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Summary

Extended non-hierarchical cluster analysis is improved by
deriving the initial cluster number and estimating the
outliers in the final cluster set. These improvements are
tested and compared with an established cluster algorithm
using a toy example. Applying the improved cluster
analysis to a classification of the European climates shows
that the proposed techniques can be of great practical
relevance.

1. Introduction

The aim of the cluster analysis is the separation
of several elements into homogeneous groups.
Two main techniques are possible: Using hier-
archical methods (see, for example, Bacher,
1996), different sequences of groups on different
levels may be constructed. The result is a
hierarchy of clusters in a `̀ tree structure''. This
method is commonly used in most of the existing
statistical software tools (i.e., SAS, 1990;
StatSoft, 1994; SPSS, 1999). The disadvantage
of this technique lies in the fact that an exchange
of elements between the groups is impossible
when the `̀ tree structure'' is building up. With
non-hierarchical methods, this disadvantage
vanishes because the elements are simulta-
neously partitioned into a given number of
clusters (see, for example, Steinhausen and

Langer, 1977; StatSoft, 1994). Jahnke (1988)
showed for independent samples that the mini-
mum-distance methods ful®ll the consistence
criterion of statistical estimation procedures
which, therefore, appear to be an ideal tool for
climate analysis to objectively classify regions of
similar climate.

In the following analysis we apply the
minimum-distance method (Forgy, 1965) of the
non-hierarchical cluster analysis. The starting
condition is to attribute an equal number L of
elements ei from a total of M to the initial
number of K0 clusters (initial partition) so that
each cluster receives L � M=K0 elements as
follows:

e1; . . . ; eL 2 c1

eL�1; . . . ; e2L 2 c2

..

. ..
.

e�kÿ1�L�1; . . . ; ekL 2 ck

�1�

where ci, i� 1, . . . , k represents the cluster.
A so-called group centroid �ek is then calcu-

lated for each k of the K0 clusters:

�ek � 1

L
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The Euclidean distance between the elements
and the group centroid �ek de®nes the following
target function a(g) at each grouping step g:

a�g� �
XK

k�1

X
i2k

��ei ÿ �ek

��2 �3�

In this sense each grouping step can be seen as
displacement of the element ei into that cluster of
the nearest centroid. Thus the target function can
be minimized:

a�g� 8 g! min �4�
This procedure is repeated until a local

minimum of the target function is reached. Note
that in the remainder of this paper the procedure
described above is referred to as `̀ standard
method''. The initial and ®nal number of clusters
are the same and subjectively de®ned when
applying the `̀ standard'' non-hierarchical cluster
analysis algorithm. If, for example, the initial
number of clusters is too small, the number of
elements within a single cluster is relatively
large. Consequently, possible internal structures
of an initially identi®ed cluster cannot be
considered any further. Problems associated with
this procedure are the subjectively de®ned
number of clusters and the unknown statistical
signi®cance of the cluster separation. Solutions
of the problems have been suggested by
Gerstengarbe and Werner (1997), but two addi-
tional dif®culties arise which require attention;
that is (a) the choice of an optimal initial number
of clusters from which the iteration commences,
and (b) the appropriate cluster separation.

Section 2 presents the theoretical basis for
improving on these two points. Section 3 shows a
climate classi®cation for Europe utilising the
improved cluster analysis.

2. Theoretical Basis

Gerstengarbe and Werner (1997) have developed
a procedure to test the quality of cluster
separation as follows: After having reached the
local minimum each cluster is equipped with a
varying number of elements. Each element is
de®ned by n parameters, that is, it is located in an
n-dimensional parameter space. Each cluster
consists of a certain number of elements
representing a scatter plot of elements in the

parameter space. If the clustering leads to a
minimum of the target function (Eq. 4), overlaps
may occur between the scatter plots of individual
clusters. This means that the parameter space of a
cluster a passes into that of cluster b and vice
versa and the number of parameters in the
common space of the two clusters can be de®ned
as overlaps of cluster a with respect to cluster b.
The maximum possible number of overlaps
between two clusters a and b is O � NLaLb (N-
number of parameters, La-number of elements in
cluster a, Lb-number of elements in cluster b).
This number is reached if both clusters cover the
same region within the n-dimensional parameter
space. The following �2-test can be derived
introducing the maximum possible number of
overlaps Omax

a;b , the actual number of overlaps
Oa;b, and the mean over all actual numbers of
overlaps �O or all combinations of cluster pairs:

