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ABSTRACT

Numerical and statistical predictions of simplified models are linearly combined in a sensitivity study to
identify the crucial parameters that are needed to enhance predictability of the El Niño–Southern Oscillation
(ENSO) phenomenon. The results indicate that the ENSO prediction skill of the simplified models can be
improved. The profit achieved strongly depends on the phase information that is utilized by the forecast com-
bination and is inherent in predictions of a quasi-periodic process such as ENSO. The simplest forecast com-
bination that still yields useful forecasts at longer lead times of about half of the ENSO period (18–24 months)
is the combination of two persistence forecast schemes. For the prediction period 1982–2003, that is the per-
sistence of a sea surface temperature anomaly (SSTA) index area at 608S, 1808W and the Niño-3 index SSTA.

The level of skill improvement critically depends on the prediction schemes and prediction period, as well
as on the period from which the combination weights are derived. Differences between combination forecast
and hindcast are minimized if the statistical weights are derived from a time period that is characterized by an
ENSO statistic that is close to the prediction period. In this study the prediction period has simply been halved
for the sake of simplicity to derive the statistical weights, which is sufficient for predicting the 1980s and 1990s
(with each other), but not for predicting, for example, the 1970s. The suppressed 1976/77 El Niño event makes
the periodic occurrence less regular compared to the other decades. However, this forecast combination technique
can be applied in a much more elaborate way.

1. Introduction

One of the most important modes of global climate
variability is the El Niño–Southern Oscillation (ENSO)
phenomenon. It connects the oceanic El Niño phenom-
enon with the atmospheric phenomenon of the Southern
Oscillation and results from the interaction between the
ocean and the atmosphere on interannual time scales
(Bjerknes 1969). For a more detailed introduction see,
for example, Philander (1990) or Neelin et al. (1994).
Because the interannual occurrence of ENSO—in av-
erage every four years—affects life and life quality in
the Tropics and midlatitudes, its predictability has
evoked great public and scientific interest. Therefore,
under the World Climate Research Program’s (WCRP)
Tropical Ocean Global Atmosphere (TOGA) Project,
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various numerical models for the prediction of ENSO
have been developed in the past 15 years. These range
from modern statistical techniques (e.g., Xu and von
Storch 1990; Barnston and Ropelewski 1992; Penland
and Magorian 1993; Xue et al. 1994; Van den Dool and
Barnston 1995; Tangang et al. 1997; Johnson et al.
2000a,b) to climate models of different complexity (e.g.,
Cane et al. 1986; Zebiak and Cane 1987; Blumenthal
1991; Goswami and Shukla 1991a,b; Latif and Flügel
1991; Barnett et al. 1993; Latif et al. 1993; Balmaseda
et al. 1994; Oberhuber et al. 1998; Stockdale et al. 1998;
Ji et al. 1998; Grötzner et al. 1999; Mason et al. 1999;
Wang et al. 2002). Reviews of the state-of-the-art ENSO
prediction can be found in Barnston et al. (1994), Latif
et al. (1994), Latif et al. (1998), and O’Brien et al.
(1998).

The wide range of ENSO prediction models, which
perform quite differently, suggests that a combination
of forecast schemes may be useful in order to improve
the prediction skill. For instance, simple statistical mod-
els, such as Markov-type prediction models, are more
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likely to show higher prediction skills at short lead
times, that is, up to 3 months, compared to coupled
ocean–atmosphere models that may achieve useful skills
for lead times up to 1 yr (e.g., Latif et al. 1998). In fact,
Thompson (1977) has shown for a theoretical ‘‘weather
prediction’’ case that an optimal combination of inde-
pendent forecasts can reduce the error variance by about
20%. Fraedrich and Leslie (1987) and Fraedrich and
Smith (1989) have demonstrated that the combination
of short-term forecasts of a stochastic and a numerical
weather prediction model significantly enhances pre-
diction skill. This was further demonstrated by a com-
bination of long-range forecasts of the SST anomaly
(SSTA) of the tropical Pacific up to a 3-month lead time.
Metzger (1996, 1997) has applied the same forecast
combination scheme to the prediction of tropical Pacific
SST anomalies, exceeding the 3-month lead time. More
recently, Krishnamurti et al. (2000) showed that mul-
timodel superensemble forecasts for weather and sea-
sonal climate are superior to the individual ensemble
forecasts, and Rajagopalan et al. (2002) demonstrated
that categorical climate forecasts can be improved
through regularization and optimal combination of mul-
tiple GCM ensembles. Furthermore, Peng et al. (2002)
presented an analysis of multimodel ensemble predic-
tions of seasonal climate analysis, and Coelho et al.
(2004) discussed forecast calibration and combination
for ENSO based on a Bayesian approach.

In this paper, we focus on the combination of nu-
merical and statistical models and on the combination
of purely statistical models by extending the study of
Metzger (1996, 1997). To understand and identify the
crucial parameters that are needed to enhance predict-
ability of ENSO, we combine here only on simplified
models.

