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A modified version of the Grassberger—Procaccia algorithm is proposed to estimate the correlation dimension of an

attractor. Firstly, a measured time series is embedded into an M dimensional phase space spanned by time delay
coordinates. This, in turn, is linearly transformed into an equivalent space spanned by an orthogonal basis derived from
singular value decomposition. Secondly, a subspace composed of the directions of the (first few) principal eigenvectors, is
again embedded into a higher dimensional space, which is called re-embedding. Finally, the Grassberger—Procaccia
algorithm is applied on a re-embedding space instead of the Takens' embedding and thereby the correlation dimension
(D,) is calculated. This leads to a modified version of the Grassberger—Procaccia algorithm, which is aimed at dealing with
the estimation of the D, from noisy and relatively small data sets. In order to make full use of the available data, the delay
time for the first embedding is always set to the sampling time. In order to reduce the noise level, only the principal
components which are clearly above the “noise level” are used for the re-embedding. This modified algorithm is tested
using low dimensional dynamical models with random noise of different levels. Here we have used the Lorenz model with
D, about 2.0 and the Mackey—Glass equation with D, about 5.0. The results show that the present procedure gives a
clearer scaling region in the D,(M, r)—In(r) diagram and thus a better estimate of D,, especially when the data set is noisy
and relatively small. This modified algorithm is applied to meteorological data and some of the problems associated with

estimating the dimension of the weather and climate attractors are discussed based on the results.

1. Introduction

In recent decades, the theoretical understand-
ing of some complex dynamical systems has un-
dergone a rapid development, owing largely to
the discovery of deterministic chaos [36,53,54,
10,11,13,26,58] and fractals [38]. It is now widely
accepted that a nonlinear dynamical system may
display a chaotic attractor whose dynamic be-
haviour is both deterministic and unpredictable
and whose properties in phase space can be
characterized in part by fractal dimensions.
(Note that by fractal dimensions, we mean the
dimension of a fractal object in a general sense
as distinct from the dimension of a usual object.

In specific contexts, the fractal dimension is
specified by the concepts such as Hausdorff di-
mension, information dimension, correlation di-
mension, etc.) Encouraged by this progress,
much effort has been devoted to detecting low
dimensional attractors from measured signals of
various dynamical systems. Most remarkable is
the work on reconstructing the attractors using
univariate time series based on the embedding
theorem [63,46] and the algorithms for calculat-
ing the dimensions of the attractor (see for exam-
ple [21.48,5,62]), among which the most com-
monly used one is the Grassberger—Procaccia
algorithm [21]. These algorithms are a useful
tool for identifying chaotic attractors from obser-

0167-2789/93/$06.00 © 1993 — Elsevier Science Publishers B V. All rights reserved



374 K. Fraedrich, R. Wang | Correlation dimension from noisy datasets

vations and therefore have been applied to mea-
surements from various laboratory and natural
and dynamical systems, particularly those relat-
ing to weather and climate time series. However,
these algorithms normally require a very large
and almost noise free data set in order to pro-
duce a reliable estimate of the dimensions
[22,58]. This casts a certain doubt on the results
of dimension analyses based on observations,
since there is rarely a sufficient quantity of data
and the data can never be noise free. Indeed,
there are reports, based on various observations,
that attractors of low dimension, ranging roughly
from 3 to 7, exist in the weather or climate
system [42,17,12,66,28,32], but there has been
no indication of clear-cut scaling regions dis-
played in the form of the slope versus distance
(scale) diagram (see section 2). Most of the
existing algorithms work very well when dealing
with low dimensional mathematical models or
carefully controlled physical experiments and the
scaling region of the attractors can be clearly
demonstrated. However, when dealing with real
observations, some kind of averaging or regres-
sion on a narrow scaling region must be per-
formed in order to obtain an estimation of the
dimension. Here some uncertainty occurs as the
results are usually quite dependent on the scaling
region being chosen. Moreover, there are no
general prescriptions (theoretical or experimen-
tal) for the choice of time delay or the maximum
embedding when the dimension is not known a
priori. The effect of noise on the calculation of
the dimension results leads to another source of
uncertainty. Many studies published in recent
years have been concerned with these problems;
attempts have been made to estimate dimensions
based on small data sets (e.g. [2,3]), or deal with
noise reduction (e.g. [31,15,57]).

Broomhead and King [6] (see also [16,68])
propose a different approach by applying the
singular value decomposition (or singular spec-
trum analysis [68]) to the trajectories in the
embedding space to identify the principal direc-
tions spanned by the associated eigenvectors,

which are linearly independent. The number of
principal directions, which is determined by the
associated eigenvalues above the “‘noise level”,
is thought to be related to the number of linearly
independent variables involved in the observed
dynamics and thus to its dimensionality [16,68].
(Note that the “noise level” refers to the flat tail
of the eigenvalues associated with white noise.
For coloured noise, matters are more compli-
cated.) However, this number usually depends
on the sampling time, the maximum embedding
dimension and the time delay for the embedding
[47]. Therefore it is difficult to estimate the
dimension of the underlying attractor based on
single observables using solely singular value de-
composition, although it provides a powerful
approach of time series analysis in terms of
unstable, unharmonic limited cycle statistics,
which has been shown to provide useful informa-
tion about the underlying dynamics [18,20.52,
68].

As an alternative approach, Albano et al. |1]
calculated D, with the Grassberger—Procaccia
algorithm by using a state space spanned by the
principal eigenvectors derived from the embed-
ding space (instead of using the original time
delay coordinates). The criterion for the choice
of the number of principal components (PCs)
involved in the calculation is somewhat arbitrary,
and the result could be quite dependent on the
choice of the window (M) and the number of
PCs, especially when the data is noisy. In our
approach, we will only use the first few PCs,
those above the noise level, to estimate D,.
However, a re-embedding procedure is proposed
to retain the static properties of the attractor
under consideration (see section 2.4). We will
show that, by applying the correlation integral to
the re-embedding phase space, the resulting D,
does not change with changes in the number of
PCs, as long as they are all clearly above the
noise level and given that the scaling exists.

