confusion.
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In the limit �t! 0, the instantaneous growth rate, r, is simply 1
�

d�

dt
jt, while the

instantaneous growth rate at time t of an initial uncertainty which was �0 at t= 0 is

1

�

d�

dt

����
t

=
1

�

d

dt

q
�(t)

T
�(t) =

1

2�2

�
_�(t)

T
�(t) + �(t)

T
_�(t)
�

(6)

where the superscript T is the transpose operator. For simplicity, we shall assume through-

out this paper that the matrices of interest are full rank with distinct eigenvalues, and

write the eigen-decomposition of J as J = S�S�1, where the diagonal matrix � contains

the eigenvalues, �i, of J and S its eigenvectors. Whether � is increasing or decreasing

(equivalently whether r is greater than or less than zero), will depend on (i) the eigenval-

ues of J(x), (ii) the projections of the uncertainty onto the eigenvectors, �TS, and (iii)

its decomposition into the eigenvectors, S�1�. The eigenvalues of J alone do not supply

suÆcient conditions to determine the sign of r since, in general, the eigen-basis is not

orthogonal (equivalently, J is non-normal).

Combining equations (3) and (6), and dropping the explicit time dependence of x

and � for clarity, we have

r(�0; x0; t) =
�
T (

J(x)+J(x)T

2 )�

�T �
(7)

As
J(x)+J(x)T

2 is symmetric, its eigenvalues are real and the eigenvectors are orthogonal.

In addition to the instantaneous growth rate for a particular �, equation (7) provides

bounds on the growth rate at x for any �. Interpreting r(�0; x0; t) as the Rayleigh-

quotient of �t (see Strang 1988) the largest eigenvalue of
J(x)+J(x)T

2 provides an upper

bound on r(�0; x0; t) for any � at x; similarly its smallest eigenvalue is a lower bound.

In particular, if all eigenvalues of
J(x0)+J(x0)

T

2 are positive (negative), r(�0; x0; 0)

will be positive (negative) independent of the orientation of the uncertainty. Thus if this

symmetric matrix is de�nite, the sign of r(�0; x0; 0) is determined; only its magnitude

depends on the orientation of the uncertainty.

In the Lorenz system

J(x) + J(x)
T

2
=

0
BBBBBBBBB@

�� �+r�z
2

y

2

�+r�z
2 �1 0

y

2 0 �b

1
CCCCCCCCCA
: (8)

It follows immediately that there is no state x in state space where this matrix is positive

de�nite. Yet it can be negative de�nite, as shown in section 5. The ensemble average of

the instantaneous growth rates for isotropically distributed uncertainties is given by the

arithmetic mean, hr(j�0j; x0; 0)i�0 =
1
m

P
m

i=1 �i, where the �i are the eigenvalues of J(x0)

(or equivalently, those of
J(x0)+J(x0)

T

2 ).

The e�ective growth rates over �nite �t depend on an integral (or solution) of

equation (3) along a trajectory x(t) given x0 and �0. This requires the solution of the

�rst variational equation (see Parker and Chua (1989)) and leads to a linear resolvent

operator,M(x0;�t), (also called \tangent propagator") which maps �0 at (x0; t0) to �(t)

observed at (x(t); t), that is

�(t0 +�t) =M(x0;�t)�0: (9)
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Taking t0 = 0, the magnitude of �(t) is

�(t) = k�(t)k=

q
�(t)

T
�(t) =

q
�0M(x0; t)

T
M(x0; t)�0: (10)

The e�ective growth rate rt is then de�ned as

rt(�0; x0) =
1

t
log

s
�0M(x0; t)

T
M(x0; t)�0

�0
T �0

: (11)

As the term under the root is a quadratic form, rt(�0; x0) is bound by the eigenvalues

of MT
M . The singular value decomposition (SVD) of M is M = U�V T with orthogonal

matrices V (U) containing the right (left) singular vectors as columns and � the diagonal

matrix of the singular values �i with �i � �j for i < j. The �
2
i
are the eigenvalues of

M
T
M . Under M , each right singular vector, vi, is rotated into the corresponding left

singular vector ui, and stretched (shrunk) by the factor �i, for �i greater than (less than)

one; that is Mvi = �iui.

For a given x0 and t, the �i de�ne the �nite-time Lyapunov exponents (Lorenz

(1965), Abarbanel et al. (1991), Ziehmann et al. (1999)), and the maximum rt is

observed when the uncertainty is aligned with the �rst right singular vector v1. In the

limit t!1, rt(�0; x0) approaches the largest global Lyapunov-exponent, �1, for almost

all pairs (x0; �0) while the (global) Lyapunov-spectrum �i; i= 1; : : : ; m of the system

corresponds to the logarithms of the singular values of M(x0; t), assuming these limits

exist (Oseledec 1968).

As t!1, the local orientation of the �rst global Lyapunov vector at each point

x(t) on the attractor is de�ned by u1(t); de�ning this local direction at a �xed location

x0 assumes the singular value decomposition of lim�t!�1M(x0;�t) is evaluated over

a bounded trajectory, and thus this direction is not de�ned for almost every x0 not

on the attractor. While the singular vectors can be determined from local dynamics

over �nite time, the orientation of the Lyapunov vectors cannot, simply because the

true Lyapunov vectors depend on an integral which extends into the in�nite past�. The

orientations of Lyapunov and the singular vectors in the 2-D Ikeda map (Ikeda 1979) are

illustrated in �gure 1. The left panel shows numerical estimates of the Lyapunov vector

and the �rst right (�t= 4) singular vector at a point x(t), while in the right panel their

images at x(t+�t) are shown. Not only are the global Lyapunov vectors and exponents

de�ned only for orbits that are recurrent in state space (as opposed to on a transient),

but these quantities are de�ned for a speci�c dynamical system and trajectory; in the

meteorological context this corresponds to the perfect model scenario with a noise free

trajectory. Even with a perfect model, a time series of points obtained from observations

under variational assimilation (see Pires et al. 1996) need not correspond to a trajectory

which meets the above requirements. Under other methods of assimilation, the series

need not yield a model trajectory at all.

For simplicity, we have employed the Euclidean norm throughout this paper; gen-

eralized stability analysis and the extension to other metrics is discussed in Orr (1907),

� Our numerical approximation of these local directions satis�es the obvious necessary conditions (e.g.
each integration is of a duration such that large variations in the initial orientation have negligible e�ects,
say less than one part in 106, in the �nal orientation. In the Ikeda Map, this usually requires only 10 to
50 pre-iterates.). Nevertheless this is not a suÆcient condition. The same restriction, of course, applies
to estimating Lyapunov exponents; for this reason there are very few systems which can be proven to
be chaotic, we rely only on numerical evidence. All Lyapunov vectors and exponents presented in the
current paper are subject to this caveat.
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Farrell (1990, 1994), Molteni and Palmer (1993), and Buizza and Palmer (1995) and ref-

erences therein. While the singular values and both the �nite time and the �nite sample

Lyapunov exponents (see Ziehmann et al. 1999) depend on the choice of norm, the global

Lyapunov exponents do not.
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Figure 1. Two details of the Ikeda attractor showing estimated Lyapunov vectors (solid) and Singular
vectors (dashed) at two points along a trajectory; the two points are separated by 4 iterations. Singular
vectors are de�ned over these 4 iterations. The left panel shows the earlier point and the right singular
vectors at initial time while the right panel shows the later point and the left singular vectors. These

estimates are, of course, numerical approximations as noted in the text.

(c) Time scales

Given an uncertainty �0 at x0 and t= 0, a q-pling time �q(�0; x0) is de�ned by the

smallest time t for which �(t)� q�0. In symbols

�q(x0; �0) = min
t>0
ft

���� kFt(x+ �0)� Ft(x)k � qk�0kg: (12)

The choice q = 2 leads to the doubling time �2, while q = e yields the so-called e-folding

time. In the limit k�0k! 0, the �q are given by simultaneous integration of equations (1)

and (3), but in this case they re
ect only in�nitesimal uncertainties.

