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SUMMARY

A set of balanced and unbalanced slab-symmetric linear 2-layer models is analysed. The stability properties
depend on a parametrized moisture budget dominated by the value of the underlying sea surface temperature.
Convective heating occurs within an inner region characterizing the size of the convective disturbance. The heating
is equal to the sum of two terms, representing the mid-level and lower-level upward mass-fluxes.

A fast and a slow mode of instability can be distinguished. The slow mode shows finite maximum growth
for infinitesimally small disturbances and is the instability traditionally associated with Conditional Instability of
the Second Kind (CISK). The fast mode reveals infinitely large positive growth-rates for finite-size disturbances.

The transition of the model solution from slow to fast mode occurs at a threshold value of sea surface
temperature. For the parameters chosen in this study, the threshold occurs at approximately 25.5 °C.

Keyworps: CISK Convective complexes Cumulus parametrization Sea surface temperature  Trop-
ical convection

1. INTRODUCTION

Several authors have documented the way in which, over the tropical oceans, the
organization of cumulonimbus activity into weather systems depends in a highly non-
linear manner on the value of the underlying sea surface temperature (SST) (e.g. Palmen
1948; Gray 1968; Lau and Chan 1988; Merrill 1988; Webster and Lukas 1992; Evans
1993). In this paper we show that a dynamical mechanism reproducing this behaviour is
contained in the two-layer model of Charney and Eliassen (1964) (hereafter referred to as
CE64). CE64 was a landmark paper in the field, as it was one of two papers proposing
the theory of CISK, or Conditional Instability of the Second Kind, the other being that of
Ooyama (1964).

The diagram of growth rate o (vertical axis) versus horizontal scale L (horizontal
axis), reproduced from CE64 is shown in Fig. 1(a). To present our argument, we discuss
two aspects of this figure. The first relates to the family of curves in (o, L) space. Each
curve is designated by a value of the parameter u which in the cumulus parametrization
proposed by CE64 represented a mean tropospheric value of relative humidity. In the
formulation of CE64, the vertically integrated total heating in a column is proportional
to the vertically integrated moisture-convergence (including the ‘evaporative’ flux from
the lower boundary); and the key parameter governing variations in this is the relative
humidity p. The fundamental hypothesis of the present paper is that the variations in
integrated moisture-convergence are governed not by an internal parameter such as the
relative humidity; but rather by an external parameter such as the SST or its proxy the
low-level saturation specific humidity.

This leads to our representation of the growth-rate curves as shown in Fig. 1(b). It
should be immediately noted that this representation gives a very rapid change in the
character of the solution at temperatures around 25 to 26 °C.

The second aspect to note in Fig. 1(a) is that there are two distinct instabilities present.
The curves labelled with i = 0.7, 0.8, 0.9 represent what we shall refer to in this paper as
the ‘slow mode’ whereas that labelled p = 1.0 will be referred to as the ‘fast mode’. The
existence of these two modes has been noted by Bates (1973); but it was Mak (1981) who
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Figure 1. (2) The growth rate o of a tropical depression as a function of the radius a of the cloud region

(from Charney and Eliassen (1964) and using their notation). (b) The growth rate o of a slab-symmetric tropical

disturbance as a function of the half-width b of the convective area depending on the sea surface temperature (°C).
fis the Coriolis parameter.
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identified the slow mode as being associated with the component of heating proportional to
the low-level vorticity, while the fast mode is forced by the component of heating directly
proportional to the divergent component of the wind. The slow mode is the traditional
linear CISK studied by Ooyama (1964, 1969), Charney (1973), Fraedrich and McBride
(1989) and others. The fast mode, however, was dismissed by CE64 as being associated
with unrealistically large values of the relative humidity w. It was also dismissed by Mak
(1981) as being unphysical, essentially because the growth rate became infinite at finite
radius (marked by a vertical dashed line in Fig. 1(a)).

Fraedrich and McBride (1995) re-examined the fast-mode instability and found that
in the presence of an Ekman boundary condition it gave balanced solutions at scales larger
than the deformation radius. They also found that in practice the growth rate remained finite
depending on the vertical structure of the initial disturbance. They compared growth rates,
horizontal length scales and associated vertical mass-flux profiles against observations and
concluded that the fast-mode instability may be a viable mechanism for tropical cyclone or
tropical cloud-cluster development in nature. They termed the fast-mode instability ‘large
scale convective overturning’. Thus the second hypothesis of the present paper is that the
fast mode is a physically realistic solution and is the instability responsible for the initial
growth of oceanic cloud clusters and tropical cyclones in the atmosphere.