2. ENSO prediction schemes

The following prediction models are used: (i) persis-
tence; (ii) second-order autoregressive prediction model
[AR(2)] (e.g., Honerkamp 1990); (iii) principal oscil-
lation patterns (POPs) (Xu and von Storch 1990; Pen-
land and Magorian 1993; Johnson et al. 2000a,b); and
(iv) a hybrid coupled ocean–atmosphere model (HCM)
(Flügel 1994).

a. Persistence prediction model

The simplest forecast that can be made is the persis-
tence forecast; for example, the sea surface temperature
anomaly observed at the time (t) is held constant forf̂
the lead time (t). For a given lead time, the lag t per-
sistence forecast is expressed as

f (t 1 t) 5 f̂(t).Per (1)

The skill of the persistence prediction model (which
is a univariate, zero-order Markov-type process) of the
Niño-3 index (as defined below) simply reflects the pe-

riodic nature of ENSO, with a maximum negative cor-
relation value at a certain lead time that can be identified
at the half of the mean ENSO period. This 1808 phase
shift occurs for the period January 1950 to December
1990 at a lead time of 2 yr (Metzger 1996; 1997). The
correlation attains a value of about 20.5 for a smoothed
time series, indicating a dominant 4-yr period for these
decades (smoothed with a 13-month running mean to
remove the annual cycle). Therefore, an autocorrelation
of the SSTA contains some useful information about its
future evolution.

b. Principal oscillation pattern prediction model

A more sophisticated set of forecasts can be derived
from a statistical investigation of the space–time struc-
ture of ENSO with a multivariate, first-order autore-
gressive prediction model, that is, the method of POPs.
The POPs were developed to extract the dominant
modes of variability from higher-dimensional datasets
(e.g., Hasselmann 1988; von Storch et al. 1988). A de-
tailed discussion of POP prediction models can be found
in Xu and von Storch (1990), Penland and Magorian
(1993), and Johnson et al. (2000a,b). The POPs are the
eigenvectors of the system matrix obtained by fitting
the data to a multivariate, first-order Markov process in
which the residual forcing is minimized:

f (t 1 t) 5 Af̂(t) 1 h(t).POP (2)

POPs are, in general, complex. The corresponding
complex coefficient times series satisfies the standard
damped harmonic oscillator equation, so that the evo-
lution of the system in the two-dimensional POP space
can be interpreted as a cyclic sequence of spatial pat-
terns. The characteristic period to complete a full cycle
will be referred to as the rotation period, and the e-
folding time for exponential decay as damping time.
Both are estimated as part of the POP analysis. The
POPs can be regarded as the eigenmodes of the coupled
ocean–atmosphere system if we consider, for instance,
simultaneously atmospheric and oceanic quantities.

In our forecast experiments, the system matrix of the
POP prediction model is based on an SSTA time series
from January 1950 to December 1978 of the equatorial
Pacific (1708E–908W; 108 zonal resolution). The leading
POP made explaining almost a quarter of the total var-
iance has a rotation period of 40 months and a damping
time of 29 months (not shown); only this leading mode
is used in the prediction scheme.

c. Second-order autoregressive prediction model

Another set of statistical forecasts was generated with
the AR(2). The AR(2) prediction model (which de-
scribes the dynamics of a stochastically driven harmonic
oscillator) has two time-independent parameters a1,2, so
that the forecasts can be expressed as

f (t 1 t) 5 a f̂(t) 1 a f̂(t 2 t),AR(2) 1 2 (3)
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satisfying the standard damped harmonic oscillator
equation [for a more detailed description see, e.g., Ho-
nerkamp (1990)]. The statistical parameters of the POP
and AR(2) prediction models are derived from the
smoothed SSTA time series (1950–78) and are equa-
torially averaged (1708E–908W) for fitting the model
parameters of the AR(2) process. Note that we choose
an AR(2) process, as this process already yields rea-
sonable forecasts compared to higher-order fits; a result
of a sensitivity study that is not shown.

d. Hybrid coupled model

The numerical predictions were generated with a hy-
brid coupled ocean–atmosphere model (HCM) de-
scribed in Flügel (1994). The HCM consists of a non-
linear oceanic general circulation model (Latif 1987)
coupled to a simple linear atmospheric feedback model
without internal dynamics. The ocean model is based
on the primitive equations with the following approx-
imations: equatorial b plane, Boussinesq approximation,
constant salinity, and vertical mixing coefficients de-
pendent on the Richardson number. The atmospheric
feedback model is based on a coupling matrix that is
derived from a linear regression between the observed
wind stress and the SST anomaly fields. Additionally,
a correction matrix is applied during the coupled inte-
gration to account for the systematic differences be-
tween observed and simulated SSTA fields (see e.g.,
Barnett et al. 1993; Flügel 1994). The numerical SSTA
forecasts

f (t 1 t) 5 M[f̂(t), t]HCM (4)

are derived for lead times t from the model integration
M(t) initialized at time t. The initial states for the HCM
forecasts are obtained from an uncoupled run in which
the oceanic circulation model was driven with observed
Florida State University (FSU) wind stresses (Golden-
berg and O’Brien 1981) from January 1961 to July
1994. The statistical atmosphere model was derived
from the period 1961–94.

e. Forecast combination scheme

To combine the forecasts fk 5 fk(t 1 t) 5 fk(1 1
t), . . . , fk(n 1 t), t 5 1, . . . , n, of the previously
described prediction schemes fk 5 fPer, fPOP, fAR(2),
fHCM, k 5 1, . . . , m, to a new forecast

m

f* 5 a · f , (5)O k k
k51

the statistical weights ak of the kth prediction scheme
fk have to be determined by minimizing the mean-
square error of the combination forecast E* 5 2 f*.f̂

Both the observation time series 5 (1), . . . , (n)f̂ f̂ f̂
and the predictions fk 5 fk(1 1 t), . . . , fk(n 1 t)
can be normalized to zero mean and unit variance to

combine forecasts of different physical properties, for
example, SSTA with wind or pressure anomalies. For
a two-forecast combination, the statistical weights ak,
k 5 1, 2 can be expressed in terms of correlation co-
efficients:

2a 5 (R 2 r · R )/(1 2 r ),1 1 2 (6)

with changing indices for a2. The coefficients R1, R2

describe the correlation of each prediction scheme f
with the observation , while r gives the cross corre-f̂
lation between the prediction schemes. The combination
method is described in greater detail in Fraedrich and
Leslie (1987) and Fraedrich and Smith (1989).