The �q directly quantify the time at which a certain threshold is reached: this in-

formation cannot be derived from the e�ective rates. Further, the arithmetic average �q
need bear no relation to the statistics of 1

r�t

for any �xed �t: the inverse of the average

of the inverse of X is almost invariably a poor estimate of the (arithmetic) average of X.

The potentially extreme e�ects of using such an estimate are illustrated by considering

a random variable x, drawn uniformly from the interval (0; 1). The average value of x

converges to 1
2 as expected; the average value of 1

x
does not converge to 2. Similarly, 1

�1
(measured in time/bits) is not simply related to the mean (or median) doubling time.

Lyapunov exponents need not re
ect predictability. This comes about �rst, because a

duration must be chosen a priori as part of the de�nition of an \e�ective rate," and
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second, because the de�nition of Lyapunov exponents assumes the uncertainty remains

in�nitesimal. If the growth rate is not constant, then neither global Lyapunov exponents

nor their �nite-time counterparts provide a time scale for predictability. In this sense,

the �q better quantify the growth of uncertainties than either r�t or the �i even for in-

�nitesimal uncertainties. While the �q do provide a speci�c time-scale for predictability,

the variation of �q with x constrains the interpretation of a single �q as de�ning a limit

of predictability whenever �q2 6= 2�q for some q suÆciently small as to be of practical

interest.

3. Non-Uniform uncertainty evolution in uniform linear systems

Before considering nonlinear systems, we examine the complexity already inherent

in uniform linear systems with constant, if non-normal, Jacobian. Here the asymptotic

growth rate is determined by the eigenvalues of J , and the transient dynamics can be

solved analytically, the evolution of an initial uncertainty �0 is

_�= J�= S�S�1� (13)

solving for �(t) yields

�(t) = Se
�t
S
�1
�0 =

mX
i=1

cie
�it�

i
(14)

where c= S
�1
�0 is the decomposition of the initial uncertainty in the eigenvector basis

�
i
. For a linear 2-D system the magnitude �(t) grows as

�(t) =

q
c21e

2�1t + c22e
2�2t + 2c1c2e(�1+�2)t�1 � �2: (15)

Asymptotically, �(t) grows exponentially as e�1t but for �nite time it does not. In this

uniform case there is no dependence on x0 but only on initial orientation; it follows from

(15) that the instantaneous growth rate at time t is simply

r(�0; t) =
�1c

2
1e

2�1t + �2c
2
2e

2�2t + (�1 + �2)c1c2e
(�1+�2)t�1 � �2

c21e
2�1t + c22e

2�2t + 2c1c2e(�1+�2)t�1 � �2
(16)

and the e�ective growth rate is given by

rt(�0) =
1

2t
[log(c21e

2�1t + c
2
2e

2�2t + 2c1c2e
(�1+�2)t�1 � �2)� log(c21 + c

2
2 + 2c1c2�1 � �2)]:

(17)

Since 2�1 � �1 + �2 � 2�2 both the instantaneous and the e�ective growth rates will

approach �1 for almost every �0 (i.e. as long as c1 6= 0). To disentangle e�ects due to

magnitude of the eigenvalues and the non-orthogonality of the eigen-basis, we construct

J by de�ning an eigen-basis of real eigenvectors separated by angle Æ through

S =

0
BBBB@

cos � cos(�+ Æ)

sin � sin(�+ Æ)

1
CCCCA : (18)
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Thus �1 � �2 = cos Æ and the inverse of S is

S
�1 =

1

sin Æ

0
BBBB@

sin(�+ Æ) � cos(�+ Æ)

� sin � cos �

1
CCCCA : (19)

Hence we may consider any 2-D constant Jacobian system with real eigenvalues �1 and

�2 and real eigenvectors

J =
1

sin Æ

0
BBBB@

cos � cos(�+ Æ)

sin � sin(�+ Æ)

1
CCCCA

0
BBBB@

�1 0

0 �2

1
CCCCA

0
BBBB@

sin(�+ Æ) � cos(�+ Æ)

� sin � cos �

1
CCCCA : (20)

Any initial uncertainty �0 = (cos 
; sin 
) of unit length decomposes into the eigenvector

basis (18) with c1 =
1

sin Æ
(sin(�+ Æ) cos 
 � cos(�+ Æ) sin 
) and c2 =

1
sin Æ

(cos � sin 
 �

sin � cos 
).
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Figure 2. Initial instantaneous growth rates in a linear 2-dimensional system with both negative eigen-
values �1 =�0:5, �2 =�2:5 for (a) Æ = 900 and (b) Æ = 1600. The magnitude of the growth rates in a
speci�c direction is re
ected by the radius, negative rates are long-dashed lines, positive rates dotted,

the eigenvectors are also shown.

Figure 2 shows the e�ect of non-orthogonality on the instantaneous growth rates

at time t= 0 when both eigenvalues are negative. In the orthogonal case (panel a) all

rates are negative and the maxima and minima correspond to the eigenvalues. Yet a

corresponding non-orthogonal case (panel b) includes large positive growth rates. In the

orthogonal case the maximum growth rate is, of course, aligned with eigenvector �1,

while in the non-orthogonal case it is oriented in the direction 
max = ��
arctan(cot(Æ))

2 .
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Graphs showing curves of the instantaneous growth rate as a function of time for

various initial directions are often cited in the literature. It is important to remember that

even when the instantaneous growth rate in di�erent directions rapidly equilibrates, the

di�erence in magnitude between perturbations initially in these directions may remain

substantially di�erent. This di�erence is more easily seen in graphs of the e�ective growth

rate as a function of time, although it is least ambiguously re
ected by simply plotting the

magnitudes as a functions of time. If the initial uncertainty is isotropic, 
 is uniformly

distributed and integration of (16) and (17) over angle yields the ensemble-averaged

instantaneous growth rate hr(�0; t)i
 and the ensemble-averaged e�ective growth rate

hrt(�0)i
 , the behaviour of which are shown in �gure 3. Both hr(�0; t)i
 and hrt(�0)i

evolve from an initial value of �1+�2

2 toward �1 as t!1. Clearly the short term be-
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Figure 3. Ensemble-averages of the instantaneous (a) and the e�ective (b) growth rates of an ensemble
of uniformly distributed uncertainties as a function of time in a linear 2-dimensional system with �= 300,

�1 =�0:5, �2 =�2:5 for Æ = 100; 300; 900; 1600.

haviour is not represented by �1 even in a uniform (linear) system if m> 1. In the

orthogonal case, �1 and �m determine the maximum and minimum growth rates; this

is not the case in a uniform non-orthogonal system where even the ensemble-averaged

growth rates may signi�cantly exceed the largest eigenvalue.

This apparently anomalous growth simply results from non-orthogonality: the dif-

ference between the ensemble average of the squared uncertainties in an arbitrary non-

orthogonal system and the corresponding orthogonal system (with the same eigenvalues)

is simply:

h�(t)2i
;non�orthogonal � h�(t)
2
i
;orthogonal =

1

2
cot2(Æ)[e�1t � e

�2t]2 (21)

which is nonnegative for all times t > 0 regardless of Æ. When Æ is small (i.e. the eigen-

directions are similar), this di�erence becomes very large and the growth rates may exceed

�1. This has been termed \super-exponential" growth (or \sub-exponential" if the rate is

smaller than �1) by Nicolis et al. (1995). We note that there is no faster than exponential
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growth; rather �(t) is simply a sum of exponentials. Indeed, in non-normal systems it is

often the rapid exponential decay of one component of � that results in the growth of

the j�j. From equation (21) we see that, for linear systems with identical eigenvalues but

di�erent eigenbases, the expected growth rate is smallest in the orthogonal case. We also

note that the e�ective rates converge to �1 much more slowly than the instantaneous

rates.

These results for linear systems hold important implications for nonlinear systems

as well. For instance, common algorithms for estimating the largest Lyapunov exponent

from time series data (Wolf et al. (1985), Kurths and Herzel (1987)) approximate the

linear evolution about a �ducial trajectory by monitoring its distance from a reference

trajectory. When this distance grows too large, the reference trajectory is replaced by

a closer reference trajectory with a \similar" orientation. The results of this section

demonstrate that small errors in angle may signi�cantly e�ect the estimated exponent.