In the following section (2) we present the set of model equations, and their solutions,
for the relationship between growth rate and horizontal scale. We discuss the structure and
behaviour of the fast-mode solution. A moisture budget is formulated for the model, which
leads to the derivation of the two versions of the cumulus parametrization: the relative-
- humidity-based version of CE64 and the SST-based version central to the thesis of this
paper. Section 3 presents the results in terms of the dependence on SST. It shows the
existence of a threshold temperature at which the solutions change from the slow domain
to the fast domain, as depicted in Fig. 3. The final section (4) summarizes and attempts
briefly to assess the feasibility of this mechanism for tropical cyclone and/or cloud-cluster
development.

2. MODEL EQUATIONS AND SOLUTIONS

CE64 employed a two-layer model in pressure coordinates for inviscid balanced
perturbations about a stratified basic state at rest on an f-plane. The vertical model geo-
metry for the dynamical equations is shown on the left-hand portion of Fig. 2. CE64
employed a cylindrical geometry with axisymmetry; but (following Charney 1973; Mak
1981; Fraedrich and McBride 1989) we can choose a slab-symmetric system such that
d/0x = 0, without loss of generality. Following Fraedrich and McBride (1989), the model
equations are the following

ou; = fu ous = fus
d d
}\10'U1+f”1=_'<'b1 )»10U3+fu3=—"£
ay dy
p %, Q2
RdApa(¢3 ¢1) = Rdwz + )
vy wr wy vz s w ( 1)
3y  Ap Ap dy Ap Ap - 5
Wy = 0 g4 = )\.ZK‘E
dy
cpP
Qz=—R—dS(nw4+)/wz) Iyl <b
0,=0 Iyl >b
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where the dependent variables u, v, w are the wind components in the x, y, and p directions;
¢ is (perturbation) geopotential; Q is the heating of the large scale due to cumulonimbus
activity; and the subscripts 0 to 4 denote the model level at which the variable is defined.
Figure 2 shows the classical two-layer model with the five levels at which the dynamic
variables are defined; the related moisture variables are discussed in section 2(d). Time
dependence of the solutions has been assumed to be proportional to exp(o't) so that all
time derivatives appear as the pre-multiplier o, equal to the growth rate.

Levels Dynamic Moisture
Variables Variables

4y O wo
AP 1 Vi ¢
1 2 wy Q2 qz
AP 3 vy @3
A MIXED LA.YEF? “ 4

SST

Figure 2. The two-layer model geometry of the classical Charney and Eliassen (1964) and Mak (1981) model.
For notation see text.

The trace indicator A, has the value zero when the quasi-geostrophic balance condition
is assumed, and the value one otherwise. The trace indicator A, is zero when zero mass-flux
is assumed at the lower boundary, and equals one when the Ekman condition is assumed
at the lower boundary. The couplet (y, p) comprises the independent variables; Ap is the
half-depth of the model atmosphere (Fig. 2), f is the Coriolis parameter, Ry is the (dry)
gas constant; ¢, is specific heat; K is the half-depth of the boundary layer assumed to
underlie the model and S is static stability.

The parameter 7 is a dimensionless coefficient appearmg in the heatmg term propor-
tional to the Ekman vertical-velocity at the lower boundary (level 4). y is the coefficient
in the heating term proportional to the total vertical velocity at level 2, the level at which
the heating is apphed Thus, mathematically, S(1 — y) is a modified static stability in
the region |y| < b in which the heating is applied. As will be shown below, its value is
determined by the moisture budget. Following Fraedrich and McBride (1995) it may be
physically interpreted as the ratio of the diabatic heating associated with the divergent part
of the wind field to the adiabatic cooling.

Following standard techniques (e.g. Lilly 1960; chapter 13 of Charney 1973; Fraedrich
and McBride 1989), Egs. (1) are solved by reducing it to an ordinary differential equation
in one variable in each of the domains |y| < b and |y| > b. The horizontal boundary
conditions are that all perturbation variables go to zero at y = oo and that the solutions
assume a sine or cosine structure in the inner domain and an exponentially decaying form
at |y| > b.

