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Abstract

The performance of analog forecasts is sensitive to the selection procedure of analogs from the
history of observed time series. A method is presented to iteratively reduce a user-de�ned forecast
error measure by adapting suitable metric weights for the components of the reconstructed states
to be selected. Applications of the adapted analog forecast scheme to time series generated
by low-dimensional systems demonstrate successfully the potential of the proposed technique.
c© 1998 Elsevier Science B.V. All rights reserved
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1. Introduction

Weather analogs and their utilization are a leitmotiv in meteorology [1–3]. They are
used to estimate the atmospheric predictability, the dimension of the atmospheric phase
space, and the number of weather regimes. Another application is the speci�cation of
surface weather through analogs associated with the predicted upper-level ow. Further,
practical issues based on analog techniques are related to short-range and long-term
weather forecasting.
In principle, forecasting future values of a time series utilizing a set of measure-

ments is possible if patterns of these values have a one-to-one correspondence to states
of an underlying dynamical system. The embedding theorem provides the theoretical
background for analysing and forecasting dynamical systems utilizing observations. If
patterns meet the conditions of the embedding theorem they are referred to as re-
constructed states. This one-to-one correspondence o�ers techniques, arising then as
inter- or extrapolation schemes in the reconstructed state space, to forecast the future
evolution. The performance of di�erent forecast schemes is generally compared by
quantifying their forecast errors. The forecast error is a given or, with respect to a
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speci�c forecast problem, a particular user-de�ned measure of the deviation of the true
value of an observed quantity (veri�cation) from its corresponding forecast. Optimiz-
ing a parametric forecast model means adapting its parameters to achieve minimum
forecast errors. If, for example, these parameters enter the model equations linearly
and the error function is de�ned as the mean square error at a given lead time, the
parameters are, in most cases, estimated by a linear least-square routine. However, if
the parameters enter the forecast model in a nonlinear fashion, they need to be adapted
by an iterative procedure starting from �rst guess values (of the parameters). Examples
of iteration techniques are the gradient descent method minimizing nonlinear functions
and the back-propagation rule [4] in neural (feedforeward) nets [5].
The aim of this work is to describe a numerical algorithm that reduces a prede�ned

forecast error measure for an analog forecast scheme applied to a preselected state
space reconstruction. The idea of analog forecasting is very basic: assume the state s,
reconstructed from past observations, to be similar to the state r, reconstructed from
the actual observations in the same way, then the future evolution of the past state can
be used to forecast the future of the actual state. Measuring the similarity of the states
with the metric, d(r; s)=

∑
i Gi(ri− si)2, one is interested in an optimal choice for the

metric coe�cients, Gi, minimizing the prede�ned forecast error. Murray [6] has shown
the potential to reduce the mean square forecast error (for a given lead time) by pre-
scribing di�erent metric coe�cients using a state space reconstructed by the time-delay
embedding of an observed univariate time series. This paper provides an extension by
introducing the following three aspects: The reconstructed phase space may be spanned
by more than one observed time series in delay coordinates; the error function is user-
de�ned; and the optimized metric coe�cients Gi are adapted by an iteration procedure.
Section 2 gives a brief review of the embedding theorem. Section 3 describes the

basic analog forecast method and the iteration procedure to reduce the forecast error.
This method is applied in Section 4 to forecast experiments using time series of some
well-known low-dimensional nonlinear systems.

2. Embedding theorem (for multivariate time series)

Assume z(t) to be a state of a dynamical system evolving on a �nite-dimensional
attractor A. A k-variate time series is a table of measurements oj(t) (with j=1; : : : ; k),
recorded at past times t=0;−1;−2; : : : ; representing the observation of the jth mea-
surement function applied to the state z(t). The embedding theorem (for details see,
for example, Ref. [7]) asserts that the pattern r(t)

r(t) = (r1(t); r2(t); : : : ; rm(t))

≡ (oj1 (t − tj1 ); oj2 (t − tj2 ); : : : ; ojm(t − tjm)) (1)

has (under generic conditions) a one-to-one correspondence to the state z(t) of the
system, provided that at least ds= [2dA+1] of the m pairs (ji; tji) (with ji ∈{1; : : : ; k},
tji ∈{0; 1; : : :}) are disjunct. Here ds is referred to as a su�cient embedding dimension;
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dA is the �nite box-counting dimension (or capacity) of the attractor A. Patterns r(t)
having this one-to-one correspondence to the states z(t) are noted as reconstructed
states. The important consequence for this prediction theory is the existence of the
reconstructed dynamics F, which describes the time evolution of the reconstructed
states r(t) for lead time T as

r(t + T )=FT (r(t)); T¿0 : (2)