In fact, the dynamics reliably represented by
an observational data set is determined by the
resolution in time and the length of the time
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series, especially when the physical nature of the
dynamics changes within time scale. Therefore,
it is desirable to extract the dynamics with the
reliably represented scale range before analysing
its dimensionality. As chaotic signals (related to
turbulence) usually obey a certain power law
scaling, the larger scale dynamics carry more
variance than the smaller ones. Therefore the
singular value decomposition provides a useful
approach for this purpose, because the variance
distribution along the directions of the eigenvec-
tors is determined by the associated eigenvalue
(see section 2.2). The eigenvectors are linearly
independent, but they are actually related in the
sense that their cross(lag)-correlation is signifi-
cant in most cases. This leads to the introduction
of the re-embedding in section 2.4, which is
aimed at capturing the dynamics reliably repre-
sented by the observed signals. Thus the modi-
fied version of the Grassberger—Procaccia algo-
rithm introduced in this paper is different from
the original version in that the correlation inte-
gration is performed in the re-embedding space
(section 2.4). It is aimed at making full use of the
available data and to reduce the noise levels.
The paper is structured as follows. As the time
delay embedding technique, the singular value
decomposition and the Grassberger—Procaccia
algorithm are all basic to our approach, a brief
review of each will be given in section 2. This
will be followed by a description of the re-
embedding procedure and the modified version
of the Grassberger—Procaccia algorithm, concen-
trating on the correlation dimension (D,) since it
is the most commonly used measure for quantify-
ing the static properties of a chaotic attractor.
Section 3 will be devoted to testing the algo-
rithms using the Lorenz model and the Mackey—
Glass equation with different noise levels and
different numbers of data points. In section 4, an
application of this method to observational
meteorological data will be presented and some
of the problems associated with estimating the
weather and climate attractors will be discussed.
Finally, concluding remarks will be given in sec-

tion 5. For the sake of convenience, all the
details about the data used for testing and appli-
cation will be given in the appendix.

2. Methodology

2.1. The time-delay embedding and the
Grassberger—Procaccia algorithm

Assume the system under consideration is gov-
erned by a set of differential equations with K
state variables ({ € R") and satisfies the well-
known condition of existence and uniqueness
theorem such that a solution curve, known as
trajectory or orbit, passes uniquely through any
given initial value & € R*. Assume further that
the trajectory of the system settles on an attrac-
tor or an attractive manifold (once the transients
have decayed). An observable of a dynamical
system can be viewed as a projection of a trajec-
tory or a generic smooth function from the mani-
fold to the reals. Let x €ER' be one of the
observables that is measured at a sampling inter-
val 8 during the course of an experiment, leading
to a single time series with a total number of N
discrete data points that covers a span of time
N

(x,,t=1,2,3,...,N}. (1)

The attractor can be reconstructed, based on the
embedding theorem [46,63,56], by a univariate
generic time series (1) using a time delay coordi-
nate with any generic time delay 7 and a suffi-
ciently large embedding dimension M. In the
context of the singular value decomposition, the
time span M7 is often referred to as the window:

Y(M» t)Z(XI*(M*I)T’XI*(MAZ)f"' '7xt)’ (2)

where Y(M, t) represents an M dimensional vec-
tor at a given time ¢, which forms N,, X M matrix
as ¢t runs from 1 to N:
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Y={(Y(M,0).t=1,2.3.....N,) (3)

where N, =N - (M —1)r and Y is a subset of
RY K Y is an cmbedding of the attractor. then
some metric properties of the attractor, such as
the dimensionality and characteristic exponents.,
will be preserved in Y (sec for example [63,11]).
This forms the basic idea for extracting dimen-
sions from measured signals.

The dimensionality of an attractor character-
1zes its geometrical properties, measured by a
certain dimension. If a measure p is assigned to
the attractor, the dimension measures the power-
scaling behaviour in the phase space where it
sits, with respect to p. As a result, there are
different definitions of dimension according to
the definitions of p and specific aspects of the
attractor one wishes to stress (see for example
[40]). In this paper, we will concentrate on the
correlation dimension which is defined on the
basis of probability measure (see [21]). The cor-
relation integral is defined in the M-dimensional
reconstructed space (3) as the probability of
finding a pair of vectors whose distance is not
larger than r:

a N=100
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where @ is the Heaviside step function and 7, is
the correlation time due to dynamics [64]. Ac-
cording to Grassberger and Procaccia [21], the
correlation dimension D, is derived from

D, = ]lil'I(l' D.,(M.r) (5)
for sufficiently large M, where D,(M, r) is the
slope of C(M, r):

_dIn(C(M, r))

DM = (6)
Fig. la gives an example using the first variable
(x) of the Lorenz model (see appendix). Since
the calculation of D, for very small r is domi-
nated by noise, particularly when dealing with
observational data, there is no convergence of
the slope for very small r. In practice, for a given
M. D, i1s defined in a scaling region (r,, r,).

N=1000
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Fig. 1. (a) In{C(M, r))-In(r) (left) and D.(M, r)-In(r) (right) derived from the original Grassberger—Procaccia algorithm (see
section 2.1) for the first variable of the Lorenz model (see appendix). The number of data points N = 1000. The time delay 7 =2
and the maximum embedding M = 15. The scaling region is indicated by the flat plateau of the D,(M. r)-In(r) diagram. (b) The
same as (a), but obtained from the phase space of all the three variables (x, y. z). (¢) The same as (a) but by using two variables
(x, y) with maximum embedding M = 10. (d) The same as (a) but by using the re-embedding procedure (17).
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where the D,(M, r)—In(r) diagram displays a flat
“plateau”, i.e. D,(M, r) does not change with
(see fig. 1 for example). If such a region cannot
be detected in the D,(M, r)-In(r) diagram, it is
impossible to give a reliable estimate of the
dimension of the attractor or to conclude
whether the scaling about the attractor exists.
Furthermore, due to the limitation of the num-
ber of data points, M cannot be too large. One
reasonable way to choose M is to plot D,(M),
which is defined in the scaling region (r,, r,),
against M and to find the minimum M, .
beyond which D,(M) does not change with in-
creasing M. For a random process, it was be-
lieved that there would be no saturation of D,
with increasing M, which, however, is not the
case for some coloured noises [45,51]. This needs
not confuse good dimension calculations [65].