The demand for continuity for the normal velocities v;, v3 and of the geopotentials
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&1, ¢3 at y = b results in a matching condition, as embodied in the following equation

bm:/n + (o~ D" +1) arctan/”+(y — D' +1)

2
20* +1 o +1 @

Once the external heating coefficients »n, y are specified, Eq. (2) is a relationship be-
tween the half-width b of the disturbance and the growth rate o, where b has been
non-dimensionalized by dividing by the Rossby deformation-radius for the problem,

R = Ap~/S/f, and the growth rate has been non-dimensionalized through the relationship

Ap log

B Kf O'EKMAN.

Q
Il
Q
IH

)

(a) The width—growth relation

Equation (2) characterizes the balanced-flow instability associated with an Ekman
boundary-layer and cumulus heating and is derived by solving Eqgs. (1) for A; =0, A, = 1.
This instability has been discussed by Charney and Eliassen (1964), Bates (1973), Mak
(1981) and others. Other types of solutions, which are associated with a spectrum of flows,
are easily derived. They are presented in Table 1 together with comments on the underlying
physics and structural behaviour. The following points are noted:

The fast-mode instability is defined here as the mode associated with infinite growth-
rate. Mak (1981) demonstrated that this arises through the presence of the mid-level
heating coefficient y in the thermodynamic equation of Egs. (1). The modes described
in rows 1 to 5 of Table 1 are those with this heating term present; it is seen that the
infinite growth-rate arises if, and only if, y exceeds the value one.

A slow-mode instability is defined as the mode associated with a finite maximum
value of the growth rate o*. This slow (or classical CISK) mode arises in connection
with the coefficient 7, representing the component of heating proportional to the
vertical velocity at the top of the boundary layer in Eqgs. (1). Rows 1, 2, 6 and 7 of
Table 1 have this heating term present. It is seen that finite growth arises if, and only
if, the set of conditions (n > 0,0 <y < 1, n + y > 1) is satisfied.

In rows 1 and 2 of Table 1, the Ekman heating-term (positive n) is simultaneously
present with the fast mode. For these configurations, under conditions where the fast
mode is stable (i.e. y < 1),the maximum growth-rate correspondstoo* = (n +y —
1)/(1 — y). As previously noted, this is the slow-mode, or classical CISK, solution.
The maximum growth-rate occurs at byyn/R = 0, and this intercept is the free-ride
solution studied by Fraedrich and McBride (1989), Pedersen (1991) and Wiin-Nielsen
(1993). For y > 1 the growth rates increase from o =0 to o — 00, characterizing
fast modes of the model. For the balanced version of the equations (row 1), infinitely
large growth-rates, omax = 00, are related to finite-size perturbations, byyn/ R, whose
magnitude depends only on the value of y (that is, on the mid-level mass-flux in the

heating term) through the relation byn/R = 4/(y — 1)/2 arctan /y — 1.

The models represented in rows 3 to 5 have only the fast mode present (i.e. 7, the
heating coefficient proportional to Ekman pumping, = 0). Unstable solutions exist
for y > 1 only and maximum (infinite) growth-rate occurs at vanishing radius for
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the unbalanced models, but at finite radius byn/R = ,/’—’;—1 arctan /y — 1 for the
balanced model.

The slow, or classical CISK, mode (n > 1, y = 0) is represented by rows 6 and 7.
Here the total heating is proportional to the Ekman pumping at the lower boundary.
These modes have finite maximum growth-rate oy, = n — 1. It occurs, however, at
vanishingly small spatial scale b/R.

Both slow and fast modes were mentioned by Charney and Eliassen (1964), Mak
(1981) and others, but the fast modes have been rejected as unphysical. In Charney and
Eliassen (1964) they emerged in connection with excessive humidity values associated
with the particular parametrization of y in the cumulus parametrization scheme. Bates
(1973) noted the potential violation of the basic underlying assumption that the interior
flow is no longer balanced at finite width, b/R, if o > f. Mak (1981) also rejected these
modes as unphysical, but did not elaborate in greater detail. Thus the slow modes are
commonly associated with the CISK-type growth of tropical disturbances. However, their
growth rates appear to be very slow and there is no natural cut-off at the short-wave end
of the unstable disturbances, that is » — 0 for maximum finite o (see also Chang and
Williams 1974; Pedersen and Rasmussen 1985). Furthermore, a link between the cumulus
parametrization and the moisture budget needs to be established in the framework of the
prescribed model structure. This leads to a new mterpretatlon of the CISK-type instability
and will be discussed in the following subsections.