All schemes provide regionally averaged STTA en-
semble forecasts (the areas are mentioned above) that
are verified against the Niño-3 index; the anomalous sea
surface temperature of the eastern tropical Pacific av-
eraged over the area 58N–58S, 1508W–908W. The Niño-
3 index is chosen here only exemplarily as predictand
for our combination experiments, as this index is a wide-
ly accepted indicator for extreme ENSO events (e.g.,
Neelin et al. 1994). The forecasts are initialized month-
ly. The model parameters of the statistical prediction
schemes [AR(2), POP] have been derived from a time
span independent of the prediction periods. Note that
persistence does not require an independent time period
to fit model parameters, the main disadvantage of the
other schemes when applied to short time series. There-
fore, we restrict to persistence for the sensitivity study.

3. Combination experiments

In the following, forecasts of the sea surface tem-
perature anomaly averaged over the Niño-3 region
(Niño-3 index) are shown. First, the numerical forecasts
of the HCM model are combined with the statistical
forecasts of the POP and AR(2) models and then with
persistence. Second, two statistical forecasts (persis-
tence) are combined with two combination forecasts
(based on persistence). The HCM–persistence combi-
nation and persistence–persistence combination will be
analyzed in greater detail to investigate the dependence
of the combination skill on the prediction period, the
ENSO index, the seasonality, and the time period the
statistical weights are derived from. We emphasize,
however, that the prediction models are chosen only
exemplarily to identify the crucial parameters that are
needed to enhance predictability of the ENSO phenom-
enon and not to achieve the maximum skill that might
be achievable with this combination method.

a. HCM–POP and HCM–AR(2) combinations

For the combination of the numerical HCM forecasts
with the statistical forecasts of the POP model, a 10-yr
prediction period is used (1979–89) to allow an estimation
of the POP system matrix from an independent time period
(1950–78). The results are presented in Fig. 1.
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FIG. 1. (a) The correlation skill, (b) rmse, and (c) statistical weights of the HCM (dotted) and
POP (thin gray) predictions of the Niño-3 index and their combination (thick gray) for the
prediction period Jan 1979–Dec 1988. The cross correlation between the HCM and POP pre-
dictions is shown in (a) (thin solid line).

While the correlation skill of the combination shows
only a slight improvement for lead times up to 1 yr (Fig.
1a), the root-mean-square error (rmse) (Fig. 1b) is re-
duced for the entire prediction and smaller than the stan-
dard deviation of the observation period. Note that the
rmse is more sensitive to the error in amplitude, while
the correlation skill is a more sensitive to the error in
phase. The statistical weights (Fig. 1c) further demon-
strate that the POP prediction model achieves a higher
prediction skill at longer lead times than the HCM mod-
el, since the POP model reflects the phase information
that is inherent in the coupled ocean–atmosphere sys-
tem.

Figure 2 shows (similar to Fig. 1) the results of the
forecast combination of the HCM model now combined
with the forecasts of the AR(2) model for the same

period. In contrast to the HCM–POP combination, the
correlation skill of this combination is initially higher
because of the high initial correlation of the AR(2) mod-
el (Fig. 2a versus Fig. 1a). The HCM–AR(2) combi-
nation also yields a larger reduction of the rmse relative
to the two individual prediction schemes at higher lead
times (Fig. 2b versus Fig. 1b). The statistical weights
of the individual forecasts (Fig. 2c) now show higher
initial weights of the AR(2) model, while both schemes
have comparable weights at lead times longer than 1 yr,
in opposition to the HCM–POP combination (Fig. 1c).

Various lag prediction errors derived from both com-
binations, HCM–POP and HCM–AR(2), are shown in
Fig. 3 together with prediction errors of the HCM itself.
For the prediction period 1979–89 the prediction errors
for lags 3, 12, 15, and 21 (lead time in months) are
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FIG. 2. (a) The correlation skill, (b) rmse, and (c) statistical weights of the HCM (dotted) and
AR(2) (thin gray) predictions of the Niño-3 index and their combination (thick gray) for the
prediction period Jan 1979–Dec 1988. The cross correlation between the HCM and AR(2) pre-
dictions is shown in (a) (thin solid line).

shown. In general, the two combinations perform rath-
er similarly. For example, the prediction errors of both
combinations are smaller for all lags than those of the
HCM forecasts if we consider the 1984/85 cold phase.
However, the forecasts of both El Niño events (1982/
83 and 1986/87) are not considerably improved. In
particular, the intensity of the extraordinary 1982/83
El Niño is to the same extent underestimated by both
combinations as by the HCM, with a prediction error
in the range of the magnitude of the internal variability.