2.2. Transformation of the embedding space
and singular value decomposition

The dimension of an attractor is a function of
an invariant measure. The reconstruction of an
attractor in embedding space is only needed to
recover its invariant properties. If an invariant
measure exists, the dimension will not be
changed when the space is mapped into another
space, given that the mapping is homeomorphic
[56]. As each component of the embedding vec-
tor (2) is derived from the same time series, their
variances are equally distributed among the time
delay coordinates. On the other hand, chaotic
attractors, unlike random processes, display
large scale structures, although their dynamical
behaviour is apparently unpredictable beyond
certain time limits. Therefore the time delay
coordinates (2), (3) are not orthogonal. It is
possible to transform the embedding space into
an equivalent space whose coordinates are
linearly independent (orthogonal). Such an
orthogonal basis can be conveniently generated
by singular value decomposition [6,30,1]. As the
singular value decomposition has become a stan-
dard method for time series analysis, we will not

give a detailed treatment of its formalism, but a
brief summary:
Let A be the covariance matrix of Y (see (3)):

A=Y".Y. (7)

Thus A is a positive definite symmetric matrix
and can be transformed into a diagonal matrix A
by a series of rotations, which can be expressed
as:

A=V'-A.v=VT.Y".Y.V (8)

where A = {8,._[)\[; i, j=1, 2,... . M}. In this
way, a spectrum of non-negative values on the
diagonal of A can be extracted, which are usually
ordered by magnitude and called singular values
or eigenvalues (in our case). The transformation
matrix V is an M X M orthogonal matrix whose
columns are called the eigenvectors:
V=(V,,V,,....V,,). (9)
which form a natural orthogonal basis (or coordi-
nates). The projection of Y onto this basis pro-
vides M linearly independent variables (given
that all the eigenvalue are above 0, which is the
case when the data is noisy.):

P=Y-V=(P,(1t), P,(t),..., P, (1))
witht=1,2,...,N,, , (10)

which are usually referred to as the principal
components (PCs). From (8) it follows that

iPi(t)'Pj(t):‘si_j'Ai- (11)

That is, the variance of each of the components
P, is equal to the corresponding eigenvalue A,.
For a time series that obeys some power-law
scaling, A; is usually ordered by time scales. In
most cases, only a few PCs are necessary to
represent the main features of the observed dy-
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namics. In this way, the relatively small scale
fluctuations are cut off from the time series. This
has some practical advantages, because the noise
level usually increases with decreasing scale for
observational data. However, it is still difficult to
say how the number of significant principal com-
ponents is related to the dimensionality of the
dynamics underlying the time series, because the
number of the principal modes above the “‘noise
level” usually changes with the details of the
embedding in (2). The modification of the Grass-
berger—Procaccia algorithm introduced in section
2.4 is an attempt to overcome this difficulty.

2.3. Multichannel embedding

The variables which completely describe the
dynamics of a system are not mutually indepen-
dent if the governing equations are nonlinear
(see the Lorenz model in fig. 2a, for example).
Suppose all these variables are known and mea-
sured, then the Grassberger—Procaccia algorithm
can be directly applied to the real phase space
formed by these variables to estimate the effec-
tive dimension (see fig. 1b for example). In this
case, there is, of course, no need for embedding.
Moreover, a practical way to estimate the num-
ber of linearly independent variables may be
achieved by singular value decomposition ap-
plied directly to the trajectory in the real phase
space. Accordingly, the three variables (x, y, 2)
involved in the Lorenz model can be projected
onto three principal components (P,, P,, P;)
using (10). The variance of each component is
represented by its associated eigenvalue (A,, i =
1, 2, 3). Fig . 2b shows the variance contribution
of P, P, and P, changing with increasing num-
ber of data points (N). Note that the asymptotic
dynamics of the Lorenz system, whose dimen-
sion is about 2.0, are dominated by the first two
modes which account for 94% of the total var-
iance.

However, when more than one of the vari-
ables of a dynamical system are measured, one
should expect that the information contained in
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Fig. 2. (a) The correlation between different variables ((x,
»), (x. z), (y, z)) of the Lorenz model (see appendix) with
increasing number of data points (log,,). (b) The distribution
of variance among the three principal components (P1, P2
and P3) with increasing number of data points (log,,).

the subspace formed by these known observables
is greater than that contained in a single variable
for the same length of time series [11,44,61].
Therefore it is desirable, instead of embedding a
single time series, to embed the subspace of
these variables into a h
to make full use of the information and to pro-
vide a better reconstruction of the attractor.
Let X, represent the L measured observables

corresponding to the x, of (1):

igher dimensional space

X, =(x,,x/,...,x") and L<K. (12)

Thus all the measurements of {X,, t=1,
2,..., N}, define a subspace. In the same way as
(2), this subspace will be embedded into an
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M-dimensional pseudo-phase space using the
time-delay technique:

ZM. D)= (X e K2y X0 (13)

which may be referred to as multichannel embed-
ding as distinct from the embedding (2) using
single time series. The effective embedding di-
mension of (13) is L. x M. The trajectory in the
multichannel embedding space (13) can be ex-
pressed as an (L X M) X N, matrix Z:

Z={Z(M,1);r=1,2,3,....N,}. (14)
Applying (4) to Z instead of Y (in (3)), an
estimation of D, of the attractor can be
achieved. This is shown to be plausible by an
example using the Lorenz model where the first
two variables (x and y) are used (see fig. lc).
Comparing fig. la and fig. lc one observes a
clearer scaling in the latter. In addition, if X, in
(12) is a spatial-temporal variable, then, applica-
tion of the singular value decomposition to X =
(X, t=1, 2,..., N} and to Z leads to the
standard empirical orthogonal function (EOF,
see [35,33]) analysis and to an extended EOF
analysis [69], respectively. The latter is also
called multichannel singular spectral analysis [29]
which is very useful for studying spatially extend-
ed systems (see for example [18]). However, the
main concern of this paper is the problem associ-
ated with the estimation of D, based on a single
variable time secries. This leads to the intro-
duction of the re-embedding discussed in the
next subsection.