(b) T he moisture budget

Referring to the model geometry as depicted in Fig. 2, the total heating in a vertical
column equals fo (Q/g)dp = f 1 (Q/g)dp = (Q2/g) Ap. By consideration of conservation
of equivalent potential temperature (or moist static energy) in a vertical column, this equals
the vertical integral of —L(dg/d¢) with respect to mass, i.e.

*dgdp

A
Qz—p=“L
g o dr g

Q)
where L is the coefficient of latent-heat release and g is the mixing ratio of water vapour.
Removing the denominator g from both sides of the equation, and expanding the substan-
tive derivative, the total heating can be expressed as follows:

4 (0dq dw
O:ap=-t [ (+7-qv+52)ap ©
0 dt op
4 aq
=—L/ — +V-qV)dp — Lwsgs ©6)
0 dJt
(neglecting the terms [(dg/dt) dp, [ V-Vqdp)
4
=—Lf qV «Vdp — Lang,, )
0
* dw
=+L / g+ — Lwsgs ®
o dp

(integrating by parts)

d
=+L[wql; — L w—gdp — Lwyq, 9)
o OJp
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4 aq
=——Lf w—dp. 10
L ©3,9P (10)

(¢) The cumulus parametrization of Charney and Eliassen (1964)

The above moisture budget and, in particular, Eq. (10) were originally derived for this
model by CE64 (their equation (3.2)). They evaluated the integral in Eq. (10) by assuming
dq/adp to be constant through the depth of the troposphere and that its variations are gov-
erned by an externally specified relative humidity p. Thus, following their parametrization,
(10) becomes

90,7 [
Q:Ap=—Lp aq [wdp
Ldp 1 Jo
[3q; ] [ w2 Wy + Wy }
=-L —A A 11
lf_ap_{z p+——5—Ap (11)
"9g, ] 1
=—Lu 1 (wz+—w4) Ap
| dp | 2

where [dg,/0p] is a mean tropical value of the vertical gradient in saturation specific
humidity ¢,(7T, p). Consistency between Eq. (11) and the thermodynamic equation from
Egs. (1) at level 2, @, = —(c, pS/Ra) (w4 + y w,) requires that

CpD - [ 9gs Y ‘
e, T =2, 12
R, 14 ’”‘[ap] n=3 (12)

Substituting the values of (y, n) from (12) into the width—growth relation (2) yields
the curves plotted by CE64 and reproduced in Fig. 1(a) (where we note that the width—
growth relation of CE64 differs slightly from Eq. (2) due to their use of cylindrical geom-
etry). Using this convective parametrization, the growth-rate curve depends critically on
the external parameter p (relative humidity) and, in particular, undergoes a rapid transition
from the slow, CISK, mode to the fast mode in the parameter range u = (0.8, 1.0).

(d) A cumulus parametrization based on underlying sea surface temperature

Firstly we consider the moisture budget. If we consider moisture to be carried at the
middle level 2 and the lower boundary 4, the integration in Eq. (10) can be carried out as
follows

w2 w4+ W,

Q:Ap=—L 5% T (94 — q2) (13)
upper layer Iowe;rlayer
L
= —5{0)244 + w4(qs — g2)}- (14)

Comparing Eq. (14) with the thermodynamic equation Q, = —(c,pS/Ra)(nws + y@,)
gives the following values for y and n

_ LRy 1
" 2¢, pSAp

14 qa n=y<1—%)- (15)

qd4
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Secondly we consider a simple boundary layer. In Eq. (15) g4 is the value of moisture
at the lower boundary of the model. Consistent with the formulation of CE64, this is the
top of the Ekman boundary-layer. If we assume constant potential temperature within the
boundary layer (i.e. a well-mixed layer) and we also assume a relative humidity of 85% at
the top of the mixed layer, then

g4 = 0.85g,(T4, pa)

1000\ Rd/er
~ (0.85¢; (T* ( ) , p4>
Da

where the functional ¢,(7, p) is the saturation mixing ratio.