In terms of predictability, we have shown how non-normality may yield growth rates

larger than the largest eigenvalue; Nicolis et al. (1995) the \non-uniformity" as another

mechanism for this behaviour. Growth rates exceeding either the maximum eigenvalue

or Lyapunov-exponent are also discussed in Lacarra and Talagrand (1988) and Trevisan

and Legnani (1995).

4. Uncertainty dynamics in nonlinear systems - Numerical results

Growth rates and q-pling times cannot be obtained analytically in a nonlinear sys-

tem where trajectories must be approximated numerically; in this section we present re-

sults for the Lorenz (Lorenz 1963), Moore-Spiegel (Moore and Spiegel 1966) and R�ossler

(R�ossler 1976) systems. Our �rst task is to obtain a set of initial conditions and local

orientations. For each system, these are obtained from a very long, post-transient inte-

gration of the augmented dynamical system consisting of equations 1 and 3. N points

are chosen at random� from this long (but �nite) trajectory subject to the requirement

that they are well separated in time (i.e. a minimum separation of � 103 characteristic

time). This yields both the initial conditions x and local orientation corresponding to

the �rst global Lyapunov exponent �1, which we will refer to as the Lyapunov direction,

l1 , at x. As noted in Section 2(b), these orientations are only approximate as they are

not determined from an in�nitely long trajectory. The �xed time singular direction, v1,

corresponds to the �rst right singular vector of M(x;�topt). The value of N and the

optimization time, �topt, vary with the system and experiment. In addition to these

well-de�ned orientations, we shall also consider (at each x) one random orientation, r1,

drawn from an isotropic distribution.

At each x, uncertainty growth rates are obtained by integrating the augmented

equations (for each initial orientation) for a �xed time. In this case, if the distribution of

initial values of x re
ect the natural measure, then the distribution of �nal images will

also. To determine the q-pling times, the experiment is repeated but each initial condition

is integrated not for a �xed time, but rather until the uncertainty has increased by a factor

of q. For each q, x, and orientation � we denote this time by �q(x;�). In this case, the

distribution of �nal points need not re
ect the natural measure; �gure 5 shows that the

distribution of �nal points for the doubling time is indeed very di�erent from the natural

measure in the Lorenz case: doubling only occurs in regions of the state space with small

z-values suggesting the hypothesis that the \missing" portion of the attractor lies in a

region which is characterized by enhanced predictability.

� The distribution formed by taking points at random from along a trajectory approaches the natural
measure as the length of the trajectory increases toward in�nity.
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Figure 4. Views of the Lorenz attractor showing the doubling times for 216 initial conditions for the
Lyapunov direction (a), the maximum singular vector optimized for the doubling time obtained in the
Lyapunov direction (b), and in random direction (c). Red indicates �2 < 0:15, yellow 0:15� �2 < 0:5,
green 0:5� �2 < 0:8, turquoise 0:8� �2 < 1, blue 1� �2 < 2, magenta 2� �2 < 4, and black for �2 � 4.
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Figure 5. Three views showing where uncertainty doubling occurs in the 3 uncertainty directions de-
scribed in �gure 4. The starting points (green) re
ect the natural measure on the attractor while the
points where doubling occurs (red) do not. Each panel contains N = 216 initial conditions and their

images.
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In forecasting, one would like a local estimate of predictability for a particular state:

in �gure 4 each initial condition is colored by its doubling time; the three panels corre-

spond to the three di�erent initial orientations. A point is colored red if the magnitude of

the uncertainty doubled within less than 0.15 time units (indicating poor predictability),

yellow if 0:15� �2 < 0:5, followed by green, turquoise, and blue for �2 between 0.5 and

0.8, 0.8 and 1.0, or 1.0 and 2.0. Magenta points re
ect doubling times between 2.0 and

4.0, while a few points with doubling times larger than 4 time units are black (indicat-

ing enhanced predictability). For the Lyapunov orientation (�gure 4(a)), the variation of

�2(x; l1) is nicely organized in a banded structure with the highest predictability (black

and magenta) at the outer and inner margins of the attractor and the lowest predictability

(red) in the middle of the bands and at small z-values. Unlike the Lyapunov orientation,

l1, computing the singular orientation, v1, requires choosing an optimization time �topt;

one could choose a constant �topt for all x, but the wide variation in �2(x; l1) on the

attractor re
ected in �gure 4(a) (see also �gure 6 below), suggests that no global opti-

mization time exists which re
ects the relevant segment of each trajectory. Taking local

optimization times �topt = �2(x; l1) allows the optimization time to vary over 3 orders

of magnitude in response to variations in uncertainty growth; this at least ensures that

the segment of trajectory over which M(x;�topt) is evaluated re
ects time scales over

which q-pling could occur�. The �2(x; v1) for this choice are shown in �gure 4(b). For

these �nite values of q, note that there is often an orientation which q-ples faster than

the Lyapunov direction: the Lyapunov orientation is not optimal if the goal is to �nd

the \worst case scenario" growth, as is often the case in meteorology. Qualitatively, the

picture for the random orientations (�gure 4(c)) is similar, suggesting that \doubling"

shows larger variation with initial condition than with initial orientation for the Lorenz

attractor.

As indicated by the red points in �gure 5, the distribution of points at which q-pling

occurs [i.e. x(t+ �2(x;�)) in �gure 5] does not re
ect the natural measure. Figure 5

shows this distribution to be similar for all three initial orientations. Each case reveals

a \high predictability" region at large z where there are no points at all; this region

is considered in detail in the next section. There are di�erences between the panels

within the \low predictability" region (small z): doubling in v1 will almost always occur

\earlier" in time than in Lyapunov direction when the singular direction is de�ned with

�topt = �2(x0; l1). In the Lorenz systems, this leads to a contraction in the �nal point

distribution in state space for v1 relative to the distribution for l1. There is also a small

band consisting only of green points in �gure 5(a) just below the \eyes" of the attractor,

while in �gures 5(b) and 5(c) the same region includes both red and green points. Also

note locations where doubling occurs in the random orientation but not the Lyapunov

direction. The local orientation of the �rst global Lyapunov vector is sometimes more

stable than the randomly chosen direction, and thus completely fails to warn of the worst

case.

In stochastic systems, waiting times like �2 typically display (shifted) exponential

distributions (see for example Papoulis 1991); the organization of predictability within

deterministic chaos is re
ected by the non-exponential character (particularly in the

peaks) in the distribution of �2, shown for each of the three orientations in �gure 6.

Much weaker peaks are found in the R�ossler and Moore-Spiegel systems (not shown);

for the Lorenz system these peaks are especially sharp, because there are regions where

doubling is not only unlikely but impossible, as proven in the next section. A collection

� The shortest possible doubling time for in�nitesimals corresponds to the smallest �t such that the
largest singular value exceeds 2, and we call the corresponding v1 the nightmare direction (see section
6). Barkmeijer (1996) discusses the construction of rapidly growing �nite perturbations.
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of initial conditions which enter this region without having doubled cannot double until

they emerge from it, forming a well-de�ned subset of initial conditions which will have

\delayed" doubling events.

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8

co
un

ts

error doubling time

a)

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8
error doubling time

b)

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8
error doubling time

c)

Figure 6. Histogram of uncertainty doubling times shown in �gure 4 for Lorenz system in (a) the
Lyapunov direction, (b) the maximum growing direction, and (c) the random direction.

Global average predictability measures: The decay of predictability is often

presented through an \error growth" curve. \Error" in this case is de�ned via the dis-

tribution of the relative increase of in�nitesimal uncertainties with time; speci�cally,

for each initial condition we consider the relative uncertainty as a function of time,

m(t) = j�(t)j=j�(0)j. m(t) is also be referred to as the magni�cation or ampli�cation of

the initial (in�nitesimal) uncertainty with speci�ed orientation. The distribution is al-

ways considered over initial conditions, but we stress here that the initial orientation is

crucial as well. First, consider local orientations to be in l1. Inasmuch as the true equa-

tions are used this is a perfect model, there is no prediction error per se: the curves in

�gure 7 re
ect the growth of in�nitesimal uncertainties given a perfect model.