�2 � �Oa;b ÿ �O�2 � �2Omax
a;b ÿ 1�

�Oa;b � �O� � �2Omax
a;b ÿ Oa;b ÿ �O� �5�

with one degree of freedom. Using this method
the statistical con®dence of separation can be
determined and the optimum number of clusters
which gives the best separation between all
clusters. This number is, in general, not identical
with the given initial number of clusters. The
following steps need to be performed to achieve
the optimum separation:

± Apply the cluster algorithm up to the point that
one cluster is fully separated from all others.

± Reduce the initial data set by the separated
cluster elements.

± Repeat the algorithm until all clusters are
seperated in a statistically reliable sense.

Practical applications require further improve-
ments for (a) the choice of an optimal initial
number of clusters starting the iteration and (b)
the cluster separation.

2.1 Optimal Initial Number of Clusters

The initial number of clusters can in¯uence the
cluster result. Therefore, it is necessary to
estimate an optimum initial number of clusters.
The following procedure is suggested.

The starting point for the calculation of the
initial cluster number is the target function a(g)
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de®ned for the `̀ standard method''. We know
that the target function is constructed in such a
way that the partition for which the function
reaches a minimum de®nes the most favourable
grouping of the clusters. Now we calculate this
target function for an increasing number of initial
clusters �for p � 2; 3; 4; . . . ;K0� so that we get a
sequence of K0 target function values. This
sequence can be incorporated in the following
estimation of an optimum initial number of
clusters. Realising that each value of the target
function is equivalent to a speci®c initial number
of clusters, we de®ne the optimal initial number

as the in¯ection point within the sequence of
target function values where the trend of the
target function values disappears and no further
signi®cant changes occur. This idea can be
solved practically by:

± calculation of the differences between consecu-
tive values of the target function sequence and
creation of a difference series di �i � 1; . . . ;m�
with m � K0 ÿ 1 values and

± applying the Pettitt-test (Pettitt, 1979) to
estimate the beginning of a trend (or in¯ection
point) within the difference series.

Fig. 1. Cluster analysis applied to a one
parameter oscillation: (a) an optimal
initial number of clusters, k0 � 5, and
(b) a de®ned initial number of clusters,
k0 � 5
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The Pettitt-test can be derived from the U-test
(Mann-Whitney, 1947), which is based on the
rank values of the sequence. The in¯ection point
is de®ned as that point for which the absolute
value of the sequence of differences, di, has
reached a maximum with

Xp � 2 � Rp ÿ p � �m� 1� �6�
where p is the position within the difference
series di, m is the number of values of the
difference series, and Rp is the sum of the ranks
of the difference series di of the target function
values. Continuously increasing the initial num-
ber of clusters, the Pettitt-test ®nally de®nes that
position within the difference series di (of the
target function values) which divides this series
into one part with signi®cant changes values and
the other one without changes.

2.2 Cluster Separation

The proposed cluster separation algorithm leads
to a number K of separated clusters, the
signi®cance test of which is connected with a
de®ned error probability (level of signi®cance
� � 0.01 or 0.05). Note that a statistically
signi®cant separation of two clusters allows a
small number of overlaps. Thus, some clusters
may contain `̀ strange'' elements are identi®ed as
outliers. In the statistical sense of signi®cance,
this case is without any consequence. But in
some cases, such outliers can have a negative
in¯uence on the clustering (which will be shown
in some detail in Section 3), and if such outliers

exist, they may be better assigned to another
cluster.