Setting the lower boundary of the model at 900 hPa, and substituting Eq. (16) into
Eq. (15), yields the following relationship between the heating parameter y, static stability
S, and the underlying SST T*

LR 1 1000 ~Ra/er
y = —- x 0.85¢, | T* ( ) » Pa)- 17)
2 ¢, pS(Ap) D4

(16)

To solve Eq. (2) all that remains is the specification of the second heating
parameter 7. As will be shown later, the behaviour of the solutions is dominated by y, so
for the purposes of this study, we shall 31mp1y specify n =y /2 (Wthh is the value used
by CE64 and means that in Eq. (15) g2/q4 =~ -

3. SSTs AND GROWTH RATES OF TROPICAL DISTURBANCES

Substituting Eq. (17) into Eq. (2) and using n = y /2 yields a relationship between
growth rate o and the horizontal scale b for a given value of SST T*. This relationship is
plotted in Fig. 1(b) for a range of values of T*. The values used for the other constants
are as follows: S =2 x 1072 m?sec™>hPa™2, Ap =450 hPa, K =50 hPa, f = 0.377 x
10~*sec! (at latitude 15°).

The growth-rate curves fall into two families according to whether or not y exceeds
one (i.e. T* exceeds 25.5 °C). For lower values of SST, the maximum growth-rate occurs at
the smallest scale; this solution corresponds to a dominance of the classical CISK mode of
CE64 (Ooyama 1964, 1969; Fraedrich and McBride 1989). For SSTs exceeding 25.5 °C,
infinitely large growth-rates are observed at finite horizontal scales which agree roughly
with those of the cloud cluster or tropical cyclone in nature.

An alternative representation of the solutions is given in Fig. 3 which shows the
path of the scale of zero growth (i.e. o* = 0) and the path of the scale of infinite growth
(o* = 00) as a function of SST. The shaded area represents the region in (b, T*) space for
which there are unstable solutions. The large (infinite) growth-rates occur when the lower
curve departs from the lower axis; and this occurs at a transition temperature of 25.5 °C.
It is noteworthy that this transition also marks the beginning of growth at large scales, i.e.
the meso-a and synoptic scales of convection over tropical oceans observed in nature. The
upper curve is the plot of byn/ R while the lower curve is that of byax/R, both from row
1 of Table 1. Thus the scale of maximum growth (i.e. the outer curve) depends only on the
underlying SST (through the parameter y) and not on the mid-level humidity (through n).

At this stage it should be noted that the model used is that from row 1 of Table 1, and
is based on the balanced version of the equations (1; = 0). The balance condition is only
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Figure 3 Domain of instability: the maximum and minimum half-width, byax = b(SST, o =0), and bmin =

b(SST, o = o0) of unstable balanced perturbations as a function of the underlymg sea surface temperature. The

structure change between fast and slow modes occurs at 25.5 °C where the minimum width by first exceeds zero
and the maximum growth-rate first becomes infinite.

valid (and so therefore are the solutions) when o is smaller than the Coriolis parameter f.
The horizontal line o = f is plotted in Fig. 1(b), where the intercept with this line at high
SSTs (28 to 30 °C) occurs at scales between 100 and 1000 km. It is our basic hypothesis
that the slow (balanced) flow will occur at these scales and growth rates, which mark the
upper limit of validity of the balanced assumption. Following this philosophy the lower
line in Fig. 3 may be replaced by the line of heavy dots, which is the path of the intercept
of the solution with o = f.

4. DISCUSSION

In this paper we have shown that through a simple re-formulation of the cumulus
parametrization scheme, the classical 2-layer model of Charney and Eliassen (1964) can
provide a theory for the rapidly changing response of oceanic tropical convection to vari-
ations in the underlying SST. The immediate question that arises is whether or not this is
the dominant physical mechanism responsible for this phenomenon in nature.

In this context there have been several recent criticisms of CISK-type instabilities.
Emanuel (1989) states that the CISK models make an incorrect assumption of the existence
of a reservoir of Convective Available Potential Energy (CAPE) to drive the large-scale
motions. Strictly this is not correct as CAPE does not appear explicitly in the basic Egs.
(1) used by CE64. The criticism does, however, highlight the major weakness of this
class of models in that the major component of the physics is contained in the heating
equation O, = —(¢, p/Ra)S(nws + y ). To give values to the coefficients y, n requires
interpretation of the model in terms of a moisture budget. As shown in the present paper, the
interpretation of the results can vary significantly depending on how this moisture budget
is constructed: e.g. the parametrization of CE64 versus the SST-based parametrization.
Thus, until they are extended to include an explicit moisture budget, the CISK-type models
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embody an incomplete theory. The present paper explicitly sets the local time-derivative
of moisture to zero in Eq. (7). This can be extended, following the philosophy of Kuo
(1974), to an assumption that the vertically integrated moistening of the column is a small
parameter bgyo times the vertically integrated three-dimensional convergence of moisture

49 4 dw
/ % 4p — —bKUOf (V-qV + ——q) dp. (18)
o 0t 0 op

Substituting into Eq. (5) and carrying the parameter through in the subsequent algebra
gives the result :

LRy 1 qz)
={1-b —_— = - = 19
Y =( KUO)ZCP pSqu4 n V( ga ( )

so that the analysis in the present paper remains essentially unchanged. As discussed,
however, by McBride et al. (1989) the Kuo assumption Eq. (18) is not supported by
observation; so the lack of an explicit moisture equation still remains as the major weakness
of the current model.