The cross correlations that correspond to the com-
binations are also shown in Figs. 1a and 2a, respectively.
Both cross correlations show relatively high values
(above 0.5) for all lead times. Such high values indicate

that numerical and statistical forecasts are not indepen-
dent from each other. This implies that only relative
little skill improvement can be expected with these
combinations. The fact that the numerical and statis-
tical forecasts are somehow dependent results from
the fact that each prediction scheme is based on the
quasi periodicity of ENSO by describing approxi-
mately the same mean period: The hybrid coupled
ocean–atmosphere model is based on a concept that
is in accord with the delayed action oscillator theory
(Schopf and Suarez 1988; Latif and Flügel 1991; Flü-
gel 1994) while, similarly, the POP and AR(2) models
exploit the quasi-periodic nature contained in the ob-
servations.
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TABLE 1. Forecast skills of the HCM–persistence (Niño-3 index) combination based on statistical weights derived from the entire
prediction period (hindcast mode, combination only); R is correlation skill.

Forecast
scheme

Lag (months)

3 6 12 18
Prediction

period

Combination
(R/rmse)

0.79/0.48
0.78/0.51
0.80/0.46

0.56/0.65
0.40/0.72
0.55/0.68

0.27/0.77
0.37/0.69
0.20/0.75

0.31/0.75
0.44/0.63
0.36/0.69

1962–94
1962–72
1972–82

HCM
(R/rmse)

0.67/0.65
0.50/0.82
0.71/0.63

0.50/0.80
0.25/0.99
0.53/0.76

0.24/0.97
0.20/1.04

20.09/1.05

0.16/0.97
0.22/0.93

20.26/1.03

1962–94
1962–72
1972–82

Persistence
(R/rmse)

0.75/0.55
0.74/0.55
0.71/0.56

0.42/0.82
0.34/0.84
0.29/0.89

20.16/1.17
20.35/1.14
20.18/1.13

20.31/1.30
20.44/1.18
20.13/1.11

1962–94
1962–72
1972–82

b. HCM–persistence combination

The forecasts of the hybrid coupled ocean–atmo-
sphere model are now combined with those of the per-
sistence of the Niño-3 index SSTA (persistence 1) for
the same period (1979–88). Relative to the HCM–POP
and HCM–AR(2) combinations, the correlation of this
combination is superior at short lead times because of
the initial skill of the autocorrelation (Fig. 4a). However,
beyond the 3-month lead time, the combination skill
approaches the HCM prediction skill, and the persis-
tence loses weight (Fig. 4c). Nevertheless, the rmse
shows a slight improvement for all lags (Fig. 4b). The
cross correlation (Fig. 4a) of the two individual predic-
tion models decreases with lead time, which reflects the
additional phase information of the persistence scheme;
however, the combination skill is not significantly en-
hanced by this persistence at longer lead times because
of the relatively high skill of the HCM model.

1) SENSITIVITY TO THE PREDICTION PERIOD

To study the sensitivity of the forecast combination
to the prediction period, we investigate first the depen-
dence on the verification period using the combination
of the HCM model with persistence 1. The prediction
periods are 1) 1962–72, 2) 1972–82, and 3) 1962–94.
The results are compared to those of the 1979–88 pe-
riod.

Table 1 shows, according to Fig. 3, correlation skill
R and rmse for the lead times 3, 6, 12, and 18 months.
Comparing the results of the prediction of the 1960s
(second row) and the 1970s (third row) with the pre-
viously discussed 1980s (Fig. 4), we find a larger profit
of the combination for the 1960s and 1970s, while the
overall skills are considerably lower compared to the
1980s.

The variations in skill are associated with the vari-
ability of ENSO on a decadal scale that determine its
predictability. Clearly, a regular occurrence of ENSO
(within a decade) is easier to predict. The periodicity
of ENSO is indicated by the lag-dependent correlation
minimum of the autocorrelation that occurs at the half
of the mean ENSO period (as mentioned in section 2a).

From Table 1 (and Fig. 4), the dominant ENSO period
can be derived as follows: for the 1960s, a mean ENSO
period of 36 months with a correlation value of 20.44;
for the 1970s, a mean period of 24 months with a weaker
minimum correlation value of 20.18; and for the 1980s,
a mean period of 48 months with a relatively strong
minimum correlation of 20.45 (Fig. 4a). The mean pe-
riod of the 33-yr prediction period is, however, closer
to a 3-yr period, as indicated by the correlation mini-
mum at lag 18 months with a value of 20.31.

The 1980s thus represent more than the 1970s and
the 1960s a ‘‘periodic’’ occurrence of ENSO which re-
sults in a relatively successful prediction in terms of
correlation skill. The 1970s differ most from the peri-
odicity since this decade was influenced by the 1972/
73 El Niño event and the 1976/77 event that was more
or less ‘‘suppressed.’’ However, the combination attains
more profit in comparison with the 1960s and 1980s
because the forecasts of the HCM and persistence are
more independent from each other: The mean ENSO
period that the HCM model captures does not change
in contrast to the mean ENSO period that is reflected
by the persistence. This additional phase information
enables skill improvement—a prerequisite for a suc-
cessful combination. However, the 30-yr prediction pe-
riod is overall ‘‘noisier,’’ thus with a less dominant mean
ENSO period and, therefore, less long-term predict-
ability compared to the 1980s or 1960s.

2) SENSITIVITY TO THE ENSO INDEX

To investigate the influence of the ENSO index used
in the combination, we have combined the HCM in an
extended study (not shown) additionally with (i) the
persistence of the Southern Oscillation index (SOI), an
index highly anticorrelated with the Niño-3 index, and
(ii) the persistence of an SSTA equatorially averaged
over the region 1708E–908W (persistence 2). The pre-
diction period chosen ranges from 1962 to 1991, and
the forecasts are verified against the Niño-3 SSTA in-
dex.