Forecasting based on observed time series can now be de�ned as �nding the images,
r(t+T ), for lead times T =1; 2; : : : of a given initial state r(t) in the reconstructed phase
space or, equivalently, �nding a model for the unknown reconstructed dynamics F.
Here it should be noted that the embedding theorem gives only information on

the required dimension of the embedding space, provided it is possible to derive an
estimation of the attractor dimension dA. Such estimate can be achieved using the
Grassberger–Procaccia algorithm or some variant of it [8,9]. The embedding theorem
does not cover the case of in�nite-dimensional attractors where the one-to-one property
of the system’s states to any �nite pattern de�nition is lost. All state space reconstruc-
tions based on empirical data are imperfect even in the case that the dimension of
the reconstructed phase space exceeds the su�cient embedding dimension. This is due
to the fact that any observation of a real valued quantity exhibits measurement er-
rors. Thus, in general, imperfect state space reconstructions cannot be circumvented.
One may hope that the chosen (m)-dimensional reconstruction (Eq. (1)) still pro-
vides the possibility for imperfect but meaningful predictions – at least for short lead
times.

3. Adapted analog forecasting: basic method and metric iteration

Forecasting by analogs of past events is an implication of the Taylor expansion of
the reconstructed dynamics (Eq. (2)): If r(t1) is close to r(t2) then r(t1+T ) should also
be close to r(t2 + T ) [10,11]. The construction of the analog forecast model proceeds
in four steps: The �rst step (A) consists of the reconstruction of a state space and
the de�nition of the forecast problem including the error measure; some guidance to
suitable state space reconstructions can be found in Ref. [11]. The second step (B)
describes the evaluation of the analog forecast procedure. Both steps together form the
basic analog forecast. In the next step (C) the scheme is improved by a learning rule
which then, in step (D), is used iteratively to provide an adapted and optimized metric.
Step A: The preselection of an (m)-dimensional state space reconstruction leads to

a sequence r(t) of reconstructed states labeled by the times t of the corresponding
observations (Eq. (1)). This sequence is divided into two parts: a learn set, LS, and a
test set, TS. The learn set is used for the construction of the forecast model, the test
set only to evaluate the model performance on independent data. It is measured by an
error function E, which occurs as the sample mean of the individual forecast errors
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e(t) calculated for the test set:

E= 〈e(t)〉 : (3)

The individual error e(t) is, in general, a user and application oriented de�nition. It
measures the deviation of the true time evolution of the initial state, r(t), at lead time T ,
r(t+T ), from its corresponding forecast, r̂(t+T ). For example, a convenient measure
is the squared error of the �rst component of the reconstructed states, summed over
the lead times T =1; 2; : : : ; L,

e(t)=
L∑
T=1

|r1(t + T )− r̂1(t + T )|2 :

Step B: The lead time T analog forecast of the jth component of the initial state
r(t) of the test set TS is

r̂j(t + T )≡ rj(a(t) + T ) with a(t)∈LS ;
where r(a(t)) is the nearest neighbour or analog of the initial state r(t) with respect
to the metric

d(t; t ′)2 =
m∑
i=1

Gi · (ri(t)− ri(t ′))2 : (4)

Here d(t; t ′) measures the distance between the two reconstructed states r(t) and r(t ′).
For given r(t) the distance d(t; t ′) becomes minimal for the closest analog denoted by
r(a(t)). The metric coe�cients Gi are positive reals. After the normalization of the
reconstructed states the Euclidean metric, given by Gi=1:0 (for i=1; : : : ; m), serves
as a �rst guess for the metric coe�cients.
Step C: The forecast error attached to the �rst guess can be reduced by searching

