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ABSTRACT

The linear combination of two statistical forecast schemes of a single observable provides, in the average, a
more accurate prediction than the individual forecasts alone. This method is applied to long-range forecasting
of the monthly mean tropical Pacific sea surface temperatures.

1. Introduction

Long-range weather forecasting is still considered as
‘“an empirical art . . . with a mix of techniques that
are statistical to some extent” (Gilman 1985). There
are, however, promising results from both deterministic
and statistical prediction models of the El Nifio/South-
ern Oscillation process (Cane et al. 1986; Barnett 1984).
To enhance the performance of any objective long-
range prediction method, it is suggested that, in some
objective manner, consensus forecasts should be made
to improve the accuracy. Only recently has it been
shown in practice that, when applied to short-term
probability of rainfall prediction, the combination of
a stochastic forecast scheme and a deterministic NWP
model can improve the average skill of the individual
methods considerably (Fraedrich and Lestie 1987). It
appears to be the combination of two independent
forecasts (compared with the combination of one pre-
diction, i.e., an NWP model, and data), which provides
an increase of the accuracy. It is the purpose of this
note to show that the mix of prediction models, i.e.,
the error minimizing linear combination of forecast
schemes, may achieve some gains for the long-range
forecast skill. A :

To illustrate this claim we extend Thompson’s
(1977) analysis, who advocated combination forecasts
in meteorology more than a decade ago, and apply the
results to the forecast of the monthly mean sea surface
temperature (SST) anomalies in the east equatorial Pa-
cific. In section 2 the method and the prediction
schemes are introduced; in section 3 two applications
are presented.
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2. Combining forecast schemes

Consider two normalized anomaly forecasts a;
= (x:(t) = (x;))/si, i = 1, 2, predicting the observable
x or its corresponding anomaly a, where {x;) is the
ensemble mean and s; the respective standard devia-
tion. These forecasts can be linearly combined,

ax(t) = aa\(?) + Bax?), (1)

minimizing the ensemble mean square error of the
combination forecasts with respect to « and 3:

E, = {(a - a.)). 2

The weights & = (R, — rRy)/(1 — r?) and 8 = (R,
— rR))/(1 = r?) lead to the hindcast skill

R|2 + R22 h 2rR,R2
1-r )

Se=1—FE,= 3)
Here R, are the correlation coefficients between the
forecasts (x; or a;) and the observable (x or a), r is the
correlation between the two forecasts (x;, x; or a,, a,).

The ensemble mean square error, E,, is regarded as
amplitude sensitive, whereas the ensemble mean cor-
relation P, between combination prediction a, and
verification a is phase sensitive. As it can be shown
that the weights o, 8 maximize P,, one can conclude
that they provide, in the average, minimum errors in
both amplitude and phase.

The following individual prediction schemes are in-
troduced (Table 1) before combining them in optimal
fashion:

The climate mean prediction, ac(f) = 0 serves as the
reference forecast from which the hindcast skills, .S, of
all other schemes can be evaluated; that is, the climate
hindcast provides the zero skill base. The most simple
forecast model is persistence, ap(t) = a(t — n); here it
is applied as a normalized anomaly prediction. Other
schemes are the autoregression, a4, or the regression,
ag, which predict the observable by linearly extrapo-
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TABLE 1. List of predictive schemes and their hindcast skill. Here R, Rg and r are correlation coefficients: the lag-n auto-correlation of
the observable, the lag-m cross-correlation (regression) between predictand @ and predictor b, and the cross correlation between the forecasts

to be combined (see section 2).

Forecast schemes Normalized anomaly predictions Skill
Climate ac(t) =0 Sc=0
Persistence ap(t) = a(t — n) Sp = 2}§(t -nH-1
Autoregression ast) =a(t—nR@E—n,1) Sq=R¥t—n,1i)

ag(t) = b(t — MRg(t — m, 1)
- apc{t) = a,(t)

Regression
Persistence-climate
Persistence-regression

apr(f) = (R — rRy)ap + (Rg — rR)ag)/(1 — r?)