2.4. Re-embedding and the modified
Grassberger—Procaccia algorithm

For a single variable time series, it is well
known that singular value decomposition can
provide a set of linearly independent variables
(10). However, the cross(lag)-correlations of
these variables are usually significant, which can
be seen from the phase portraits of the first 5

principal components (fig. 3). Note that, in order
to make full use of the data, we always keep
7=1. Let the main features of the dynamics
corresponding to the observation be represented
by the first m (<M) components (see (10)):

P'(t) = (P,(1), P,(1).. ... P.(1).
t=1.2,...,N,). (15)

The essential point of our mcthod is to treat
these first m principal components (15) in the
same way as the multivariate time series (12) and
to embed the subspace formed by (15) into a
higher dimensional space using a proper time
delay (7) (sce the third point of the discussions in
section 3.3) and embedding (M') in the same
way as (2) and (13):

Y (M )= (P Pl gz PL).
(16)

We call the embedding (16) the re-embedding as
distinct from the embedding ot the primary em-
bedding of Takens [63], because it is the embed-
ding of the embedding space (2). The theoretical
justification for the concept of re-embedding can
be found in [56]. Suppose that the first cmbed-
ding (2) is an embedding of the underlying dy-
namics of the system, then the principal com-
ponents (15) can be understood as a new sect of
variables obtained by measuring the trajectory
(3) in the original embedding space (2) using a
set of ‘‘instruments” (lincar transformations
(10)). The new “‘measurements ™
information of the underline dynamics. Thus a
proper embedding of these new variables (i.c.
the re-embedding (16)) may be an embedding of
the original embedding (2) and, thercfore, an
embedding of the underlying system. If the origi-
nal embedding (2) is not a sufficient embedding,
i.¢. M is not large enough (due to some reason,
we suggest to choose M moderately large. See
the section 3.3 for discussion), then it is a projec-
tion of the embedding. By using the re-embed-

retain some
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ding, the whole attractor is hopefully recon-
structed based on this projection. In principle,
(15) can be any combination of linear trans-
formations, such as filters, instead of the princi-
pal components. However, the advantages of the
singular value decomposition (see, for example,
[6,68] and section 2.2) make it an optimal choice
of linear transformation for making full use of
the available data, since the main features of the
underlying dynamics are captured by the first few
PCs used for the re-embedding (16).

The correlation integral (4) on the re-embed-
ding space (16) can then be written as:

CM',r)y=

X

li—jl=7y

INE
o(r— |ly (M’ iy—Y'(M', pljy (17)

where 7, should not be less than the window M.
D, is deduced accordingly through (5), (6), sub-
stituting C(M, r) by (17). This leads to a modi-
fication of the Grassberger—Procaccia algorithm.
An example derived from the Lorenz model is
given in fig. 1d. Note that, like the multichannel
embedding case in fig. 1c, the minimal embed-
ding dimension of 1 does not exist in the re-
embedding as long as m > 1, because the effec-
tive embedding dimension of the re-embedding
(16) is m x M’. Note also that the slope of the
correlation integral often shows a high peak at
large length scales before settling down to the
plateau value (see fig. 1d and also fig. 5 and fig.
7). This can be understood to result from the
macroscopic structure of the reconstruction (L.
Smith, personal communication). For instance, a
1-dimensional limit cycle embedded in 3 dimen-
sions is usually not confined to a 2-dimensional
plane; at large scales the slope of the correlation
integral reflects the extension in all 3 directions
of this one dimensional curve, while at small
scales its one dimensional nature would be seen.
(Of course, this macroscopic structure is not
invariant under transformation or changes in the
measurement function.)

From fig. 1 it can be seen that all four analyses
(see figs. la—d) produce a D, which is close to
2.0. However, the modified Grassberger—
Procaccia algorithm (17) provides a more clear-
cut scaling region compared with the original one
(4) (compare figs. 1la and 1d). In the following
section, we will discuss some of the practical
advantages of (17) in estimating D, for noisy and
relatively short time series. Additional tests con-
cerning the effects of noise and the number of
data points will be presented using the Lorenz
model (D, =2.0) as an example of a low dimen-
sional system and the Mackey—Glass equation
(whose parameter will be chosen such that D, =
5.0, see appendix) as an example of a somewhat
higher dimensional case.

tha alaamithie matcosr amd malatioals
LT algUritiiil. 1UDY 4liu ICIaLIvely

One of the fundamental problems involved in
the analysis of observational data is how to
assess the influence of the noise contained in the
data and how possibly to eliminate it. Various
noise reduction procedures have been proposed
in recent years (e.g. [31,57,25]), which are very
useful for real data analysis. In addition, singular
value decomposition can also be used to assess
the noise level for a given time series [68]. We
hope that the re-embedding method described in
section 2.4 could also be used as a noise reduc-
tion procedure in the calculation of D,, since
only the dominant components (those above the
noise level) are involved in the calculation (see
sections 2.2 and 2.4).