The HCM–persistence 2 combination outperforms the
HCM–persistence 1 combination at longer lead times
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FIG. 3. Niño-3 index prediction errors of the HCM–POP combination (dashed) and HCM–AR(2)
combination (dotted) vs HCM (thick solid line) and observation (thin solid line) for different lead
times (3, 12, 15, and 21 months) and the prediction period Jan 1979–Dec 1988.

(Fig. 5a versus Fig. 4a), mainly because of the weaker
correlation of the HCM forecast at higher lead times,
which are compensated in this case by the relatively
high anticorrelation of the persistence 2 at these lead
times (i.e., approximately 20.5 at a lead time of 21
months; Fig. 5a). Specifically, the SSTA of the western
Pacific basin is in average less noisy compared to the
Niño-3 index because of the relatively deep mixed layer
in this region. Therefore the anomalous temperature of

the subsurface ocean as well as the upper-ocean heat
content are good candidates for the combination tech-
nique; both are less affected by atmospheric noise. In
contrast, the use of the SOI results in a lower profit of
the forecast combination (results are shown in Metzger
1996, 1997). This indicates that, in general, the noisier
atmospheric ENSO indices are less suitable for this
type of forecast combination compared to oceano-
graphic ones.
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FIG. 4. (a) The correlation skill, (b) rmse, and (c) statistical weights of the HCM Niño-3 index
predictions (dotted); persistence 1, i.e., of Niño-3 index (thin gray); and their combination (thick
gray) for the prediction period Jan 1979–Dec 1988. The cross correlation between HCM pre-
dictions and persistence is shown in (a) (thin solid line).

3) SEASONALITY

Both persistence of the SOI and SSTA exhibit a
strong seasonality (Wright 1985). This is also the case
for the prediction skill of the HCM model (Latif and
Flügel 1991). Therefore, we investigate the influence
of the seasonality on the forecast combination. Anal-
ogous to the previous combination experiments, we
combine the HCM forecasts with persistence 1 (of the
Niño-3 index) for the prediction period 1962–91. The
forecasts are initialized monthly and averaged over
seasons: March–April–May (MAM) in spring, June–
July–August (JJA) in summer, September–October–
November (SON) in autumn, and December–January–
February (DJF) in winter, which yields 90 individual
forecasts for each set.

The seasonal correlation skills of the HCM, persis-
tence, and combination forecasts are shown in Fig. 6.
Consistent with Wright (1985), Latif and Flügel
(1991), and Balmaseda et al. (1995), the same seasonal
behavior of the forecasts is found: a drop in predict-
ability around March for forecast initialization in
MAM and JJA at lead times of 12 and 9 months, re-
spectively (Figs. 6a,b), with a weaker drop around
March for the forecasts initialized in SON and DJF at
6- and 3-month lead times, respectively (Figs. 6c,d).
The combination, however, achieves the largest overall
profit at higher lead times from the forecast initiali-
zation in MAM (Fig. 6a). In this case, the SSTA is
more persistent for the rest of the prediction period,
resulting in a higher autocorrelation from which the
combination skill profits.
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FIG. 5. (a) The correlation skill and (b) statistical weights of the HCM Niño-3 index predictions
(dotted); persistence 2, i.e., of equatorially averaged (1708E–908W) SSTA (thin gray); and their
combination (thick gray) for the prediction period Jan 1962–Dec 1991. The cross correlation
between HCM predictions and persistence is shown in (a) (thin solid line).

4) ESTIMATION TECHNIQUE OF THE STATISTICAL

WEIGHTS

For the previously shown combination forecasts, the
statistical weights (that are used to combine the forecast
ensembles) were derived from the entire prediction pe-
riod. To derive the statistical weights from a period in-
dependent of the prediction period, we divide, for the
sake of simplicity, the prediction period into halves,
deriving the statistical weights from one half while pre-
dicting the other and averaging over both forecast sets.
This procedure has been applied to the previous com-
binations (Table 1, Fig. 4). The results of the combi-
nation are shown in Table 2. In comparison to Table 1
and Fig. 4 the prediction skills now depend more strong-
ly on the prediction period. In terms of the correlation
skill, the profit of the combination forecast in predicting
the phase of ENSO often vanishes completely, while in
terms of the rmse some profit is still achieved in pre-
dicting the amplitude, especially at longer lead times.
Regarding the prediction of the phase, the correlation
values demonstrate that the predictions improve as
ENSO has been evolved more regularly in the entire
time period. In other words, the ENSO statistics should
be similar for the prediction period and the period from
which the statistical weights are derived to maximize
the profit of this combination technique, especially if
applied to noise-reduced time series (see the note by the

discussion of artificial skill). For instance, the 1970s,
because of the suppressed 1976/77 El Niño event, are
not so well predicted by the combination forecasts be-
cause the statistical weights have been derived from a
period where ENSO evolved more regularly [see section
3b(1)]. For same reason, it does not make sense to derive
the statistical weights from the 1970s and predict the
1980s. However, this phase information inherent in the
coupled atmosphere–ocean system can be utilized by
this combination technique.

c. Persistence–persistence combination
To give an example of how the phase information

inherent in the coupled atmosphere–ocean system can
be utilized by this combination technique, we focus now
on a forecast combination of two persistence schemes.
To include the latest ENSO events, we focus on the
prediction period January 1982 to December 2002 for
which we use the SST of Reynolds et al. (2002) (avail-
able online at http://dss.ucar.edu/datasets/ds277.0/data/
oiv2/). Besides constructing the SST anomalies, the data
are not preprocessed (smoothed), thus including the an-
nual cycle.