Sg=Rk(t—m, 1)
Sp(_‘"—'" SA = R’z(l -n, t)
Spr = (R* + R% — 2RRg1)/(1 — 1}

lating it from the same variable a(¢f — ») or from another
one, say b(t — m).

To show how the combination technique improves
the average forecast skill of any one of the individ-
ual components, the persistence model is linearly
combined with climate and the regression scheme
(Table 1):

(a) The persistence-climate combination is identical
with the individual autoregression prediction, a4 = apc
= aap. The weight a = R(t — n, ) is the lag n auto-
correlation, It is easily realized that the persistence~
climate skill is greater than (or equal to) the skill of
persistence and of climate alone:

Sec=Sp=[RC-m)—1P>0. (4

(b) The persistence-regression combination (a, = ap,
a> = ag): The weights [Eq. (1)] are « = (R(t — n, 1)
— rRi(t — m, B)/(1 — r¥) and B = (Rx(t — m, 1) — rR(¢
—n, 9))/(1 — r?); R is the cross correlation between the
observable and the prediction a; = ap, and here it is
identical with the lag n autocorrelation; Ry is the cross
correlation between the observable ¢ and the prediction
a, = ag, which can be shown to be identical with the
respective cross-correlation coefficient; r is the cross-
correlation coefficient between the predictions a, = ap
and a, = ar. Here it reduces to the correlation between
the predictor, a(t — n), for the persistence forecast and
the predictor, b(t — m), for the regression forecast; that
is, r = (@a,)/ 0,0, with the covariance {a,, a,) = {a(t
— mb(t — m))R(t — n, )Rg(t — m, t) and the standard

deviation ¢, = R(t — n, ) and o, = Rg(t — m, 7). As’

expected, the gain in skill is largest when the forecast
schemes are independent (r = 0 in Table 1). Again it
can be shown that, on the average, the persistence-
regression combination gains skill over all other indi-
vidual predictions: regression, persistence, autoregres-
sion, and climate:
Spr — Sr = (R — rRp)*/(1 = r}) > 0
Spr —Sp=(Rr—rR*(1 —=r)+ (1 —-R?*>0
Spr — Sy =(Rg — rR*/(1 —r)>0
Spr — Sc=Spr = (R — R/(1 = r) + R*>0

(5)

It should be mentioned that the hindcast skill of the
persistence-autoregression combination is identical
with the hindcast skill of the autoregression—-regression
combination, Spr = Sar. For a first-order autoregres-
sive AR(1)-process, R(t — n, 1) = R"(t — 1, ).

In section 3 the combination technique is applied
to the statistical forecasts of the monthly mean sea sur-
face temperatures of the eastern equatorial Pacific.

3. Applications: Forecasting monthly mean SST of the
equatorial Pacific

The variability of the tropical Pacific sea surface
temperature (SST) and the related atmospheric circu-
lation pattern—El Nifio/Southern Oscillation (ENSO)
phenomenon—has received considerable interest in
modeling and forecasting large-scale and long-range
dynamics. Due to its impact, various strategies for its
prediction have been developed. In this section we shall
briefly demonstrate the improvement gained by (a) ob-
jectively combining two readily available statistical
techniques for the prediction of the monthly mean
eastern equatorial Pacific SST anomaly, and (b) objec-
tively combining a statistical technique and a deter-
ministic model forecast for the prediction of the mean
July SST at Talara, Peru.

(a) The first scheme is the persistence of the SST
anomaly. The second one is the prediction by a regres-
sion between the SST anomaly and one of its predictors;
here it is the date of the onset of the Australian summer
monsoon (Holland 1986). It is used as a measure of
the zonal wind in the equatorial region of the western
and central Pacific, which has been identified as the
key predictor in ENSO studies (e.g. Barnett 1984).