An outlier test provides the solution for this
problem because it identi®es a value deviating
signi®cantly from the basic sample (Ferguson,
1961). For each element of a cluster, we calculate
its Euclidean distance to the group centroid which,
for each cluster, leads to a sample of Euclidean
distances xi�i � 1; . . . ; k; k-number of elements
within the investigated cluster). Using the Thomp-
son-rule (M�uller et al., 1973) we can identify the
outliers of the sample with the following test
value:

ti � xi ÿ �x

s�
�7�

where �x and s� are the arithmetic sample mean
and the standard deviation. Outliers are all values
xi�i � 1; . . . ; k� for which jtij > zf ;� is valid, with
f� kÿ 2 ( f� degree of freedom; zf ;�� critical
value; s. statistical table). In this sense the
Thompson rule is a two-sided test to examine
the hypothesis H0:`̀ The sample has no outliers
for a chosen level of signi®cance �''. If outliers
exist a better assignment can be reached by
arranging the outliers into other clusters with
smaller Euclidean distances between the outlier
elements and the group centroids. This procedure
can be continued until no outliers exist.

2.3 A First Example: A One-Parameter
Oscillation

The solutions suggested in sections 2.1 and 2.2
are demonstrated by a ®rst example. A one
parameter sine-oscillation is selected described
by 200 values between 0�±360�. Its regular
course is replaced by 10-value steps. Correct
clustering of the oscillation is achieved if (i) the
boundaries between the clusters are identical
with those between the steps of the oscillation
and (ii) the partition of the clusters is symmetric
in the following two aspects: First, the positive
(and the negative) parts of the oscillation from
0�±180� (and 180�±360�) must be symmetric
about 90� (and 270�). Second, the positive region
0�±180� must mirror the negative region 180�±
360� symmetrically. Two variants of clustering
procedures are applied:

a) The statistically signi®cant cluster separation
(section 2.1) and the calculation of the

Fig. 2. Result of the Pettitt-test for the estimation of the
initial number of clusters (climate classi®cation)
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optimal initial number of clusters (section
2.2) and

b) the `̀ standard method'', the de®ned number
of clusters is set to K� 5. Five clusters are
chosen because of the same calculated optimal
number in variant (a).

For variant a) we start with the initial number
of clusters K0 � 5 computed as described in
section 2.1. The number of separated clusters in

this case is also K � 5. All conditions of a
correct clustering discussed above are ful®lled
(Fig. 1a). This example shows that a correct
solution is achieved by the clustering, if the
proposed improvements are incorporated. The
boundaries of the clusters coincide with the steps
of the oscillation and the symmetry is ful®lled
both within the positive and negative part. Figure
1b shows the result of variant b). Note that the
positive and negative parts are asymmetric with

Fig. 3. Climate classi®cation with a) the optimal initial number of clusters and statistically separated clusters (x±climate type
4; dots±positions of the stations), and b) the de®ned number of clusters k� 11 calculated by the `̀ standard'' non-hierarchical
cluster analysis algorithm
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respect to each other. That is, the positive part of
the oscillation includes three clusters (1±3),
whereas the negative one contains two clusters
(4±5). Additionally, cluster 4 contains the zero-
level. That is, the `̀ standard method'' leads to a
signi®cant error in the clustering procedure. For
comparison, a standard hierarchical procedure
(WARD, Steinhauser and Langer, 1977) is tested.
It shows that the algorithm used identi®es 161
secondary minima during the whole iteration
process which leads to an incomplete distribution
of the sample values into the calculated clusters
because ambiguous minima occur. Therefore,
this hierarchical procedure will not be used for
further investigations.

3. The Climate of Europe

The aim of this section is to classify European
climate (between 45� and 70� N, 12� W and
45� E) by regional climate types using monthly
and annual means of precipitation, surface air
temperature, and the monthly means of the daily
temperature range for the time period 1979±1992
at 228 meteorological stations (locations see Fig.
3a). The stations are part of the PIK climatolog-
ical data bank system (Potsdam Institute for

Climate Impact Research). Again, the improved
clustering variant a) is compared with variant b)
applying the `̀ standard method'' prescribing
K� 11 clusters (derived in variant a)). The
following results are summarised:

For variant a) the calculated optimal initial
number of clusters is K0 � 7. Figure 2 shows two
parts in the course of the target function with
growing cluster number. In the ®rst part, the
values decrease continuously with an increasing
number of clusters; in the second, one observes
only random oscillations of the target function
values. The clustering with statistically signi®-
cant cluster separation (see Section 2) yields 11
climate types (clusters) shown in Fig. 3a; eight of
the 228 stations are marked as outliers seven of
which can be attributed to other climate types
(see Section 2.2):

± Eleven climate types classify the whole region
of Europe neither too subtly nor too coarsely.