1) UTILIZING THE ENSO DYNAMICS

Figure 7 shows skill of four forecast combinations:
three combinations of the persistence of the Niño-3 in-
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FIG. 6. The correlation skill of the HCM Niño-3 index predictions (dotted), persistence (Niño-
3 index) (thin gray), and their combination (thick gray) are shown for the prediction period Jan
1962–Dec 1991 and stratified according to the seasons (a) spring (MAM), (b) summer (JJA), (c)
autumn (SON), and (d) winter (DJF).

TABLE 2. Forecast skills of the HCM–persistence (Niño-3 index) combination based on statistical weights independently derived (forecast
mode); R is correlation skill.

Forecast
scheme

Lag (months)

3 6 12 18
Prediction

period

Combination
(R/rmse)

0.79/0.49
0.77/0.51
0.53/0.71
0.78/0.49

0.55/0.66
0.29/0.79

20.13/0.85
0.63/0.60

0.10/0.84
20.18/0.82
20.01/0.72

0.54/0.66

0.19/0.77
0.33/0.68
0.15/0.59
0.49/0.67

1962–94
1962–72
1972–82
1979–88
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FIG. 7. (a)–(d) The prediction skill of forecast combinations based on raw SSTA data (that include the annual cycle): combination forecasts
(thick gray) of the persistence of the Niño-3 SSTA index (short dashed) and persistence of an index SSTA at 68S, 308W (averaged over 68–
98S, 308–338W) (long dashed); persistence of an index SSTA at 08S, 1208W (averaged over 58S–58N, 1208–1308W) (long dashed); and
persistence of an index SSTA at 308N, 1808 (averaged over 288–328N, 1758–1858W) (long dashed). Set (d) shows the skill of the combination
forecast based on the combination forecasts (a) and (c). Each set shows (top) the correlation skill (and cross correlation), (middle) the rmse,
and (bottom) the statistical weights of two forecast schemes. The prediction period is Jan 1982–Dec 2002.

dex SSTA (persistence 1) with persistence of an index
SSTA at (a) 68S, 308W, (b) at 08S, 1208W, and (c) at
308N, 1808 (the region averaged is given in the figure
caption). Set (d) shows the skill of the combination
forecast based on the combination forecasts of (a) and
(c). The statistical weights have been derived indepen-
dently (as described above). Note that the locations have
been chosen only exemplarily (based on some sensitiv-
ity experiments); other locations might be even more
suited.

The results show that in general the prediction skill
is improved by the forecast combination of the two per-
sistence forecasts. While the largest profit is achieved
for set (a), the combination of two combination forecasts
[set (a) and (c); shown in Fig. 7d] shows no additional
profit. Interestingly, the SSTA persistence of the remote
location 68S, 308W (a spot in the Atlantic at the Brazilian
coast) contains some additional phase information with
respect to the Niño-3 index SSTA—a consequence of
the coupled atmosphere–ocean system. Remarkably,
even the most simple case of a forecast combination
scheme almost yields comparable results relative to the
more sophisticated schemes shown before if the phase
information of the coupled atmosphere–ocean system is
utilized. However, the combinations of the other two
persistence schemes (one is located in the equatorial
west Pacific and one in the North Pacific) yield less
profit for this time period—also reflecting the ENSO
dynamics.

Note that the dynamics are indicated by the phase of
the persistence (with respect to the Niño-3 index), that
is, the correlation value at lag zero. The persistence of
the Niño-3 index is simply the autocorrelation; the cor-
relation therefore starts at lag zero with a value of one
(short dashed lines in Figs. 7a–c, top panels). In
contrast, the persistence of the other three SSTA loca-
tions indicate, with the lag zero correlation value, the
phase shift relative to the Niño-3 index (long
dashed lines): This phase shift increases from set (a) to
(c) for this prediction period. While the SSTA of the
Niño-3 index is leading by 1–2 months compared to the
SSTA of the Brazilian coast (Fig. 7a), the SSTA in the
North Pacific is leading by approximately 908 (Fig. 7c).
However, at other prediction periods this might be dif-
ferent. Then, these SSTA series might contain more (or
less) profit for the combination prediction of the Niño-
3 index, as previously indicated by Figs. 4 and 5. An-
other example of the utilization of the ENSO dynamics
is shown in Fig. 8a (which is rather similar to Fig. 7a),
to be discussed in the following.

2) ARTIFICIAL SKILL

First, a comment on artificial skill is in order. The
previously shown numerical and statistical combination
forecasts are to some extent hindcast because the sta-
tistical weights (of the forecast combination) were de-
rived from the entire prediction period. Furthermore,
these combinations are based on ‘‘smoothed’’ time se-
ries (to remove noise, as mentioned earlier), which in-
troduces extra dependence (of the order of 12 months)
into the series that can boost the short-term skill arti-
ficially. Note that the amount of artificial skill resulting
from the estimation of the coupling matrix of the HCM
is negligible (M. Flügel 1995, personal communication).

We therefore distinguish in the following between so-
called hindcast combinations and forecast combinations
in that sense all previously discussed combinations are
hindcast combinations, except for those shown in Fig.
7. Note that in contrast to a hindcast combination, sta-
tistical weights are derived for a forecast combination
from a period independent of the prediction period (as
described above). As long as the ENSO statistics do not
change much within the prediction period, the artificial
skill introduced by the hindcast mode is negligible com-
pared to the forecast mode. Otherwise, differences may
arise and the combination skill may be even lower than
those of the individual schemes (Table 2 versus Table
1).