Another problem with observational time
series is the limitation of the number of data
points [40]. There are theoretical considerations
about the requirement for the minimal number
of data points for estimating a dimension
[60,55,41]. However, in the context of applica-
tions, one is often confronted with the question
of how to get an optimal estimation using the
available data sets, that is, how to extract the
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Fig. 3. Phase portraits of the first 5 principal components in the sub-space formed by the directions of the corresponding
eigenvectors (a) and the same diagram with random noise in the original time series (b).

maximum amount of information from an avail-
able data set which is usually limited in size.
Typically, how much information one can extract
from a given time series depends on the way it is
treated. For the calculation of D, the time delay
7 in (2) has to be sufficiently large to guarantee
roughly linear independence of the delay coordi-
nates. This is widely regarded as necessary, but
we consider it as inefficient, because, in this way,
the resulting reconstruction is strongly influenced

by noise [8,14,9] and much information about
the small scale structure contained in the time
series is not employed. This is one of the reasons
for using the re-embedding procedure. Here we
always keep the delay 7 =1 for the first embed-
ding in (2) without considering the sampling rate
(see the section 3.3), since the singular value
decomposition will automatically produce an
orthogonal basis (9), (10) on which the attractor
is reconstructed to estimate D,. In this sense, the
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Fig.

information contained in the original time series
can be more fully used and D, may be obtained
with relatively short time series compared to the
requirement of the original algorithm,

3.1. Noise reduction
We have used the Lorenz model [36] and

Mackey—-Glass equation plus white noise of vari-
ous intensity to test the algorithms. The follow-

EOF 5

o
20
w

3 (cont.).

ing shows the main results. For the sake of
comparison, we have summarized the results for
pure white noise (see appendix) in fig. 4 which
shows the D,(M, r)-In(r) diagram of the original
Grassberger—Procaccia algorithm and that of the
modified version. For the latter, we used M = 50
in (2) and the first 5 PCs for the re-embedding
(16). Both algorithms show no saturation of the
slope (fig. 4a, 4b).

The Lorenz model is a typical example of a
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low dimensional chaotic system. For the purpose
of the test, the first variable plus noise (see
appendix) was subjected to both the algorithms
using N = 1000 data points. It turns out that both
give a realistic estimation when the noise level is
low. However, when the noise level exceeds a
certain limit, the modified algorithm gives a
clearer scaling on the D,(M, r)-In(r) diagram
than the original one, as is shown in fig. 5 for
example. From the phase portraits of the time
series (see appendix and fig. A.2) which pro-
duces fig. 5b it can be seen that the attractor is
severely blurred by the noise. When this noisy
time series is subjected to the Grassberger—
Procaccia algorithm, the scaling region is no
longer clear and there is no clear sign of the
slope becoming saturated (see fig. 5a). However,
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N=3000

18-

oroanI_ l I

i b
Tz \%
10 \ ¥

N 6 %
R 4 S
2j T T \\:\
S e e B e e AT
0 2 46 8101214161820
LN(r/ro)
N=3000

LN(r/ro)

Fig. 4. The D,(M, r)-ln(r) diagrams for white noise: (a) the Grassberger—Procaccia algorithm; (b) the modified version of the
Grassberger—Procaccia algorithm.

for the same data, the modified Grassberger—
Procaccia algorithm (17) still provides a realistic
estimate of D, with a clear scaling region (fig.
5b), which is independent of the details of the
embedding and the number of principal com-
ponents used, as long as the modes being chosen
are above the noise level. This can be under-
stood by comparing figs. 3a and 3b, which show
the structure of the phase portraits of the first
five principal components: the noisy one is al-
most the same as that derived from the noisc
free time scrics cxcept that, for the noise free
case, the trajectories are very smooth, whereas
for the noisy data, the trajectories display some
small wobbles which are reflected in the D,(M,
r)—In(r) diagram by the divergence at small r.

In order to show that the present method



K. Fraedrich, R. Wang / Correlation dimension from noisy datasets 385

LN(C(r))

A AT A A LAy A M A IS A A A Wl et

6 8 101214161820
LN(r/ro)

N=5000

13_ ORIC;NL 1 ‘ " \ N

i LI L ST LA A V
0 246 8101214161820
LN(r/ro)

Fig. 5. (a) The same as fig. 1a for the first variable of the Lorenz model plus noise (see appendix). (M =1—15, 7 =2.) (b) The

same as (a) but by using the re-embedding procedure.

works not only for a low dimensional model like
the Lorenz model, but also for systems of higher
dimension, we have used the Mackey-Glass
equation, whose attractor dimension was de-
signed to be about 5.0 (see appendix). Here
N = 3000 data points were used, which is similar
to typical situations in applications, though it is
usually considered as far less than adequate for
estimating a dimension about 5. For the noise
free case, both the original Grassberger-Procac-
cia algorithm and the modified version are able
to give an estimate of the dimension with a
clearly defined scaling region (figures not
shown). However, for noisy data, the latter ap-
pears to work better than the former (compare
figs. 6a and 6b). For the sake of comparison, a

similar calculation was carried out using N =
10000 data points and the results are given in
figs. 6¢c and 6d. Note that the estimated D,
values for both cases are very close. The only
difference is that the scaling region is larger and
clearer when N is larger (see next subsection for
discussion).

3.2. D, from relatively small data sets

There are many arguments regarding the re-
quirement of the minimal number data points
N, for estimating the dimension of an attractor
of dimension D. L. Smith (1988) [60] gives a
theoretical model which states clearly that N, is

related with the length of the scaling region (R,
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Fig. 6. The C(M, r)-In(r) and the D,(M, r)-In(r) diagrams for the Mackey—-Glass equation plus noise derived from the
Grassberger—Procaccia algorithm and from the modified version of the algorithm, respectively, for N =3000 (a), (b) and
N =10000 (c), (d).
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Fig. 6 (cont.).