± All climate types (clusters) are represented by
a suf®cient number of stations (between 8 and
60, except for the Alps).

± The three mountain stations (Saentis, Sonn-
blick, Zugspitze) of the Alps fall into one
cluster (cluster 2).

Table 1. Selected Clusters of Variant (b)-Cluster 3 and of Variant (a)-Cluster 9 and 10 (D±Germany; F±France; GB±Great
Britain; I±Italy; IR±Ireland; CR±Croatia)

Variant (b)� `̀ standard method'' Variant (a)� improved method
Cluster 3 Cluster 9 Cluster 10

Dublin IR Dublin
Shef®eld GB Shef®eld
Bradford GB Bradford
Cherbourg F Cherbourg
Long Asthon GB Long Asthon
Plymouth GB Plymouth
Shannon IR Shannon
Portoroz CR Portoroz
Limoges F Limoges
Durham GB Durham
Oxford GB Oxford
Edinburgh GB Edinburgh
Beauvais F Beauvais
Angers F Angers
Renns F Renns
Uccle B Uccle
M�unster D M�unster
Armagh GB Armagh
Hamburg D
Trieste I
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± The stations of each cluster represent con-
nected areas.

In variant b) the `̀ standard method'' is applied
with the subjective initial number K� 11 clusters
as determined by variant a). Without the use
of the statistical cluster separation technique
(section 2) the K� 11 clusters obtained are not
signi®cantly separated. This leads to the differ-
ences with variant a) when comparing Fig. 3a
and 3b. An example (see Table 1) shows that
these differences are not negligible. Table 1
contains the stations attached to cluster 3 of
variant b) and those of clusters 9 and 10 of
variant a). We can see that the stations in cluster
3 are the same as those in clusters 9 and 10,
except for two stations: Hamburg moves to
cluster 5, Trieste to cluster 11. It is obvious
that the new classi®cation of Hamburg and
Trieste is climatologically more plausible.
Furthermore, the question arises whether the
differences between clusters 9 and 10 are
climatologically signi®cant. If there are differ-
ences, cluster 3 of variant b) does not represent
an optimal classi®cation. To answer this ques-
tion, the annual cycles of the parameters of
the two clusters are compared (Fig. 4a to c).
Large differences are evident for the daily
temperature range and the monthly sums of
precipitation but for air temperature exist only
during winter months. That is, the `̀ standard''
cluster algorithm does not lead to an optimal
climate classi®cation, despite the use of the
optimal number of clusters.

4. Conclusions

The following improvements are suggested when
applying non-hierarchical cluster analysis meth-
ods. Implementation of these improvements leads
to a cluster analysis with an optimum multivariate
classi®cation:

(1) As the `̀ standard method'' without statistical
signi®cant cluster separation can produce
grouping errors it is desirable to apply a
statistical test for cluster separation quality.

(2) The choice of the initial number of clusters is
of great importance for the optimum cluster
separation. This number is calculated by esti-
mating a trend-change within the sequence
of target function values.

Fig. 4a. Monthly mean air temperatures±variant a): climate
type 9 (full) and climate type 10 (dashed)

Fig. 4b. Monthly mean daily ranges of air temperature±
variant a): climate type 9 (full) and climate type 10
(dashed)

Fig. 4c. Monthly sum of precipitation±variant a): climate
type 9 (black) and climate type 10 (grey)
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(3) The separation quality can be improved by
identifying outlier elements within each
separated cluster. These outliers are then
sorted into that cluster which reveals the
smallest distance between the outliers' param-
eters and the respective cluster centroid.
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