for a better metric. This requires the introduction of a learning rule before an iteration
scheme can be designed. To derive a rule for a proper modi�cation of the metric
coe�cients, the �rst two nearest neighbours, r(a1(t)) and r(a2(t)), of the reference
states r(t), are identi�ed. All of them lie in the learn set LS. Now, it is possible to
decide which of the two analogs, say r(ab(t)), gives a better result; that is, the smaller
individual error e(t). Applying this analysis to all reconstructed states of the learn set,
LS, leads to a set of relative distances for the �rst analogs, fi(t)= ri(t) − ri(a1(t)),
and another for the better ones, bi(t)= ri(t)− ri(ab(t)), for all i=1; : : : ; m components.
Since only the squares of these distances enter the metric, the ratios qi(t) are calculated,
which transform the squared distances of the better nearest neighbours to those of the
�rst ones; that is, qi(t)= 〈f2i (t)〉=〈b2i (t)〉, where 〈 〉 denotes the arithmetical mean for
all components i of the learn set. This ratio is used to modify the metric coe�cients to
favour the �nding of those nearest neighbours whose scaling coincides with the scaling
of the better nearest neighbours. This leads to a learning rule for calculating the new
metric coe�cients from their old values

G′
i ≡Gi · qi(t) :
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A ratio larger (smaller) than unity, qi(t)¿1 (¡1), indicates that the squared dis-
tances of the better analogs are typically smaller (larger) than those of the �rst nearest
neighbours. In this case the metric coe�cient is increased (decreased) by the e�ective
ratio, qi(t).
Step D: To establish the metric adaption, the learning rule is used iteratively,

(Gi(n); ELS(n))→ (Gi(n+ 1); ELS(n+ 1)); i=1; : : : ; m

with the “→”-arrow indicating a single iteration step.
The tuple (Gi(0); ELS(0)) is associated with the �rst guess metric coe�cients, Gi(0),
and the learn set error, ELS(0), of the �rst guess. This scheme should be iterated as
long as the learn set error ELS(n) decreases with increasing number, n, of iterations
steps. The following simple stop criterion is used: The iteration continues until step
n= nstop, where the relative learn set error reduction �(n) drops below a prescribed
threshold � (say 3%) over the past n∗ (say 10) iterations:

�(n)=
ELS(n− n∗)− ELS(n)

ELS(n− n∗) 6� for n=0; 1; : : : ; nstop : (5)

That is, at least n∗=10 iterations need to be performed before this criterion can be
satis�ed. As the solution for the metric coe�cients, we take those values Gi=Gi(nsol)
which correspond to the minimal learn set error. That is, the iteration step nsol , whose
metric coe�cients de�ne the solution, is found from the relation ELS(nsol)6ELS(n) for
all n=0; 1; : : : ; nstop.
The following technical comment is in order: Throughout the iteration procedure the

nearest neighbours, r(a1(t)), and, r(a2(t)), of r(t) are selected from the learn set LS.
To guarantee that these analogs are the nearest neighbours in the reconstructed space
and not in time [12], it is necessary to add the restrictions of their independence:
|a1(t) − a2(t)|¿�Tex, |t − a1(t)|¿�Tex and |t − a2(t)|¿�Tex, with the time interval
�Tex of the order of the correlation time.

4. Applications

The adapted forecast technique is subjected to forecast experiments based on the
following time series from often cited low-dimensional dynamical systems. These low-
order nonlinear models have been developed in various scienti�c disciplines ranging
from mathematics via medicine and physics to meteorology. The Henon [13] system
is a simple mapping of a two-dimensional plane de�ned by

x(t + 1)=1− ax(t)2 + y(t) ;
y(t + 1)= bx(t) :

With a=1:4 and b=0:3, it exhibits the basic properties of a strange attractor. The
example from medicine is a �rst-order nonlinear delay or Mackey–Glass [14] equation,
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which describes the uctuations in peripheral white blood cell counts in chronic gran-
ulocytic leukemia. It shows that simple models of physiological systems encounter
chaotic regimes similar to those observed in human disease:

ẋ(t)=
ax(t − s)

1 + x(t − s)c − bx(t) :

The constants are a=0:2, b=0:1, c=10:0 a the delay time of s=17:0. Ikeda [15]
analyses a plane-wave model of a bistable ring cavity and exhibits period-doubling
cascades to chaos, which occurs at the parameter constellation p=1:0, B=0:9, �=0:4
and �=6:0. This map relates the �eld amplitude at the (t+1)th cavity pass to that of
a round trip earlier:

z(t + 1)=p+ Bz(t) exp
(
–� − –� 1

1 + |z(t)|2
)
:

The Lorenz-63 system [16] describes a truncated model of convective rolls in a
phase space spanned by the three variables (x; y; z), which represent normalized spec-
tral (trigonometric) amplitudes of a truncated Boussinesq uid ow. They simulate the
�elds of the stream function and the temperature anomaly in a vertical plane. The
�rst-order mode of the stream-function �eld is denoted by x. The related temperature
�eld of the ow is composed of two modes; its �rst-order mode, y, shows a warm
anomaly associated with upward motion (and vice versa); the second-order mode z is
horizontally homogeneous and characterizes the time evolution of the vertical strati�-
cation. In meteorology, this model has been serving as a paradigm of the predictability
problem:

ẋ= �(y − x) ;
ẏ=−xz + rx − y ;
ż= xy − bz

with �=10:0, b= 8
3 and r=28:0.

These four low-order models are used in the following to analyse the performance of
the adapted scheme forecasting time series generated by these models. The analysis of
the experiments consists of two steps: First, the analog forecast scheme is established,
adapting the metric weights by the described iteration procedure in the learn set. Then,
this adapted analog forecast model is applied to an independent veri�cation in the test
set.
In all examples N denotes the total length of the observed time series. The �rst-

half of the time series is used as a learn set LS, the remaining part as a test set TS.
The error function is de�ned by the average E= 〈e(t)〉 of the individual errors e(t).
The functional form of the individual forecast errors (reecting the special task of the
prediction) and the (m)-dimensional state space reconstructions are given below. For
each example the results are presented in one �gure containing two plots labelled (a)
and (b): Plot (a) shows the weights of the metric coe�cients, Gi(n), for increasing
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number of iterations n=0; 1; : : : ; nstop, that is,

wi(n)=
Gi(n)∑m
i=1 Gi(n)

for i=1; : : : ; m :

Plot (b) displays the decrease of the learn set error ELS(n) during the adapting procedure
(solid line). The small diamonds (�) mark the weights which correspond to the solution,
wi(nsol), and the attached learn set error ELS(nsol) found by the stop-criterion (Eq. (5)).
At each iteration step, n, the analog scheme is applied to forecast the independent

test set TS using the available learn set metric wi(n) shown in plot (a). The dashed
line in plot (b) displays the stepwise gain in performance which, at nsol , leads to the
test set error ETS(nsol) (indicated by a ∗) de�ned by the solution determined by the
iteration procedure in the learn set.
The horizontally dotted line in plot (b) displays the test set forecast error, Eref ,

of a reference forecast. This reference forecast model is given by an analog forecast
scheme based on the Euclidean metric; it is the best performing of all these Euclidean
analog forecasts which uses all or only one subset of the reconstructed state space
components.
Henon (Fig. 1): The x-component of the Henon map is used as a univariate time

series of length N =10 000. The state space reconstruction is a (m=6)-dimensional
time-delay embedding rj(t)≡ x(t − j + 1) (for j=1; : : : ; 6). The error measure used
in this prediction experiment is de�ned as follows. Only lead time (T =5)-forecasts
are accepted useful, which deviate less than 10% from their veri�cation (in units of
the learn set standard deviation), otherwise they are discarded. The individual error
measure is formally expressed as e(t)= 0, if maxT=1:::5{|r1(t + T )− r̂1(t + T )|}¡0:1,
or e(t)= 1, otherwise.
Mackey–Glass [14] (Fig. 2): A time series with length N =10 000 and sampling

period �s=10:0 of the Mackey–Glass delay equation, is used in this example. The
state space reconstruction is a (m=8)-dimensional time-delay embedding, de�ned as
rj(t)≡ x(t − �t(j − 1)) (for j=1; : : : ; 8) with �t= �s. The task is to minimize the
ordinary mean square error function for the lead time T =5 (in units of �s) for the
�rst component of the reconstructed states. Thus, the individual errors are given by
e(t)= |r1(t + T )− r̂1(t + T )|2.
Ikeda (Fig. 3): The univariate time series chosen consists of the real parts of the

Ikeda map with N =10 000. The state space reconstruction is a (m=8)-dimensional
time-delay embedding with the components rj(t)≡Re(z(t − j + 1)) (for j=1; : : : ; 8).
The individual error is de�ned as e(t)=