Figure 7 shows both the arithmetic average (panel a) and geometric average (panel

b) of the relative uncertainty as a function of time in the Lorenz system, where the initial

uncertainty has (local) orientation l1. The relationship (or lack thereof) between the slope

of these curves and �1, the largest Lyapunov exponent, has created some confusion in

the literature. We stress that �1 determines the slope only if four conditions are met,

namely: (a) the model is perfect and (b) the initial uncertainties are both in�nitesimal

and aligned in the local orientation of the global Lyapunov vector (i.e. l1) and (c)

the geometric mean is taken and (d) the sample of initial conditions is large enough to

e�ectively cover the attractor. The loss of any one of these conditions can break the

connection between this slope and �1.

A number of authors have reported \oscillations" in the error growth curves for the

Lorenz system. Our estimate of the geometric average, the solid curve in Figure 12b,

suggests that no such oscillations exist in this case, and this is the only case where the

slope is determined by �1. The oscillating dashed lines in Figure 12b show the e�ect

dividing initial conditions into two groups (de�ned in the next section) each dashed line

oscillates, but the oscillations cancel exactly. This suggests spurious oscillations would be
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observed if the initial conditions were not chosen uniformly with respect to the natural

measure: if all four of the conditions listed in the previous paragraph are met, then

oscillations are forbidden by construction, and one is to expect a straight line with a

slope given by �1, as observed. If the arithmetic average is taken, then oscillations are

to be expected, but the growth no longer re
ects the Lyapunov exponents of the system

over the short time scales of interest here. Indeed, if the geometric average is to re
ect the

value of �1 and the growth rate is not constant (globally), then the arithmetic average

must exceed the geometric average. In short, exponential growth in the geometric mean

all but requires so-called \super-exponential" growth in the arithmetic mean.

Note that the global average of �2 cannot be determined from the slope of this graph,

as the doubling time of this average is not the average doubling time. In inhomogeneous

systems, global measures of predictability will always be of limited utility, nevertheless

some will be more limited than others. The mean �2 is the expected time for the uncer-

tainty in a randomly chosen initial condition to double. This is independent of the time

at which the \averaged uncertainty" has doubled (whichever average is taken).
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Figure 7. \Error growth" curves for in�nitesimal uncertainties oriented in the Lyapunov direction.
Panels show the arithmetic mean (a) and geometric mean (b) as a function of time. Each panel shows
the global average (solid line) over N = 215 intial conditions, while the short dashed (long dashed) curves
represent averages taken over those initial condition which lie in the growing (shrinking)region of the
Lorenz attractor. Note that only the slope of the solid curve in the log-linear plot of panel (b) re
ects

the Lyapunov exponent.

Practically, the statistics of the uncertainty doubling times are of greater use in pre-

dicting error growth than the timing of the average uncertainty statistics. But the utility

of the �q is also limited due to the inhomogeneity of the attractor and the assumption of

in�nitesimal uncertainty. To relate the distribution of �2 to some \Limit of Predictabil-

ity" we must assume that the linearized dynamics also describe �nite uncertainties and

that the uncertainty growth is only weakly correlated over consecutive time segments
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of order �2; that is, for example, that �4 ' 2�2. Figure 8 reveals this is not the case for

any of the systems considered. As discussed in Smith (1996), the relation �q2 ' 2�q may

not hold, except for q so large that the assumption the initial uncertainty is still small

becomes ludicrous.
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Figure 8. A comparison of the doubling time and quadrupling time of N = 216 initial conditions for
the Lorenz, the Moore-Spiegel and the R�ossler systems. In each case, the initial uncertainty is in the

Lyapunov orientation.

Returning to Figure 8, note that in all three systems many of the points lie just

above the diagonal indicating that the uncertainty growth tends to be episodic; here �4
only slightly exceeds �2. In the case of Lorenz, points also fall roughly along lines parallel

to the diagonal, this suggests that those points which do not quadruple immediately

after doubling tend to quadruple a (roughly) �xed time after they have doubled. This

structure is due to the macroscopic structure of the Lorenz attractor which leads to almost

periodic alternations between regions of uncertainty growth and uncertainty decrease,

as established in the next section. Similar, if less well de�ned structure is seen in the

Moore-Spiegel and R�ossler attractors. Note in R�ossler, however, there are also points

which double quickly (�2 < 10), but do not quadruple for a relatively long time (�4 > 50).

The lesson to draw from these distributions is that even in these simple systems, growth

of in�nitesimal uncertainties is very inhomogeneous. The inhomogeneity in operational

NWP models is discussed in Smith and Gilmour (1998).

Table 1 summarizes statistics for all three chaotic systems. First compare the arith-

metic averages and note that the average quadrupling-time is never twice the average

doubling time. Second, note that the medians di�er from the arithmetic averages indi-

cating that the q-pling time distributions are far from Gaussian (as shown in �gure 6).

For the arithmetic average: in Lorenz system h�2iarith: >
1
�1

while for both the other

systems h�2iarith: <
1
�1
, whereas h�4iarith: <

2
�1

in all three systems. This result re
ects

the importance of regions of negative uncertainty growth play in the Lorenz system.

Finally, recall that �1 is measured in bits per unit time, yet 1
�1

does not determine

h�2i. To see that this must be the case, recall that Lyapunov exponents are de�ned as
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an averaged rate in the limit of an in�nitely long �ducial trajectory which will cover the

attractor uniformly. To compute h�2i we take initial conditions uniformly distributed on

the attractor - we may consider for example points x equally spaced in time along the

same (in�nitely long) �ducial trajectory with separation �t. The Lyapunov exponent

is then the growth rate after time �t, averaged over each x, with the appropriately

oriented initial uncertainty. �q involves the same initial conditions and orientations, but

the trajectory is sampled only until the uncertainty doubles; for some x this is longer

than �t, for some it is less. Even though the initial points are uniform with respect

to the natural measure in both cases, the calculation of the �q samples the attractor

di�erently than the calculation of the �i. In short, Lyapunov exponents do not re
ect

predictability� except in the simplest of systems.

Lorenz Moore-Spiegel R�ossler
�(G1) in % 31.2 0.6 4.5
�(G2) in % 13.4 - -
�1 in [bits / unit time] 1.31 0.24 0.13
1

�1
0.77 4.17 7.75

h�2iarith: 1.00 1.22 6.26
h�2igeom: 0.54 0.25 4.36
h�2imedian 0.63 0.24 5.58
h�4iarith: 1.32 2.18 8.33
h�4igeom: 0.87 0.49 5.78
h�4imedian 0.87 0.39 7.02

TABLE 1. Fractions of measure in G1, G2, maximum Lyapunov exponent, arithmetic mean, geometric
mean and the median of both doubling times and quadrupling times are given for each of the three
systems. In all cases the uncertainties are oriented in Lyapunov direction. Trajectories exceeding 107

time units were used in estimating �1 to two decimal places.

5. Exact results for instantaneous uncertainty growth

While it is not possible to integrate the augmented equations analytically, exact

bounds on uncertainty dynamics may still be obtained if we can place a restriction on

every trajectory within a region of state space. For example, locating a region within

which all instantaneous growth rates are negative [for all points and all orientations]

proves that all uncertainties must decrease for as long as the �ducial trajectory remains

within that region. Such regions must display enhanced predictability for �nite times. In

this section, we establish such regions in the Lorenz system, and related regions for all

three systems. Denote by G1 any region within which the Jacobians, J , at each point

have eigenvalues with negative real parts. For non-normal J , this is not suÆcient to rule

out positive growth rates (see section 3), yet such regions are observed (numerically) to

be dominated by decreasing uncertainty with time. If, on the other hand, each eigenvalue

of J + J
T is negative within a region, say G2, then no instantaneous growth rate within

G2 is positive: all in�nitesimal uncertainties will decrease with time for (at least) as long

as the trajectory remains within G2. In general G2 2G1 2R
m. General conditions for

the existence of such regions are given in the next two paragraphs; explicit formulas for

the surfaces shown in �gures 9 are presented in Appendix B.