represented by the base-2 log of the length of the
plateau in the D,(M, r)-In(r) diagram in his
paper [60]) and the required precision (Q). For
a scaling length of 4.0 with Q =0.95, according
to [60], the minimal number of data points is
42”. However, this number can be easily reduced
to 5.5 by setting the scaling length R = 2.0 and
the quality factor Q = 0.90. Ruelle [55] suggests
N,.i» =102 Nerenberger and Essex [41] given
an estimation of N which is similar to Ruelle’s.
In reality, any attempt to give an absolute limit
for the minimal requirement of the number of
data points N . would meet with difficulties,
because N,_,, does not tell anything about the
quality of the data with respect to, for example,
the precision of measurements, the resolution 6
in (1), and the coverage of the whole period of
time. For convenience, let 7 represent the total
span of time during the course of an experiment
or computer simulation, and 7= N& where N is
the number of data points in (1) and & is the
corresponding sampling interval. Thus, it is clear
that N can be increased either by increasing 7
for a fixed sampling interval 8§ or by reducing &
for a fixed span of time 7. During the course of
an ¢xperiment within a fixed span of time 7T, one
can easily increase the number of data points N
by sampling densely (i.e. small § in (1)) such that
N> N_;,. In the case of the Lorenz model, we

can manage to have a very large number of data

points N within a limited length of the trajectory,
say, one or two quasi-cycles such that N becomes
larger than any estimated N . . However, it is
still not adequate to estimate a dimension. In the
case of the Lorenz model, for example, how
many ‘‘quasi-cycles” are identifiably covered by
the length of the data T appears to be more
important than the absolute number of data
points N. Moreover, the presence of the noise
adds to another important factor that influences
the quality of a given data set, especially when
the data set is small. For almost noise-free data,
one can get a quite reliable estimate of D, by
both the original Grassberger—Procaccia algo-
rithm and the modified version using a small data
set, given that the sampling time is appropriate
(i.c. not ill-sampled). As an example, fig. 7 gives
the estimate of D, with 316 and 10000 (noise
free) data points (for the same sampling time §),
respectively, using both the original Grass-
berger—Procaccia algorithm and the modified
one. In this example, the result did not improve
drastically for either algorithms when increasing
the number of data points from 10> to 10* (see
figs. 7a and 7b for the original Grassberger—
Procaccia algorithm, figs. 7¢ and 7d for the modi-
fied version and also [41]), although there are
indeed distinct differences in the length of sca-
ling regions and the quality of the estimates
which can be seen by the length of the plateau
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and the smoothness of the slope curve (see fig. 6
and fig. 7). This indicates that, for fixed sampling
rate and precision of measurements, large num-
bers of data points usually produce better esti-
mates than small ones. On the contrary, it does
not help much in the dimension calculation to
increase the number of data points N while
keeping the total time span T unchanged (figures
omitted). Note that the situation would be differ-
ent for fractal sets, given that the relative preci-
sion is the same on all scales. However, this is
usually not the case for most experiments or field
observations because of the noise associated with
instrumental measurements.

According to the above discussion, it is dif-
ficult to give an absolute meaning to an estimate
of N_... Note that Smith’s estimate of N_,_ = 42"
is, in fact, a particular example of the relation
derived as a function of the plateau length (R)
and accuracy (Q). Generally speaking, for the
same quality of data, large data sets, as discussed
above, tend to produce a longer and clearer
scaling region on the D,(M, r)-In(r) diagram
and a better estimate than small data sets, which
is roughly in agreement with the relation derived
by Smith [60]. Typically, as far as the experimen-
tal (observational) data is concerned, the nature
of the question becomes different. As we usually
have no choice about the length of a time series,
we have to try to get as realistic as possible an
estimation using the available data by reducing

the influence of noise or by making full use of
the information contained in the data. As long as
a plateau appears on the D,(M, r)-In(r) dia-
gram, it is not hopeless even if one has a small
data set. Therefore, in the present paper, we did
not try to give a theoretical consideration of the
minimal requirement of the number of data
points (N, . ). Instead, we emphasize that the
appearance of a significant plateau on the
D,(M, r)-In(r) diagram is very necessary for a
reliable dimension estimation. It is not surprising
that some data sets will never produce such
plateaus due to many reasons which could be,
for example, the quality and quantity of the
data, the effectiveness of the algorithm, or there
is no scaling at all. In this case, of course, no
conclusion about the dimension can be drawn
based on the calculations. Since we cannot in-
crease the data set in many applications, it is
important to test the significance of an observed
plateau on the D,(M, r)-In(r) diagram with the
surrogate data as discussed, for example, in
[51,61].

By comparing the results of dimension estima-
tion using both the Grassberger—Procaccia algo-
rithm and the modified algorithm, it appears that
the latter produces a clearer scaling on the
D,(M, r)—In(r) diagrams and a better estimate of
the D, than the former for small data sets while
both produce the same estimate when the data
set is large (see fig. 7 for a noise free case). This
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1s particularly the case when the data sets are
small and noisy (see figs. 5 and 6).

3.3. Comments and discussions

The effect of noise and the limitation of the
data sets available are the main problems in
estimating D, from experimental data. For a
given time sequence of an observed signal, an
optimal estimation of D, (if it exists) can be
achieved when the noise level is minimized and,
at the same time, the information contained in
the data is fully utilized for reconstructing the
attractor. For noise reduction, one can use some
kind of filter designed to keep the dynamically
relevant signals while reducing the noise level as
much as possible. However, the use of linear
filters is often problematical [40,57]. Various
noise reduction procedures based on nonlinear
filters have been proposed in recent years (see,
for example, [31] and [57]), which provide a
powerful tool for real data analysis. Our ap-
proach suggested in section 2.4 benefits from the
features of the singular value decomposition,
which picks up the main features of the dynamics
in the first few principal components where the
noise level is normally reduced to minimum. At
the same time, it produces automatically several
linearly independent variables from the original
time-delay embedding (2), in which the time-
delay 7 is set to the sampling time in order to use
all the data points available. The above tests
using noisy and relatively short time series did
show some advantages in the present algorithm
for estimating the D,. However, the following
should be noted:

Firstly, as the basis of the present aigorithm is
derived directly from the Grassberger—Procaccia
algorithm, some of the questions concerning the
identification of the deterministic processes from
stochastic ones [45,65,61,51] stiil remain open.
We have been concerned only with white noise.
The problems associated with some coloured
noises may be solved using the procedures such
as suggested for example in [65,51,61].