∑L
T=1 |r1(t + T )− r̂1(t + T )|2 with maximum

lead time L=5. It reects the forecast task to minimize, on average, the sum of the
squared errors, accumulated over the �rst L=5 lead times for the �rst component of
the reconstructed states.
Lorenz-63 (Fig. 4): The 3-variate time series comprises the (x; y; z)-components of

the Lorenz system for N =10 000 with sampling period �s=0:025. The reconstructed
state space is (m=6)-dimensional with r(t)= (x(t); y(t); z(t); x(t−�t); y(t−�t); z(t−
�t)); �t=8·�s is chosen to avoid high autocorrelations amongst the components of the
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Fig. 1. The adapted analog forecast (AAF) scheme developing by metric iteration (n) for the Henon forecast
experiment: (a) Metric weights wi(n) of the reconstructed state components i=1; : : : and (b) learn set
averaged forecast errors (solid line); the diamonds (�) at nsol =80 mark the AAF learn set solution. For
each n panel (b) includes the test set forecast errors (dashed) based on the learn set metric wi(n) displayed
in (a); the asterik (∗) indicates the AAF test set error at the solution nsol =80. The horizontally dotted line
in (b) gives the test set forecast error of the best reference analog forecast based on the Euclidean metric.

reconstructed states. The functional expression for the individual error e(t) is the same
as in the Ikeda experiment, but with a maximum lead time L=25 (in units of �s).
The following results of the prediction experiments with the adapted analog forecast

(AAF) scheme are discussed:
(1) In all cases the AAF-scheme produces a remarkable error reduction. The error

reductions in the test and learn are more or less in phase throughout the iteration
procedure. The forecast error calculated for the test set is smaller than the forecast
error of the learn set, since all learn set states may be used as analogs to forecast the
test set states, but not vice versa.
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Fig. 2. Same as in Fig. 1, but for the Mackey–Glass forecast experiment.

(2) The skill of the AAF de�nes the relative gain in accuracy compared with the
reference scheme

S =
Eref − ETS(nsol)

Eref
:

The skill is about 64% for the Henon forecast experiment, 8% for Mackey–Glass, 11%
for Ikeda, and 29% Lorenz-63.
(3) In the Ikeda experiment, the iteration passes an optimal (or suboptimal) solution

without converging to it. This is due to the fact that the derivation of the new coef-
�cients is based on a rule which modi�es the metric coe�cients without considering
possible drawbacks of this modi�cation. That is, a change of the metric coe�cients by
the learning rule may be caused by a few cases only (for which a better analog exists),
but this change may be bad for all other states. The risk to miss an optimal solution
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Fig. 3. Same as in Fig. 1, but for the Ikeda forecast experiment.

can be reduced by introducing a control set (a randomly chosen subsample of the learn
set) for an interim forecast trial made during the iteration procedure. Rising errors in
the control set would then lead to an immediate nstop overruling the (�=3%)-threshold
criterion.
(4) The forecast examples show that some components of the reconstructed states

are attached to very low weights by the adapting iteration scheme. It seems likely that
at least the same forecast skill could be achieved setting these very low weights to
zero. This leads to a state space reduction with improved forecast skill. A threshold
for eliminating the low weighted components should itself be adaptable.
(5) Minimizing error measures, whose forecasts lead times lie beyond the limit of

predictability generates more or less large uctuations in the metric weights during
iteration phase and no error reduction. Furthermore, the performance of the
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Fig. 4. Same as in Fig. 1, but for the Lorenz-63 forecast experiment.

AAF-scheme may depend on the �rst guess metric and on the state space recon-
struction. For example, highly correlated time-delay components reduce the forecast
accuracy (e.g. for �t=1�s in the Lorenz-63 example, not shown).
(6) Including o�-diagonal weights to the metric is easily obtained replacing the

similarity measure of states (Eq. (4)) by

d(t; t ′)=
m∑

i; j=1

Gij |ri(t)− ri(t ′)| · |rj(t)− rj(t ′)| : (6)

The distance d(t; t ′) between the two analog states r(t) and r(t ′) is determined by
the metric coe�cients, Gij, which are positive reals; Gij =1 (for i; j=1; : : : ; m) serves
as the �rst guess for the search of an optimal metric. Consequently, the learning rule
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Fig. 5. As in Fig. 1, but including o�-diagonal metric weights wij : (a) The �rst six diagonal or o�-diagonal
weights, wij , changing with iteration step n; (b) the test set forecast error (dashed line) of the adaptive
analog scheme based on the learn set metric, the best reference analog forecast error (dashed horizontal
line) based on the Euclidean metric, and the learn set (solid line) forecast error evolving with the iteration
step n.