Initial conditions with negative real parts of the eigenvalues of J : G1

� The Baker's Apprentice Maps (see Smith (1994a,1997)) provide a simple but dramatic illustration of
a family of maps which includes members with an arbitrarily large average doubling time, while every
member has a largest Lyapunov exponent greater than one.
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The eigenvalues of a 3� 3 matrix are the roots of the characteristic polynomial:

a0�
3 + a1�

2 + a2�+ a3 = 0 (22)

Taking a0 = 1, the Routh-Hurwitz-Criterion (see e.g. Jetschke (1989)) states that all �i
have negative real parts, if and only if T0,T1,: : :,Tm are all positive, where in this case

T0 = a0 > 0; T1 = a1 > 0; T2 =

����������
a1 1

a3 a2

����������
> 0

T3 =

���������������

a1 1 0

a3 a2 a1

a5 a4 a3

���������������
> 0 ! a3 > 0; because a4; a5 = 0 for m= 3

with ak = 0 if k >m. Then the subset of states which have negative real parts of the

eigenvalues of the Jacobian is given by:

G1 = fxjT0; : : : ; Tm > 0g (23)

Initial conditions with negative eigenvalues of (J + J
T ): G2

For symmetric matrices like (J + J
T ), the �i are negative de�nite only if all the

principal sub-matrices of [�(J + J
T )] have positive determinants Vi; i= 1; m. For m=3:

V1 =�2J1;1 > 0

V2 = 4J1;1J2;2 � (J1;2 + J2;1)
2
> 0

V3 = det[�(J + J
T )]> 0

Therefore, the subset of states with �i < 0 of (J + J
T ) is given as

G2 = fxjV1; : : : ; Vm > 0g (24)

Figures 9 show, for each system, surfaces de�ning G1 and G2 and their relation to

that attractor. Of the three, only the Lorenz system has a nonempty region G2, within

which all uncertainties decay. (The Ikeda Map also has a nonempty G2 region; note that

the relevant condition for a map is that all eigenvalues of JT
J are less than one.) We

now relate these surfaces of �gures 9 to the observed dynamics.
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Figure 9. The panels on the right show the surfaces bounding G1 (the blue side facing the stable, the red
side facing the unstable region) and G2 (green) in (from top to bottom) the Lorenz, the Moore-Spiegel,
and the R�ossler systems. The location of the attractors in each system is indicated in the corresponding
panel on the left, where points are plotted as blue dots within G1 nG2, as red dots outside G1 and as

green dots within G2.
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For any system, �xed points within a region G1 give rise to simple attractors (which

may, of course, coexist with strange attractors). In the Lorenz system this occurs� for

small values of the parameter r; as r increases, h, the height of either of the pairy of �xed

points xf;� = (�xf ;�yf ; zf ) above the surface de�ning G1, is

h= zf � z
�(xf ; yf ): (25)

Noting that zf = r � 1 (see section 2) and using equation 23 to determine the z coordinate

of the separating surface z�(x; y) given x and y explicitly (see Appendix B), we have

h(r; b; �) =
b

�2 + �
[(1 + b� �)r + (3 + b+ �)�]: (26)

Figure 10 shows h as a function of r, for � = 10 , b= 8
3 . The xf;� become unstable as h

goes through zero at r = 470
19 and the largest Lyapunov exponent becomes positive even for

initial conditions near xf;�. The fraction of the measure of the attractor within G1 is also

shown. Note that for small negative h, �1 tends to increase with increasing r (decreasing

�(G1)); this general tendency fails, of course, in any windows of r corresponding to stable

periodic attractors found within this chaotic parameter regime.
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Figure 10. The variation in the Lorenz system of several statistics for initial conditions near xf;� as
a function of the parameter r. Namely, the fraction of measure in G1 (long dashed) and maximum
Lyapunov exponent (solid). The height of the �xed points above the surface de�ning G1 is also shown

(dotted). Note the changes that occur as the �xed points pass through this surface.

The fraction of time a system spends in G1 or (G2) is related to the fraction of

the attractor in this region shown in Table 1. While this fraction re
ects predictability,

� We thank T. Frisius for pointing out the additional example r = 50; � = 2; b= 0:8
y By symmetry, these two �xed points cross the surface simultaneously.
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few conclusions can be drawn from any globally averaged predictability measures. It is,

nevertheless, of interest to know how often short term prediction of a chaotic system will

be simple and whether return of skill is to be expected.

These exact results also support the numerically-based conjecture from �gure 5 that

uncertainties increase only in certain regions: it is only possible to exceed an uncertainty

threshold (in this case doubling) in a region where uncertainties can increase; hence all the

points in �gure 5 must lie outsideG2. For smaller q > 1 (i.e. 1.05-pling times) the location

of q-pling boundaries approach G2 (�gures not shown). For all initial orientations, those

points lie outside G2. For the Lyapunov direction they are also outside G1! This leads to

the conjecture that the uncertainties are closely aligned to maximum eigen-directions (or

subspaces spanned by these eigen-directions) (Ziehmann-Schlumbohm et al. 1995); this

demonstrates once again the importance of determining which orientation is most relevant

in the context of ensemble forecasting. While this analytical approach is attractive, its

general application is limited to low order systems (as there exists no general solution

for polynomials with order larger than three), although results on subspaces may often

be obtained.

6. Finite uncertainties and ensemble forecasting

While a variety of statistics for quantifying predictability have been contrasted in the

preceding sections, those that invoke linearized dynamics share a common 
aw: the as-

sumption that uncertainties remain e�ectively in�nitesimal for the time scales of interest.

Clearly, as long as an uncertainty is in�nitesimal it can place no limit on predictability,

and as soon as it becomes �nite, the linearized dynamics are indefensible, although one

may verify the extent to which nonlinear terms dominate the dynamics by explicit calcu-

lation on a case by case basis. In order to determine the extent to which these in�nitesimal

�q re
ect true limits to predictability, we contrast these time scales with those determined

using a perfect ensemble of �nite radius, evolved under a perfect model. Within the per-

fect model/perfect ensemble scenario (Smith 1996), forecasts are accountable, meaning

that deviations from the forecast probability density function decrease towards zero as

the sample size increases. These forecasts provide the standard against which we measure

other ensemble forecasts, as well as the utility of the time-scales determined from the

linearized dynamics. We �rst discuss the formation of perfect ensembles, interpret one

example, shown in �gure 11, then turn to the eÆcacy of the �q as an indicator of the

growth of perfect ensembles, and �nally contrast the performance of imperfect ensembles

against this standard.

The true state of the system, x will lie on the attractor, while an observation, xobs,

need not. Given xobs and knowledge of the type of observational uncertainty, we generate

a perfect ensemble by collecting analogues from a long integration of the model from

those times when the trajectory returns near x, where \near" is de�ned by the statistical

form of the observational uncertainty. The ensemble is perfect in that its members are

not only near x, but are also on the attractor. For simplicity, we will assume that the

only observational uncertainty is due to quantization noise, x then corresponds to a

particular (truncated) value xobs and the perfect ensembles are drawn from all the other

points on the attractor which correspond to the same value of xobs. Perfect ensembles

are, of course, also well-de�ned for more complex observational uncertainties, the key

point is that given a particular value of xobs the members of a perfect ensemble are

realizable states of the system weighted by their likelihood as candidates for x. In the

case of quantization noise, each point in the ensemble has equal weight; the relative

weights under other observational noises can easily be determined. Regardless of the
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details of the measurement uncertainty, the essential idea here is that if x lies on a

manifold (or attractor) with dimension less than that of the model-state space, then the

formation of perfect ensembles requires more knowledge than a complete speci�cation

of the measurement uncertainty: given this speci�cation we can compute the probability

of an observation given the true state, but not the probability of a point being the true

state given the observation. This follows from the fact that the true state must be on the

attractor, as well as consistent with the observation (Smith 1998).