To quantify the artificial skill, we focus on a com-
bination of the persistence of the Niño-3 index SSTA
(persistence 1) and a persistence of an index SSTA at
608S, 1808. The dependencies are illustrated in Fig.
8. Set (a) shows skill and weights of the forecast com-
bination and the individual schemes for the forecast
mode and ‘‘raw’’ SSTA data (similar to Figs. 7a–c), set
(b) shows the same for ‘‘smoothed’’ data, sets (c) and
(d) show the same as (a) and (b) for the hindcast mode.
While differences between the forecast and hindcast
mode are small for correlation skill and rmse of the
combinations based on the raw SSTA data, differences
are in particular larger for the correlation skill of the
combinations based on the smoothed SSTA data. Nev-
ertheless, both correlation skill and rmse are improved
by the combinations for the forecast mode almost to the
same extent as compared to the hindcast mode. This is
also true for longer lead times and the smoothed data
[sets (b) and (d)]. Interestingly, the combinations based
on the raw data have even an higher skill at lead times
around the half of the ENSO period (about 19 months
for the raw and 23 months for the smoothed data) than
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FIG. 8. (a) The prediction skill of the forecast combination for raw SSTA data (that include the annual cycle), (b) same as (a), but for the
smoothed data (with a 13-month running mean), (c), (d) same as (a) and (b), respectively, but for a hindcast combination (with statistical
weights derived from the entire prediction period). Each set shows (top) the correlation skill (and cross correlation), (middle) the rmse, and
(bottom) the statistical weights of two forecast schemes: the persistence of the Niño-3 SSTA index (short dashed) and the persistence of an
index SSTA at 608S, 1808 (averaged over 588–628S, 1758–1858W) (long dashed), and their combination (thick), for the prediction period
Jan 1982–Dec 2002. Note that in contrast to the hindcast combination, the prediction period was halved to derive the statistical weights for
the forecast combination. The first half is marked with thick lines, the second half with thin lines [sets (a) and (b), bottom panels].

their counterparts that are based on the smoothed data.
This is true for both the forecast and hindcast mode,
although the annual cycle has not been removed. Note
that the statistical weights of the forecast mode equal
each other and the one of the hindcast mode more (for
each scheme) compared to the ones that are based on
the smoothed data. For the latter case the persistence of
the index SSTA at 608S, 1808 has less statistical weight
for all lead times in contrast to the raw data case. This
indicates that the annual cycle at this particular location
(this spot lies within the Antarctic Circumpolar Gyre)
also contains useful phase information for the prediction
of the Niño-3 index SSTA at this prediction period that
can be utilized by the forecast combination.

3) FORECAST SKILL

To illustrate the differences between combination
forecast and hindcast, we show in Fig. 9 the individual
combination forecasts of the Niño-3 index SSTA for the
prediction period January 1982 to December 2002.
Shown are the lag 0–23 combination forecasts based on
the index SSTA at 608S, 1808 and the lag 23 combi-
nation forecasts and hindcasts, all based on smoothed
data (according to Figs. 8b and 8d). Additionally, the
lag 19 (this lag yields the highest correlation skill at
longer lead times) combination forecasts, which are
based on the raw data (according to Fig. 8a), are in-
cluded. Also shown are the smoothed and raw Niño-3
index SSTA. While the latter time series is much more
noisy (because of the annual cycle), the former high-
lights the ENSO events. Interestingly, the prediction of
the phase and amplitude is much better for the noisier
time series compared to the smoothed SSTA, although
the lead time of 19 months is far beyond the predictive
capability of a persistence forecast that usually keeps
memory (i.e., a high autocorrelation) only up to 3
months. Nevertheless, the combination forecast of the
smoothed SSTA is also still rather good for the phase
at this long lead time, although the amplitude of ENSO
extremes of the 1997/98 event is pretty much under-
estimated, while the onset of the ongoing event (2002/
03) is somewhat overestimated.

More important is the fact that the skill of the forecast
mode is almost equal to the one of the hindcast mode,
which indicates that in this case only little artificial skill
is introduced by the hindcast mode. Even more impor-
tant is the fact that obviously the most simple forecast
combination has some predictive capability that can be

used for predicting the phase and amplitude of ENSO
up to 2 yr in advance. It should be noted, however, that
the predictions of the other lags are in less agreement,
as indicated by the lag 0–23 ensemble. For instance, lag
5 yields no predictive capability at all (nor for the phase
or amplitude of the annual cycle) for the individual fore-
cast of this combination forecast if based on the raw
data (not shown), which is in accord with the zero cor-
relation shown in Fig. 8a. Note further that the verifi-
cation period ends with December 2002, so that a fore-
cast of the future is given until mid-2004 for the raw
SSTA (based on lag 19); the smoothed forecast is ap-
proximately a half year shorter because of to the filtering
with a 13-month running mean.

4. Summary and conclusions

Numerical and statistical predictions of simplified
models are linearly combined to enhance predictability
of the El Niño–Southern Oscillation (ENSO) phenom-
enon. The crucial parameters that determine the maxi-
mum profit achievable with this combination technique
are identified. The combination experiments are based
for the sake of simplicity only on simplified numerical
and statistical prediction models: the hybrid coupled
model (HCM) and the POP, AR(2), and persistence
scheme. For the latter we have used various ENSO in-
dices: (i) anomalous sea surface temperature (SSTA) of
the Niño-3 index, (ii) an equatorially averaged SSTA
of the tropical Pacific, index SSTAs (regional averages)
at 68S, 308W; 08S, 1208W; 308N, 1808; and 608S, 1808,
as well as the Southern Oscillation index (SOI). The
predictand was the Niño-3 index SSTA. The results can
be summarized as follows.