Montgomery and Farrell (1993) criticized CISK models on the grounds that the Ekman
lower boundary condition (w4 = A, K (us/dy) is valid only ‘after an incipient vortex has
attained sufficient strength and organization so that the cloud-organizing mesoscales are
correlated with the balanced flow’. The results of the present paper show that the scales of
preferred growth for the fast mode are of the order of several hundred kilometres (for the
half-width of the disturbance). The question is whether tropical motions on that scale can
be considered quasi-geostrophic, and, in particular, whether or not the Ekman boundary
condition is valid on those scales. The validity of CISK-type models depends totally on this
question, which deserves further investigation. In this context we note the study of Stout and
Young (1983) who carried out a balance-of-forces analysis for the large-scale monsoonal
flow during the 1979 International Monsoon Experiment (MONEX). According to their
results, the low-level flow is quasi-geostrophic beyond about 5 degrees of latitude from
the equator (see their Fig. 9).

Besides the balance assumption (and its accompanying Ekman lower boundary con-
dition), the other basic assumption of our analysis is that the vertically integrated heating
is dominated by the underlying SST (as in our formulation) rather than by the relative
humidity (as in the CE64 formulation). This assumption can be considered to be a form of
‘quasi-equilibrium hypothesis’ whereby surface evaporation acts to bring the low-level air
into equilibrium with the underlying sea. Thus the model sensitivity is dominated by an
external parameter (the SST) as distinct from an essentially internal parameter (the relative
humidity) as was the case in the CE64 formulation.

A last caveat that should be noted is that the constants used to produce Figs. 1(b) and
3 gave the cut-off temperature at approximately 25.5 °C. There is some sensitivity of the
solutions to the choice of constants, particularly the static stability S. Equation (17) was
interpreted above as a relationship between y and T*. The transition temperature marking
the onset of the fast mode occurs at y = 1. Substituting for y, Eq. (17) then becomes an
expression for the threshold SST as a function of static stability S.

In this context, we note that Rasmussen (1979) has hypothesized that arctic polar lows
may be manifestations of CISK. Static stability S has a slightly higher value at the poles
than in the tropics, but the depth of troposphere Ap through which the development takes
place is approximately half that in the tropics; thus, through Eq. (17), the transition, y = 1,
can occur at a lower temperature, so that the explosive growth of polar lows may also
be associated with the transition to the fast mode. There is also evidence that explosively
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growing lows off the eastern coastlines of Australia (Holland et al. 1987; Mclnnes et al.
1992) and of the USA (Sanders and Gyakum 1980; Gyakum and Barker 1988) may be
warm-cored systems embedded within a larger-scale baroclinic low. In such cases, it is
also possible that the embedded explosively growing system may be a manifestation of the
transition to the fast mode. For the United States east-coast lows there is some supporting
evidence that the static stability S is observed to decrease (thereby increasing y through
Eq. (17)) before, or in the early stages of, development (Gyakum and Barker 1988).

It is also instructive to interpret the change in behaviour at a threshold SST in terms of
the ‘effective static stability’ concept, introduced by Fraedrich and McBride (1995). The
basic reason for the existence of a threshold value of SST is that the fast-mode component
of heating leads to the appearance of the coefficient S(1 — y) modifying the vertical motion
term w, in the thermodynamic equation of Egs. (1). Thus, as the underlying SST increases,
the available moisture increases; this increases the coefficient y until a threshold SST is
reached whereby y exceeds the value one. At this point the ‘effective static stability’
S(1 — y) becomes negative, the large-scale flow becomes effectively statically unstable
and a large-scale convective overturning takes place. The properties and physical meaning
of large-scale balanced flows with negative effective static stability and an Ekman lower
boundary have been explored in a recent paper by the present authors (Fraedrich and
McBride 1995).
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