A comment on the physical interpretation of the
individual forecast schemes is in order. The persistence
and/or autoregression SST forecasts provide a zero-
order dynamic of the surface layer of the tropical Pacific
with its relatively large inertia contributing to the ENSO
process. The zonal wind/SST regression relates the at-
mospheric forcing to the subsequent oceanic response
in SST, which is phase-locked to the annual cycle and
depends on the lead time of the forecast. The linear
combination, finally, provides the minimum error
forecast of the SST signal using both informations.
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The published lagged autocorrelations of the equa-
torial Pacific SST anomalies for July (Wright 1985;
Fig. 6a therein) and the lagged cross correlation between
the date of the onset of the Australian summer mon-
soon at Darwin and east equatorial Pacific SST in July
(Holland 1986; Fig. 10 therein) suffice as the first es-
timates for a demonstration (Table 2). Note that the
monsoon onset/July SST correlation Rg(t — m, ?) is
obtained in February (at the latest) and remains un-
changed when the actual time proceeds to July. How-
ever, the correlations between monsoon onset and the
SSTs of the other months between February and July
change. The hindcast skill (variance explained) using
the monsoon onset/SST regression is comparable with
Barnett’s (1984, Fig. 2 therein) results from predictions
for the SST off South America, which are based on the
zonal and meridional wind fields in the near equatorial
regions. From these estimates the hindcast skills of the
various predictions for the July SST anomaly are easily
deduced: persistence, autoregression, regression and
persistence-regression combination. The hindcast skill
of the prediction schemes needs to be reduced by a
zero order estimate of (twice) the artificial skill, S,
~ m(l — S)/(N — m), when their performance using
independent data (Davis 1978) is considered; m is the
number of predictors and N the effective number of
cases (m = 2, n =~ 30 for the combination).

The July SST anomaly hindcast skills of the different
prediction schemes are shown in Fig. 1. The following
features should be noted:

1) The hindcast skill rises after the lead time has
passed the months of largest instability (March and
April) of the ENSO process.

2) Maximum increased skill is gained from a linear
combination of two forecast schemes when they are
independent. For the persistence~ (and autocorrela-
tion-) regression combination, this is the case in March,
April and May, when r ~ 0 (Table 2).

3) As the persistence—climate (or zero skill) com-
bination is equivalent to the autoregression forecast, it
is not surprising that persistence-regression and au-
toregression-regression combination are equivalent.
This indicates that the two models to be combined
need to have independent skill. Furthermore, the

TABLE 2. Auto- and cross-correlation coefficients used in evaluating
the hindcast skill of example (a): The lag auto-correlation (R) of the
equatorial Pacific SST in July (Wright 1985); the cross correlation
between the date of the Australian monsoon onset and the east equa-
torial Pacific SST in July (Rg, i.e., constant with decreasing lead
time), and the same for other monthly SSTs (), (Holland 1986).

Parameter March Aprii May June July
July SST autocorrelation
R 31 35 .66 .81  1.00
Monsoon onset/July
SST Ry -53 -53 -53 -53 -53
Monsoon onset/monthly
SST r -0.5 -07 -17 -30 -.53
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FI1G. 1. Hindcast skill for the prediction of the monthly mean sea
surface temperature of the eastern equatorial Pacific (July) using the
individual forecast schemes (climate, regression, autoregression, per-
sistence) and the persistence-regression combination. A zero-order
measure of the artificial skill of the combination forecast is included
to estimate the skill reduction when using independent data.

amount of skill gained from the persistence-regression
combination over the regression alone is provided by
the skill of the autoregression prediction, whenever the
forecast schemes are approximately uncorrelated (r
~ 0). This is observed in March, April and, to a certain
extent in May.

4) The (twofold) artificial skill reduces the combi-
nation hindcast skill to its anticipated independent
forecast skill, which appears to be comparable with the
hindcast levels of the individual schemes (i.e., the
regression and/or the autoregression); these levels,
however, need also to be reduced by their correspond-
ing artificial skills, when the individual schemes are
applied to independent data.