The evolution of one perfect ensemble from the Lorenz system is shown in �gure

11, where the observed distribution of values of the variable x is shown as a function

of time. At t= 0 each of the 512 members of this ensemble are within the same 6-bit

box in state space: each of these points corresponds to exactly the same �nite precision

observation. The distribution initially spreads out, but shows true return of skill both for

large positive and for large negative values of x, corresponding to times when the ensem-

ble is in G1 or G2. While the ensemble quickly develops a spread comparable with the

diameter of the attractor, it is obvious that the information content in this distribution

decays at a much slower rate than is suggested by it standard deviation. At t= 3:5, it

is clear that system will have either a large positive or large negative value of x, yet the

optimal root-mean-square (RMS) forecast at this time is near jxj= 0; this is a funda-

mental shortcoming of the RMS forecast error as a cost function for nonlinear systems.

In the limit of large t, the distribution will approach the climatological distribution of

x, that is, the projection of the natural measure onto the variable of interest. Indeed

an ultimate limit of predictability is the time required for a perfect ensemble to become

statistically indistinguishable from the climatology; this limit will be a function of the

initial condition, the observational accuracy, and the size of the ensemble (Smith 1996).

In the current paper, we are interested in earlier stages of the loss of predictability; for

instance, we may compute the time required for the average deviation of the ensemble

to increase by a factor of two, and contrast this with the uncertainty doubling time. In

fact there are two questions here, �rst whether to compute the chosen statistic in full

state space, or only in a particular variable. And second, whether to use the �ducial

trajectory (control) or the ensemble average as the reference trajectory when computing

the average deviation. The last question is relevant since in practice we do not know the

true state (the control); table 2 shows both.

For each of 4096 initial conditions chosen at random on the attractors, a perfect

ensemble was constructed with Nens = 256 analogues within a distance of �= 2�7 corre-

sponding to length scale just under 1% of the \diameter" of the attractor�. The ensemble

q-plying time was de�ned as the smallest time at which the average deviation, �, of the

ensemble exceeds q times its inital value �0. In addition, the �rst time at which any mem-

ber of the ensemble exceeds a distance of q times its initial distance from the reference

trajectory was recorded as the \fastest member" time.

� For each of the attractors considered in this section, the variables were rescaled so that the attractor
had extent approximately one in each coordinate direction.
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Figure 11. Evolution of the probability density function for the variable x in a perfect ensemble under
the Lorenz equations. Time is plotted in the vertical; the right panel follows from the top of the left. As
time increases (upwards), the initially sharp distribution at t= 0 initially decays, but then shows true
return of skill (at t� 0:4) at the time when the ensemble crosses the G1 surface. Although the ensemble
soon has members at each extreme of the attractor (t� 2:75), it clearly di�ers from the asymptotic
distribution at the top of the left panel (t= 6:0); this di�erence is still statistically signi�cant at the top

of the right panel (t= 12:0).
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The q-plying times for in�nitesimals in several di�erent orientations are contrasted

with that of the perfect ensemble in Tables 2 and 3. De�ning the q-pling time in the

singular vector orientation requires the choice of an optimisation time which should, of

course, vary with the value of q. To determine a relevant time scale for each q, we �rst

compute the average �q for the Lyapunov orientation, the singular vectors v1 are then

computed using this average �q as the optimization time. We also consider the orientation

in which an in�nitesimal perturbation will �rst increase by a factor q, and de�ne this

as the nightmare (or worst case) orientation, n1. The shortest possible q-pling time for

in�nitesimals at x0 may be found by computing the singular values of M(x0;�t) as a

function of �t as in Greene and Kim (1987). The nightmare direction at x0 is simply the

v1 corresponding to this time. For q = 8, the average �q for the Lyapunov, �rst singular,

and nightmare orientations are 1:74; 1:10 and 1.05, respectively.

control Lyapunov Vector Singular Vector([�2]LV ) Nightmare
Deviation 0.765 0.630 0.610
Fastest Member 0.615 0.573 0.950

mean
Deviation 0.772 0.627 0.610
Fastest Member 0.572 0.534 0.929

control Lyapunov Vector Singular Vector([�8]LV ) Nightmare
Deviation 0.802 0.887 0.859
Fastest Member 0.852 0.889 0.979

mean
Deviation 0.804 0.887 0.860
Fastest Member 0.797 0.839 0.926

TABLE 2. Correlations between �q times from a perfect ensemble and those from in�nitesimal uncer-
tainties oriented in Lyapunov, Singular and Nightmare directions in the Lorenz system. The upper panel
is for q = 2, the lower q = 8. Deviations from the control and from the ensemble mean are considered.

The linear correlations were computed between in�nitesimal �q and ensemble q-

plying times for q = 2; 4; 8; 16 and 32. The results in the Lorenz system for both q = 2

and q = 8 are given in Table 2; repeating the experiment yields correlations within 0.02 of

those shown, and usually within 0.01. The �q of the in�nitesimal singular vectors consis-

tently yield higher correlations with �q of the average deviation of the �nite uncertainties

in all cases except q = 2; this holds both for deviations from the control and for devia-

tions from the ensemble mean. If, however, we are interested in the worst case, namely an

estimate of time required for the fastest member of the ensemble to increase by a factor

of q, the nightmare vector best captures this behaviour. When estimating the growth of

the average deviation, similar results are obtained whether we calculate the distances to

the control or the mean, however for the worst case the di�erence is crucial. This is not

surprising because the tangent model is set up using the trajectory through the control

and not the ensemble mean (which need not correspond to a realizable trajectory).

control Lyapunov Vector Singular Vector([�2]LV ) Nightmare
Deviation 0.413 0.229 0.441
Fastest Member 0.286 0.109 0.618

control Lyapunov Vector Singular Vector([�8]LV ) Nightmare
Deviation 0.147 0.431 0.478
Fastest Member 0.104 0.719 0.869

TABLE 3. Correlations in the Moore-Spiegel system between �q times from a perfect ensemble and
those of in�nitesimal uncertainties oriented in Lyapunov, Singular and Nightmare directions. Deviations

are from the control. The upper panel is for q = 2, the lower for q = 8.

Given the general arguments against generalizing from the behaviour of in�nitesi-
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mal uncertainties, the correlations in table 2 might be considered surprisingly large. To

investigate further we contrast the results from the Lorenz system with those of the

Moore-Spiegel system (see table 3). The correlations in the Moore-Spiegel system are

much lower than those in the Lorenz system. The high correlations of the Lorenz system

provide a misleading indication of the general quality of in�nitesimal �q, and probably

result from the extremely simple dynamics on this attractor. This leads us to distinguish

two distinct limiting factors: the breakdown of the linear regime due to nonlinear dy-

namics at small (�nite) amplitudes and an ultimate limit of uncertainty growth due to

the �nite size of the attractors.

Given an attractor of diameter one, we attempt to avoid �nite diameter e�ects by

considering �nite perturbations of magnitude �, such that q� < 0:5. With this upper bound

on �, we wish to take � large enough so that the local nonlinearities of the 
ow play a role in

the dynamics. Note that these length scales are in the state space of the dynamical system,

not physical space; we are concerned with �nite amplitude e�ects where 0< j�j<< 1. For

the Lorenz system these two conditions con
ict: examining contours of the correlation

between in�nitesimal q-pling times and �nite q-pling time in the Lyapunov orientation as

a function of q and � (not shown), we see that the linear approximation remains accurate�

all the way out to length scales comparable with the diameter of the attractor. In general

this is not the case; the Moore-Spiegel system shows a range of length-scales and q-pling

times at which the nonlinearities break the correlation before the size of the attractor

is reached. We choose �= 2�7 as representative of these length scales, and stress that

the level of observational accuracy required to exploit the in�nitesimal time scales will

depend on the particular system and cannot be determined a priori .