Secondly, our approach may be identified as a
modified version of the Grassberger-Procaccia
algorithm because it differs from the original one
by the re-embedding method. However, this is
not intended to replace the original one. It is
clear that the modified version is not necessary
whenever the Grassberger—Procaccia algorithm
works, because the latter is easier in its im-
plementation than the former.

Thirdly, the choice of window for the first
embedding is also important for a good cstima-
tion. For a given time series, a suitable window
(M) in (2) should be chosen such that the dy-
namics contained in the time series could be best
represented by the reconstructed attractor. For
example, if we choose M too small, there will be
only one significant eigenvalue (which is especial-
ly the case when the sampling time is small and
the time series is highly auto-correlated). In this
case, one can use the first eigenvector as a filter,
based on which it is also possible to estimate D,
given that the embedding dimension for the re-
embedding (16) is sufficiently large. On the
other hand, M should not be chosen too large,
otherwise the first few eigenvectors tend to
smooth the time series too much, which could
give rise to some other problems (see for exam-
ple [64,40]). There are no general rules for
choosing M when the dimension of the attractor
is not known a priori. From our experience,
however, it appears to be sufficient to choose M
(for a given time series) such that at least 3
dominant eigenvalues are obviously above the
noise level. Indeed, one of the advantages of the
present method is that the calculation of D, is
not sensitively dependent on the choice of M for
(2) or the delay time r for the re-embedding
(16). That is, the choice for these parameters is
not unique. If there exists some scaling in-
variance about the attractor, the resulting dimen-
sion calculation using (17) neither depends on
the length of the window (M) in (2) for a certain
range of M, nor on the value of the 7 in (16) for
a certain range of 7, where the range of M or 7
depends on the resolution and the length of the
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time series. It can also be shown that the result
does not depend on the number of principal
components (PCs) involved in calculating D, (as
long as the PCs are all significantly above the
noise level), although the number of PCs
changes with the length of the window (M) in
(2).

Finally, before application of an algorithm to a
data set, one should be well aware of the scale
range reliably represented by the data, which is
determined by the sampling time (resolution in
time) and the total length of the time series. As
far as the observational data is concerned, the
precision of the data (which is related to the
instrument) also plays an important role in de-
termining the scale range of the dynamics. A
useful guideline can mostly be obtained from
power spectral analysis by examining the scaling
behaviour of the time series in frequency do-
main. For example, small scale (high frequency)
fluctuations are usually corrupted by noise while
extra-low frequency fluctuations are poorly rep-
resented due to the himitation of data. Thus, the
noise contained in data and the limitation of data
points form the major problems in real applica-
tion. In many cases, it is difficult to give an
absolute value for the minimal requirement of
data points (see section 3.2 for details). How-
ever, if the signals that fall in the scale range can
be effectively extracted and, thereby, the noise
level reduced to a very low level, then it is
possible to estimate the D, from a relatively
small data set using both the Grassberger—
Procaccia algorithm and the modified one. (It is
clear that an estimation of any quantity with a
certain reliability often requires more data points
when the data is corrupted by noise.) This is the
philosophy for the introduction of the re-embed-
ding in this paper. As the re-embedding proce-
dure is, in some cases, able to extract the rel-
evant signals and, at the same time, to reduce
noise of the observed time series, it is quite
natural that the modified version, which is simply
the combination of re-embedding and the classi-
cal Grassberger—Procaccia algorithm, demon-
strates some effectiveness in extracting D, for

relatively small and noisy data sets. However, by
“small dataset” is meant relatively small, as is
indicated above.

4. Application to meteorological time series

Detecting a weather and climate attractor
from univariate time series has been of some
concern in recent years as it holds the promise of
further understanding the climate system. The
dynamics of the climate system, governed by
partial differential equations, involves an infinite
number of free variables. However, the large
scale dynamics of the system displays remarkable
regularities, i.e. large scale patterns or space—
time structures, which are typically recurrent but
never exactly cyclic. This could be an indication
of the existence of lower dimensional chaotic
attractors which are commonly characterized by
the correlation dimension (D,). Many studies
suggest different D,’s ranging from 3 to 7, de-
pending on the data being used (see for example
[42,17,12,66,27,28,32]). However, there have
also been criticisms of these findings [22,25].
Here we would like to point out two important
aspects. One is the scale range of the dynamics;
for example, the planetary scale circulation
might not necessarily have the same static prop-
erties as fully developed turbulence on small
scales. The other is the scaling region in the
Grassberger—Procaccia algorithm, i.e. the flat
“plateau” in the D,(M, r)-In(r) diagram. Ex-
amining the In(C(m, r))-In(r) diagram alone is
not enough for determining the scaling region,
because linear regression or a least square fit
might give rise to a false saturation of D,, espe-
cially when the scaling region being chosen is
very narrow and only a few points are involved
in the regression or the least square fit. As a
result, the estimate may be quite dependent on
the region used for regression. Therefore we
suggest that it is much more important to display
the D,(M, r)-In(r) diagram than the C(M, r)—
In(r) diagram for dimension estimation (see sec-
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tion 2). In this way, any apparent saturation in
the C(M, r)-In(r) diagram can be under exact
examination in the D,(M, r)—In(r) diagram. The
importance of looking at the slope as a function
of length scale was stressed by many authors (for
example, see [11,60,62]).