(b) Here we use the July mean SST at a particular
site—Talara, Peru—as the predictand, and use persis-
tence (or equivalently autoregression) of Talara SST
at 1-, 2- and 3-month lead times as the first scheme.
As in example (a), this scheme can be interpreted as a
zero-order thermal model of SST change in the eastern
Pacific taking into account local effects and the thermal
inertia of tropical waters, elements which are absent
in the deterministic model. The second scheme consists
of 1-, 2- and 3-month forecasts for the upper-layer
thickness anomaly (a proxy for thermocline change)
in the eastern Pacific averaged over 10°S-10°N, 80°-
100°W for 1963-1987. They are determined from the
Florida State University tropical Pacific model (Inoue
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and O’Brien 1984, 1986; O’Brien, personal commu-
nication) and regressed to Talara July SST. This scheme
can be regarded as a diagnostic tool for interpretation
of the dynamic effect of surface wind forcing in the
central and western Pacific at a remote site in the east-
ern Pacific. Table 3 sets out the correlation coefficients
for the predictors and predictands.

TABLE 3. Auto- and cross-correlation coefficients used in evaluating
the hindcast skill of example (b): R is the lag autocorrelation of Talara
SST in July; Ry is the cross-correlation between the 1-, 2- and 3-
month forecasts for upper-layer thickness anomaly of the FSU dy-
namic model (Inoue and O’Brien 1984, 1986) and Talara SST in
July; r is the same but for SSTs in the 3 preceding months.

Paraméter April ’ May June July
July Talara SST autocorrelation R 77 .87 93 1.00
FSU model/July SST Rz .54 .52 .57 .46

FSU model/monthly SST r’ 27 42 53 46

The period for the hindcast experiment is dictated
by the common availability of data for the predictors
and the results are shown in Fig. 2. The skill of the
FSU model alone is generally less than half that of the
statistical model. The choice for the predictand (July
SST at a site rather than an areal average) and the lack
of model thermodynamics contribute to this difference.
(Note that the skill here is relative to observed climate
whereas Inoue and O’Brien (1984) use an evaluation
based upon the model climate.) The combination of
persistence and the FSU deterministic model regression
(or equivalently autoregression-regression) demon-
strates improvement in the hindcast skill (allowing for
the artificial skill level), most notably at longer lead
times when the two schemes are more nearly indepen-
dent (Table 3). We must be wary, however, of over-
interpreting this result, since the correlation coefficients
and the skill evaluation both derive from the same data.
A true evaluation must await longer data records with
the skill being based on comparisons between the com-
bined forecasts and independent data. This method is
also a demonstration of the optimal use of model di-
agnostics in cases where the model is unable to capture
key features of the thermodynamic and thus contains
an inherent bias.

4. Conclusion

It has been shown that considerable hindcast skill
can be gained when combining two predictive schemes
in an optimal (i.e. error-minimizing) fashion. Long-
range forecasting is probably one area of fruitful ap-
plication, where such a combination technique need
not be confined to statistical schemes. For example,
the subjective consensus between monthly predictions
as presently applied to long-range forecasting (Kalnay
and Livezey 1985). The objective combination of both
stochastic and deterministic long-range forecast models
of, for example, the ENSO phenomenon (as a contin-
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FIG. 2. Hindcast skill for the prediction of Talara SST (July) using
individual forecast schemes (persistence and regression) and a com-
bination scheme (SST persistence — FSU model regression). The
data for the FSU June 1-month forecasts were available only for the
period 1979-85. Continuous wind (perfect boundary) conditions were
used for FSU July simulation. A zero-order measure of the artificial
skill level of the combination forecast is included to estimate the skill
reduction when using independent data.

uous process) appears to be as promising as the com-
bination of Markov chains and a numerical weather
prediction model in probabilistic short-term weather
forecasting (Fraedrich and Leslic 1987).
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