Next we turn to the performance of constrained ensembles with �nite amplitude

perturbations. Figure 12 re
ects how well the perfect ensemble distributions are cap-

tured by small operational ensembles, where initial conditions \on the attractor" are

not available. For each of 512 initial conditions, several ensembles consisting of the true

initial condition (control) and two perturbations of equal and opposite magnitude � are

evolved and their q-pling times are recorded. In addition, the shortest time at which

any member of the ensemble exceeds q�0 is recorded. The �gure shows the correlation

between the perfect ensemble and each of the four constrained ensembles; in each of the

latter, �nite perturbations are constrained to lie with a certain orientation. In order to

remove any e�ects of initial conditions \o� the attractor", the correlation between the

full 256 member perfect ensemble and a two-member perfect ensemble is also shown.

The most noticeable aspect of �gure 12 is how large all the correlations remain in the

Lorenz case. We �rst consider the estimated growth of the average deviation. For small q,

the two-member perfect ensembles consistently perform well in both systems, indicating

the importance of being \on the attractor" in the early stages of uncertainty growth.

In the Moore-Spiegel system, nightmare ensembles outperform the two-member perfect

ensemble for q � 4, as do the singular vector ensembles, which are of similar quality for

large q. The Lyapunov ensembles show the smallest correlations. In the Lorenz system,

the nightmare and singular vector ensembles perform worst for small q, while for q � 4

they dominate the Lyapunov ensemble, although all correlations exceed 0.7 in this case.

In terms of indicating a warning of \worst forecast bust," the nightmare ensemble is

generally the best. The singular vector ensembles generally outperform the Lyapunov

ensembles, except at small q.

Lastly, we explored the e�ect of increasing the size of small perfect ensembles, with

ensembles of 16 members, we consistently get correlations in excess of 0.9 for the average

� Speci�cally, the correlation exceeds 0.90 for q�= 0:5
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Figure 12. Panels (a) and (c) show the correlations between the time required for the average deviation
to increase by a factor of q in a perfect ensemble with that in each of the 2-member ensembles. The ability
of an ensemble to re
ect the \worse case" scenario is shown in panels (b) and (d), similar graphs which
re
ect the correlation between the time required for a member of the ensemble to exceed a distance q�0
in the each two member ensemble with that of the perfect ensemble. In each case, the average deviation
and fastest member evolution of �nite perturbations in the Lyapunov (solid), singular vector (dash),

nightmare (dot) directions, and a 2-member perfect ensemble (dash-dot) are shown.

deviation, and between 0.8 and 0.9 for the fastest member over the range 2< q < 16 for

the Moore-Spiegel system. This is a signi�cant improvement over the performance of the

two-member ensembles shown in Figure 12.

In the context of NWP, it is commonly stated that given the current observational

error, the linearized dynamics hold for about two days (see, however, Smith and Gilmour

(1998), Gilmour(1998)); we note that for all the low-dimensional systems we have con-

sidered this statement is, at best, misleading: the time scale varies widely with initial

condition on the attractor, usually in an organized manner. In such cases one cannot

usefully employ one time scale over which linearity is assumed to hold, even for a �xed

observational uncertainty.

Observational uncertainties are always �nite; in this section we have contrasted
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in�nitesimal time scales with those determined from �nite precision observations. The

correlation between the �q derived from the �nite uncertainties estimates in the ensemble

and that of the in�nitesimals can vanish suddenly as observational uncertainty increases.

One might respond by including higher order terms in a local analysis, but the macro-

scopic structures evident in Figure 11 suggest that no local analysis can be expected

to hold once the ensemble develops macroscopic structure. Smith (1996) considers the

interplay of these e�ects with long term prediction, the results above indicate that en-

sembles are equally necessary to quantify short term predictability, in the absence of all

but in�nitesimal observation error.

7. Discussion of related results and conclusions

Given a perfect model, predictability is limited only by the growth of the uncertainty

in the initial condition. If this initial uncertainty is suÆciently small, then its evolution

will be re
ected in the linearized equations of motion, and may be quanti�ed through a

singular value decomposition of the linear propagator, as argued by Lorenz (1965) over 30

years ago. Lorenz quanti�ed the variability of predictability with initial condition in a 28-

variable atmospheric model using what are now called \�nite-time Lyapunov exponents";

other statistics with this aim include the \non-uniformity factor" of J.S. Nicolis et al.

(1983) and the di�erence between the most probable error and average error as considered

by Benzi and Carnevale (1989). In the present paper, we have shown that this variability

severely restricts the use of Lyapunov exponents as a measure of predictability, this

restriction is enhanced by the fact that both �nite-time and global Lyapunov exponents

are de�ned as average rates, not average times. Explicit time-scales for uncertainty growth

times have been estimated and used to visualize the organized variation of predictability

in state-space. They provide a useful measure for the growth of either in�nitesimal or

�nite uncertainties. The organization of predictability has previously been quanti�ed in

two-dimensional maps through variations in local divergence rates by Haubs and Haken

(1985), while Nese (1989) estimated the average of the local divergence rate numerically

at several locations on the attractor of the Lorenz system, noting regions of convergence.

We believe estimated times provide a better measure of predictability than e�ective rates,

in part because estimating an e�ective rate requires selecting a time scale a priori .

In Section 5 bounds are placed on local growth rates analytically, suggesting a

method to prove the existence of �nite volumes of state-space within which all per-

turbations decrease with time for a �nite period. Following Farrell (1994) and Trefethen

et al. (1993), we stress the importance of the non-normality of the Jacobian matrix (or

linear propagator) in determining whether uncertainty will grow or decay in a chaotic

system; regions of certain uncertainty decrease are proven to exist in the Lorenz system

and in the Ikeda map, while numerical evidence indicates that there are regions in many

chaotic systems where uncertainties with the most likely orientations decrease with time.

Other measures of �nite time stability include the Lorenz index advanced by Mukougawa

et al. (1991); Figure 7 of Mukougawa et al. (1991) provides clear numerical evidence in

support of the analytical results of section 5. Also of interest are the \e�ective Lyapunov

exponents" and associated graphics computed by Doerner et al. (1991) which, like the

Lorenz index, are a function of a particular prediction time-scale.

In addition to the references above, this work has been signi�cantly in
uenced by

the predictability studies of Trevisan (1993), Trevisan and Legnani (1995), Palmer (1988,

1993a), Palmer et al. (1992), Eckhardt and Yao (1993), C. Nicolis et al. (1992, 1995),

Yoden and Nomura (1993), Houtekamer and Derome (1994), and eventually the 1995

ECMWF workshop on predictability 1995. Some of these papers (for example Trevisan
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(1993) and Houtekamer and Derome (1994)) report oscillations in \error growth curves"

for low-dimensional systems . We replicate these observations in �gure 7 and discuss the

extent to which this is simply a question of taking an arithmetic mean or a geometric

mean; we then employ the analytical results of section 5 to distinguish what is to be

expected from a chaotic system from those behaviours particular to the 1963 Lorenz

system, and within this model, behaviours further restricted to the \standard" param-

eter values. The symmetry of the Lorenz attractor, and the roughly periodic sampling

of regions in which uncertainties decrease with time, along with the extremely good ap-

proximation of macroscopic uncertainty dynamics provided by the linearization about

a �ducial trajectory, combine to make to this Lorenz system a weak straw-man for the

evaluation of forecast schemes.

In this article we have demonstrated the variation of uncertainty dynamics with

respect to initial condition, orientation and magnitude in state space. These results are

of use not only in the �rst principles models discussed above, but also in the data based

models commonly constructed from observations of nonlinear dynamical systems (Broom-

head and Lowe 1988, Casdagli 1989, Farmer and Sidorowich 1987, Mees 1993, Smith 1992,

Sugihara and May 1990). The need for clarifying the true sources limiting the prediction

of nonlinear systems has been argued by May (1996): while the \non-uniformity" of un-

certainty growth has been recognized for some time, it is still common to �nd statements

to the e�ect that \an estimate of the mean e-folding time is provided by the inverse

of the sum of the positive Lyapunov exponents." The theoretical arguments of Sections

5 and 6 show that this is not true in general. The Baker's Apprentice Maps in Smith

(1994a,1997) provide a family of systems which allow arbitrarily large average uncer-

tainty doubling times, yet every member has �1 � 1, and hence 1
�1
� 1. The contents of

Table 1 compare the inverse of the largest Lyapunov-exponent and average doubling time

for several chaotic 
ows. Tables 2 and 3 and �gures 12 show additional results relating

local measures based on the �nite time linearized dynamics with the behaviour of small

but �nite initial uncertainties.