(STEP-C) to compute the new metric coe�cients from an old predecessor needs to be
modi�ed accordingly:

G′
ij =Gij qij(t) : (7)

Again, the ratios for all i; j components are calculated by the individual scaling ratios,
qij = 〈fij〉=〈bij〉; they are de�ned as the arithmetic learn set sample mean distances of the
�rst two nearest neighbours to the reference state r(t); that is, the nearest fij = |ri(t)−
ri(t ′)| · |rj(t)− rj(a1(t ′))| and the better one bij = |ri(t)− ri(t ′)| · |rj(t)− rj(ab(t ′))|. The
iterative adaption can now be performed following the description of STEP-D. This
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Fig. 6. As in Fig. 1b, but for adding white noise with an intensity of (a) 2.5% and (b) 5% of the system’s
standard deviation. The test set forecast error (dashed line) of the adaptive analog scheme based on the learn
set metric, the best reference analog forecast error (dashed horizontal line) based on the Euclidean metric,
and the learn set (solid line) forecast error evolving with the iteration step n.

leads to the weights wij =Gij=
∑m

i; j=1Gij. Application to the Henon experiment (Fig. 5)
show that the introduction of o�-diagonal elements into the adaptive analog scheme
does not lead to considerable improvement of the forecast accuracy.
(7) The sensitivity of the scheme to adding white noise of varying intensity is

analysed and the results are shown for the Henon system (Fig. 6). Two noise levels
of increasing intensity of (a) 2.5% and (b) 5% of the system’s standard deviation
do not reveal a considerably di�erent forecast performance compared with the zero
noise case (Fig. 1). Further increase of the noise level, the adaptive analog scheme
attains the optimal metric weights at fewer iterations which, however, are associated
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with larger forecast errors. Utilizing o�-diagonal elements does not change these results
considerably.

5. Discussion and conclusions

It is possible to rewrite the adapted metric with coe�cients Gij as a linear �lter
matrix B acting on the reconstructed states r(t). The elements of B are de�ned as
Bij ≡

√
Gij (i; j=1; : : : ; m). Analog forecasting using the coe�cients Gij of the adapted

metric may therefore also be interpreted as applying �rst the linear �lter B to the
reconstructed states before analog forecasts are made based on the standard Euclidean
metric. In this sense, the described technique of metric adaption �ts to the theory
of global linear �lters; but the calculation of the �lter components is based on local
considerations and related to the de�ned forecast problem.
The nonlinear predictive scheme adapted here is a particular form of analog predic-

tion which, for a time-delay embedding of dimension m, utilises the nearest neighbours
in the time-delay coordinate phase space chosen from the “library” or history of the
univariate observations. In this sense, it appears to be similar to the widely used sim-
plex method of Sugihara and May [17] for the prediction of time series; the spectrum
of applications ranges from ecology to economy. Instead of using a prescribed metric,
however, the weights are determined by an adaption procedure which is linked to the
forecast task.
Further improvement of the analog method may be achieved by recycling forecast

errors. As the errors do indeed contain information about both the observed and the
prediction system the error history can be expected to contribute in increasing the
skill of the predictions if included in the forecast. In this sense analog predictions
can be improved by an error recycling process which contains both observations and
errors as predictors. The above approach is just one of many such procedures now
being employed by Fraedrich and Leslie [18] with success to now-casting geophysical
systems like short-term climate variability, hurricane tracks, etc. While the conven-
tional approach to forecasting might be termed dualistic, because it treats predictions
and observations as two totally di�erent entities, this is a monistic approach group-
ing predictions and observations to a uni�ed predictor set. In this sense prediction
errors enlarge the phase space of a predictive model with both observations and errors
characterizing the enlarged state vector.
In summarizing, this paper describes an application of the embedding theorem to

forecasting future values of time series by an adapted analog forecast scheme utilizing
a univariate or multivariate measured time series. It has been emphasized that optimal
predictions are achieved only with respect to an error measure. Once the forecast er-
rors are quanti�ed, self-adapting iteration schemes emerge in a natural way leading to
improved forecast accuracy for classes of forecast methods. This procedure is demon-
strated for analog forecasting which appears to be the most intuitive way of nonlinear
empirical prediction.
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