In general, the variance of the prediction error can
be reduced by an error-minimizing forecast combina-
tion, and the correlation skill can be improved. The
linear combination achieves the largest profit if the fore-
casts of the individual schemes contain a different phase
information that is inherent in predictions of a quasi-
periodic process, such as ENSO. It is this phase infor-
mation that is utilized by the forecast combination.

The error of predicting the phase and amplitude is
not consistently reduced by the combination. It depends
on the type of prediction schemes used for the combi-
nation (numerical, statistical, and the type of ENSO in-
dex) as well as on the prediction period and the deter-
mination of the statistical weights for the forecast com-
bination. For instance, the combinations of numerical
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FIG. 9. Niño-3 index SSTA forecasts for the prediction period Jan 1982–Dec 2003. Shown are the raw observation,
Reynolds SSTA, (thin dashed line), the smoothed observation (13-month running mean) (thick solid line), the lag 0–
23 combination forecasts of the persistence of the Niño-3 SSTA index, and the persistence of the index SSTA at 608S,
1808 corresponding to Fig. 7 (thin solid lines). Additionally, the lag 23 combination forecast (thick dotted–dashed
line) and hindcast (thick dotted line), which are based on the smoothed data, are shown, as well as the lag 19 combination
forecast (thick dashed line), which is based on the raw data. Note that the lag 19 combination forecast and lag 23
combination forecast and hindcast correspond to the highest (at higher lead times) correlation values that are shown
in Figs. 8a, 8b, and 8d, respectively, and that the combination forecast and hindcast are more or less on top of each
other.

HCM forecasts with the statistical POP forecasts showed
modest skill improvements at lead times up to one year
for the correlation skill, while the rmse is reduced for
the entire 23-month lead time (Fig. 1). For the HCM–
AR(2) combination, the skill is improved only beyond
the 6-month lead time, with a larger reduction of the
error in amplitude (rmse) compared to the phase error
(Fig. 2). The HCM–persistence (Niño-3 index SSTA)
combination achieves for the 1980s prediction period
the lowest skill profit because of the relatively high
prediction skill of the HCM forecast (Fig. 4). Never-
theless, the prediction errors of the individual combi-
nation forecast are shown to be lower compared to those
of the HCM model (Fig. 3).

In contrast to the combination of the HCM forecasts
with the persistence of the Niño-3 index SSTA, the com-
bination with the persistence of the equatorially aver-
aged SSTA of the Pacific results in an improved com-
bination skill for a 30-yr prediction period because of
the phase information inherent in this persistence (Fig.
5).

This phase information is also seasonally dependent.

HCM–persistence forecast combinations initialized in
spring showed the largest profit at higher lead times
since the Niño-3 index SSTA is then more persistent
for the rest of the prediction period, resulting in a higher
autocorrelation from which the combination skill profits
(Fig. 6).

The combination of the HCM predictions with per-
sistence of the Niño-3 index SSTA appeared to be quite
sensitive to the verification period (Table 1) since the
autocorrelation exhibits a strong variability, also on a
decadal scale. Furthermore, the persistence of atmo-
spheric anomalies like SOI are less suited for a forecast
combination relative to oceanic ones because of higher
noise levels. Likewise, the Niño-3 index is on average
noisier than the SSTA averaged along the Pacific equa-
tor, and forecast combinations using the equatorially
averaged SSTA are hence somewhat superior to those
using the persistence of Niño-3 index SSTA.

In the coupled atmosphere–ocean system, different
regions contain a different phase information with re-
spect to the Niño-3 index SSTA for a certain prediction
period. For instance, forecast combinations of the Niño-
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3 index SSTA persistence with the persistence of index
SSTAs at various locations showed that the most simple
forecast combination has some predictive capability if
the phase information of the coupled atmosphere–ocean
system is utilized (Fig. 7). The combination with the
persistence of an index SSTA at 608S, 1808 even yields
for the prediction period January 1982–December 2002
some useful individual forecasts for up to 2 yr in ad-
vance for both the phase and amplitude of ENSO and
the annual cycle (Figs. 8 and 9).

The amount of artificial skill that is introduced if the
combination weights are derived from the entire pre-
diction period depends on the prediction period. As long
as the ENSO statistics do not change much within the
prediction period, the artificial skill introduced by the
hindcast mode is negligible compared to the forecast
mode (Fig. 8). Otherwise, differences may arise and the
combination skills may even be lower than those of the
individual schemes (Table 2 versus Table 1). Further-
more, if the combinations are based on ‘‘smoothed’’
time series, some extra dependence (of the order of 12
months) is introduced into the series that can alter the
ENSO statistics of the prediction period to increase the
hindcast skill artificially, even if hindcast skill and fore-
cast skill of the ‘‘raw’’ data are almost the same (Fig.
8).

Finally, the forecast combination technique can be
applied in a much more elaborate way. One can imagine
a more complex forecast combination model (to be dis-
cussed separately) that makes use of different (physical)
ENSO indices that are variable in time and space de-
pending on the prediction period to optimally utilize the
phase information that is inherent in the coupled at-
mosphere–ocean system.
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