Linear intuitions suggest that forecast errors will steadily increase with lead time;

the decrease in forecast error with increasing forecast time was dubbed the \return of

skill" problem by Anderson and van den Dool (1994). While the statistical signi�cance of

such results in meteorology has been questioned by Anderson and van den Dool (1994),

we stress that return of skill is not unexpected in nonlinear systems (see Tong and

Moeanaaddin (1988)). Return of skill is to be expected in any system which explores a

region of state space in which all uncertainties decrease with time. Numerical evidence

for a true return of skill is observed not only in the Lorenz system�, but also in a variety

of other chaotic systems, including the Moore-Spiegel and R�ossler systems, again in the

regions of state space suggested by the exact results of section 5. The extent to which

these observations are due to the simple structure of these systems is unknown; however

we note that some evidence for return of skill has been noted in forecasts of the thermally

driven rotating 
uid annulus (Smith 1992, Smith 1994, Read et al. 1991), which has a

somewhat more complex state space structure. It is not known whether \return of skill"

plays a signi�cant role in forecasting the Earth's atmosphere, in large part because the

observational record is short relative to the recurrence time of the system. This may

always be the case, as the recurrence time of the system has recently been estimated

to be vast compared with the lifetime of the system (indeed, even when compared with

the age of the Universe (van den Dool 1994)), another indication of the importance of

� As stressed by Palmer (1993,1993a), the Lorenz system also shows an arti�cial return of skill (e.g.
t� 3:0 in �gure 11) due to the symmetry of the attractor, which we agree is \manifestly spurious."
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physical analogue laboratory experiments.

The central focus of this paper has been to demonstrate that \the" relevant e�ective

growth rate of a small initial uncertainty depends strongly on both its location and

orientation in state space, its magnitude, and even the veri�cation time. Our results

hold implications for ensemble selection for Numerical Weather Prediction. Operational

ensemble forecast programs often selectively consider uncertainty growth in particular

orientations; two competing methods contrast the subspace de�ned by breeding vectors

(see Toth and Kalnay (1993) and references thereof) with that de�ned by singular vectors

(see Palmer (1993) and references thereof). In a perfect model context, the singular

vector subspace corresponds to �xed optimization time singular vectors discussed in

Section 2, while the breeding vectors are related to the Lyapunov vectors; it is crucial

to remember that operational breeding vectors di�er from Lyapunov vectors in that

operational breeding vectors are neither in�nitesimal nor determined in a perfect model

environment, hence operational breeding vectors incorporate information on the analysis

error implicitly. That being said, the results in section 6 suggest an advantage of singular

vector based ensembles over Lyapunov vector based ensembles. We note that allowing

the optimization time to decrease in regions of particularly rapid growth can improve

the results further. A major source of interest in ensemble prediction lies, of course, in

the medium range beyond the time scales for which the linear approximation is relevant.

The method of ensemble formation employed should re
ect the goals of the forecaster

(e.g. to obtain a bounding forecast, or an accurate probability density function).

Advances in understanding the dynamics of uncertainty will help to clarify the crucial

role the magnitude of the initial perturbations plays in constructing ensembles. We hope

these results will serve as motivation for the analysis of a hierarchy of increasingly complex

mathematical systems and physical laboratory analogues, in both perfect and imperfect

model regimes, to be executed in parallel with current studies on full-blown numerical

weather forecasting models.

Appendix A

Details of the Error Growth Experiments

The numerical integrations discussed in this paper were computed under a fourth

order Runge-Kutta scheme (Press et al. 1987) with a �xed time step (0.005 for the

Lorenz and Moore-Spiegel systems, 0.004 for the R�ossler system)

For the uncertainty growth, and especially the doubling experiments, initial points

were chosen by integrating for a randomly chosen time (�decorr + 
�) after a given mea-

surement, or by integration of an independent trajectory. Such an approach is required

in order to avoid bias or correlations in the test points. If, for example, the next initial

condition for an uncertainty doubling experiment is chosen as the location at which the

previous test point doubled, one will tend to get initial conditions with the distribution

re
ected by the red points in �gure 5, which is not uniform with respect to the natural

measure. There is evidence of this type of bias in the literature.

Appendix B

Explicit formulas for the surfaces

Explicit formulas for the surfaces shown in �gure 9 are given in this Appendix; the

derivation of these results can be found in Ziehmann-Schlumbohm (1994).
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In the Lorenz system (2) the coeÆcients of the characteristic polynomial are a0 = 1,

a1 = � + 1 + b, a2 = �(1 + b� r + z) + b+ x
2 and a3 = �(1� rb+ x

2 + bz + xy). Given

the standard parameters �; b; r > 0, we have T0 = a0 = 1> 0 and T1 = a1 = � + 1 + b > 0.

Therefore we only need to �nd the conditions for T2 = a1a2 � a3 and a3 to be positive.

fxjT2 > 0g= fxjz > z1(x; y) = b1 + b2x
2 + b3xyg (B.1)

where

b1 =
�
2
r + �r � �

2 � �
2
b� 2�b� b� �b

2 � b
2 � �

�2 + �

b2 = �
1 + b

�2 + �

b3 =
1

1 + �

fxja3 > 0g= fxjz > z2(x; y) = c1 + c2x
2 + c3xyg (B.2)

with c1 = r � 1; c2 =�
1
b
; c3 =�

1
b
leading to

G1 = fxjT0; T1; T2; a3 > 0g= fxjz > z
? =max(z1; z2)g (B.3)

The determinants of the three principal sub-matrices of [�(J + J
T )] are

V1 = 2�

V2 = 4� � (� + r � z)2

V3 2b[4� � (� + r � z)2]� 2y2:

All initial conditions x within an elliptic tube build the subset of states with negative

eigenvalues of (J + J
T )

G2 = fxjV1; V2; V3 > 0g= fxj
(z � (r + �))2

4�
+

y
2

4b�
< 1g: (B.4)

The Moore-Spiegel equations

dx

dt
= y

dy

dt
= z

dz

dt
= �z � (t� r + rx

2)y � tx (B.5)

describe the motion of a parcel of ionized gas in the atmosphere of a star. With t= 26

and r = 100 the system is chaotic (Moore and Spiegel (1966)). Its Jacobian is

J(x) =

0
BBBBBBBBB@

0 1 0

0 0 1

�(t+ 2rxy) �(t� r � rx
2) �1

1
CCCCCCCCCA

(B.6)
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and leads to

G1 = fxj �
t

2rx
< y <

x
2 � 1

2x
if x > 0 ^

x
2 � 1

2x
< y <�

t

2rx
if x < 0g (B.7)

and from

J(x) + J
T (x) =

0
BBBBBBBBB@

0 1 �(t+ 2rxy)

1 0 1� (t� r � rx
2)

�(t+ 2rxy) 1� (t� r � rx
2) �2

1
CCCCCCCCCA

(B.8)

follows immediately G2 = ;.

The R�ossler system (R�ossler 1976)

dx

dt
= �y � z

dy

dt
= x+ ay

dz

dt
= b+ zx� cz (B.9)

is also chaotic with the parameters a= 0:15, b= 0:20 and c= 10:0. Its Jacobian

J(x) =

0
BBBBBBBBB@

0 �1 �1

1 a 0

z o x� c

1
CCCCCCCCCA

(B.10)

leads to

G1 = fxjx < c� a ^
ax

2

c� x
�

(2ac� a
2)x

c� x +

ac
2 + a� a

2
c

c� x
< z <

c� x

a
(B.11)

so, as in the Moore-Spiegel-system, G2 = ;.
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