As an example of an application, we have used
the single station daily surface pressurc (Pots-
dam) for about 94 years (from Ist January 1893
to 31st December 1986, N = 31 (040) to examine
the existence of lower dimensional weather at-
tractors. First we apply the original Grassberger
algorithm to the time series using a delay of 2
days and a maximum embedding dimension of

N=31000
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30. Fig. 8a shows the plots of In(C(r))-In(r)
which seems to have a kind of saturation with
increasing embedding. However, the D,(M, r)-
In(r) diagram (fig. 8b) shows clearly that there is
no obvious saturation of the slope with increas-
ing embedding dimension, nor is there any indi-
cation of scaling regions in In(r). The same holds
for different 7 values in (2). This should not be
surprising, because the daily data include the
synoptic scale fluctuations (2 to 7 days) which,
due to sampling and measurement errors, in-
crease the apparent noise level of the time series.
On the other hand, this daily series of a hundred
year length covers a wide spectrum of fluctua-
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Fig. 8. (a) The In(C(M, r))-In(r) diagram derived by direct application of the Grassberger—Procaccia algorithm to daily pressure
data with total number of data points N = 31040 (see appendix) and the corresponding D,(M, r)—In(r) diagram. (b) The same as
in (a) but using the re-embedding procedure with the first 5 principal components.
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tions whose dynamics might be governed by
different physical processes. What we observe in
the time series is a mixture of different scale
dynamics plus noise. This shows the difficulties
in estimating the dimensionality of a system
which is spatially extended and extremely com-
plicated, using only a single observable at a
single station (see also (37)).

The same data was subjected to the modified
Grassberger—Procaccia algorithm (17), using a
window M =50 and a time delay =1 for the
first embedding (2). Fig. 9 shows the eigenvalues
(a), the first 5 eigenvectors (b) and the associated
PCs (c). The decreasing of time scale with the
order of the modes can be clearly observed.
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Considering that the PCs are the projection of
the original time series onto the eigenvectors
which work, in a sense, like a filter, the first 5
PCs represent the relatively large scale fluctua-
tions (larger than synoptic scale, see fig. 9b). D,
was calculated with an increasing number of PCs
(m in (15)). However, there is no obvious con-
vergence of D, even using the first few dominant
PCs (see figs. 8¢, d for example). A spurious
plateau could occur if 7, (see (17)) is taken less
than the window M. Therefore, based on the
above calculations, it is difficult to draw a con-
clusion about the existence of a weather at-
tractor.

The existence of a weather or climate attractor
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Fig. 9. The eigenvalues (a), the first 5 eigenvectors (b) and the associated principal components (c) derived from the daily

pressure serics (see appendix). The window used is 50 days.
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and of the scaling detected from the data may be
a subtle question. One can argue whether it is
possible to measure the weather or climate at-
tractor based on the data available, because the
quality and quantity of data are still very limited.
However, it is hard to believe that the weather
patterns observed every day are some kind of
stochastic signals. Here it may not be much help
to talk about the weather or climate attractor as
a whole, because the whole system includes
many strongly and weakly coupled subsystems,
each of which may follow its own physical pro-
cesses and develop relatively independently with-
in certain space and time scales. Therefore it
would be more useful to specity the attractor of a
particular mechanism under consideration, such
as the interaction of the synoptic eddies and the
basic flow in the mid-latitude circulation, and the
quasi-biannual oscillation (QBO) of the tropical
atmosphere, etc. As the weather system is spa-
tially extended, it may be necessary to use mul-
tichannel measurements and GCMs (general cir-
culation models) to specify a weather attractor
that is dynamically relevant to a certain mech-
anism.

5. Conclusions

The Grassberger—Procaccia algorithm has
been modified using a re-embedding procedure
described in section 2. It has been shown to be
effective for extracting the correlation dimension
(D,) from noisy and relatively short time series
by tests based on the Lorenz model and the
Mackey—Glass equation plus random noise.
Comparing the results between the original and
the modified Grassberger—Procaccia algorithm,
the latter generally provides a clearer scaling
region in the D,(M, r)-In(r) diagram and there-
fore yields a better estimation with some toler-
ance to the details of the embedding. As only the
prominent principal components derived from
the singular value decomposition are involved in

estimating D,, this method can be regarded as a
natural way of reducing noise. Since all signals
contained in the principal components (those
above the noise floor) are simultaneously and
independently used for re-embedding (16), D,
can be derived from a relatively short time series
by using the information contained in the obser-
vational data more fully.

An application of the present method to
weather observations (daily surface pressure data
for about 100 years) have revealed some prob-
lems involved in estimating the dimensionality of
a possible weather attractor. It appears to be
difficult to draw a conclusion of a weather attrac-
tor in terms of D, using single station measure-
ments. We pose a question of whether one can
generalize the weather attractor as a whole with-
out focussing on a specific mechanism or a sub-
system (see section 4 for discussion). Further
investigation of this may need to include mul-
tichannel measurements and the GCMs (general
circulation models) output.
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Appendix

1. Lorenz model [36]:

dx
a o —x,

dy
dr
dz
dr
o=10,

=yx—y-—xz,

f

—bz + xy
y=28, b=3%.

The equations were integrated by a fourth order

(A)

o
i

FIRST VARIABLE
| lQ (=] -
AT A

-1.54]

Runge—Kutta routine using a step size 0.004.
The values on every 10th step were recorded for
use in this paper.

2. Mackey—Glass equation:

¥ aX,

_1+A§_bX

is a delay differential equation of Mackey and
Glass [39], where X, is the variable with X, =
X(t—#). Chaotic attractors are obtained for
most parameter values (given @ > 16.8) and the
correlation dimension D, is approximately pro-
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Fig. A.1. First variable of the Lorenz model with (bottom) amd without noise (top).
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Fig. A.2. The phase portraits corresponding to fig. A.1.

portional to the delay time 6. The parameters a,
b and c are fixed at 0.2, 0.1 and 10, respectively.
For 6 =64, D, is close to 5.0 [7].

3. The random noise is produced by a random
number generator and added to the model out-
put. Fig. A.1 shows the time series of the first
variable of Lorenz model plus noise (bottom)
and that without noise (top). Fig. A.2 shows the
corresponding phase portraits in the first two
time delay coordinates.
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