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Abstract:

Probabilities of weather states are predicted by first order Markov chains using single station data only. Two
examples of weather phenomena are discussed which are particularly suited for short range forecasting: daily
sunshine measurements and the rainfall combined with three hourly past weather observations at Berlin-Dahlem.
Two probability forecasts are distinguished, both of which start from an initial observation: (i) The chance of
a weather state to occur at a prescribed time step; this forecast tends towards the local climate defined by the
relative frequency this weather state is occupied with. (ii) The probability of a weather state to occur (at least
once) within a prescribed time interval. For increasing interval length this forecast tends towards probability
one. Finally, it is shown, how the diurnal cycle can be included in the Markov chain forecasts. Before forecast
and forecast skill evaluation the procedure of model building requires a careful calibration of the finally used
model version. This implies a thorough statistical analysis of theoretical and empirical probability distributions.

Zusammenfassung: Zur stochastischen Stationsvorhersage (1.Teil): Markov-Ketten von Sonnenschein und Regen

Die Wahrscheinlichkeit von Wetterzustinden wird mit Hilfe der Markov-Ketten erster Ordnung vorhergesagt,
wobei nur die Daten einer Station Verwendung finden. Zwei Beispiele von Wetterphinomenen werden aus-
gewihlt, die relevant fiir die Kurzfrist-Vorhersage sind: tégliche Sonnenschein-Messungen und der Niederschlag
im Zusammenhang mit den dreistiindigen Wetterbeobachtungen in Berlin-Dahlem. Zwei Arten der Wahr-
scheinlichkeitsvorhersage werden unterschieden, die beide von Anfangsbeobachtungen ausgehen: (i) Die Wahr-
scheinlichkeit eines Wetterzustandes zu einem vorgeschriebenen Zeitschritt; diese Vorhersage strebt dem loka-
len Klima zu, das durch die relative Hiufigkeit des Wetterzustandes bestimmt ist. (ii) Die Wahrscheinlichkeit
eines Wetterzustandes (wenigstens einmal) in einem vorgeschriebenen Zeitintervall aufzutreten. Mit zuneh-
mender Intervall-Linge strebt diese Vorhersage zur Wahrscheinlichkeit eins. Schliefilich wird gezeigt, wie der
Tagesgang in eine Markov-Kettenvorhersage einbezogen werden kann. Bevor Vorhersagen gemacht und deren
Giite ausgewertet werden kdnnen, erfordert die Konstruktion des Modells eine sorgfdltige Eichung der end-
giiltigen Modellversion. Das schliefit eine statistische Analyse theoretischer und empirischer Wahrscheinlich-
keitsverteilungen ein.

Résumé: Sur la prévision stochastique 3 une seule station (le partie): Chaines de Markov de I'insolation
et précipitation

On prédit la probabilité d’états métérologiques 4 1'aide de chaines de Markov du premier ordre, en utilisant

les données d'une seule station. On envisage deux exemples de phénoménes, qui sont particuliérement im-
portants pour la prévision 4 bréve échéance: les mesures journaliéres de I'insolation et les précipitations, en
liaison avec les observations trihoraires a Berlin-Dahlem. On distingue deux sortes de prévision de probabilité,
qui partent toutes deux d’observations initiales: (I) la probabilité d’un état météorologique a un pas de temps
prescrit; cette prévision tend vers le climat local, défini par la fréquence relative de cet état; (II) la probabilité
pour un état de se réaliser (au moins une fois) au cours d’un intervalle de temps préscrit; pour un intervalle
croissant, la probabilité tend vers un. Finalement, on montre comment la cycle diurne peut étre inclus dans les
prévisions par une chafne de Markov. Avant qu’on puisse faire une prévision et estimer sa valeur, la construction
d'un modéle requiert un étalonnage soigneux de la version finalement adoptée. Ceci implique une analyse
statistique compléte des distributions de probabilité théoriques et empiriques.
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1 Introduction

Weather fluctuations are an essential part of stochastic climate models, in which they are para-
meterized by simple additive stochastic processes of very short time scale. Magnitude and structure of the
resulting climatic response on these weather fluctuations show reasonably good agreement with obser-
vations; i.e. the incorporation of simply parameterized stochastic weather fluctuations helps to explain
climate variations. The question remains whether these stochastically parameterized weather disturbances
can describe real weather data and, if so, whether (and how far) these parameterizations are applicable to
short range weather prediction. In two papers we shall be concerned with an answer of this question and,
thereby, confine ourselves to single station weather observations. Generally, such weather variables are
measured in discrete time steps; the observed variables, however, may be discrete (e.g. classes or states of
rainfall or cloudiness) or continuous (e.g. pressure). Accordingly, two different classes of stochastic point
processes in discrete time must be selected which depend on weather variables being continuous or discrete.

Three basic weather variables are selected for our study of stochastic single station prediction. They are
related with the two classes of stochastic point processes and will be discussed in two separate parts:

This paper (part one) describes sunshine and rainfall. These weather variables quantify mesoscale pheno-
mena. Realizing their randomness and discrete nature, not the exact state variable but the probability of a
discrete interval is the appropriate predictand. Markov chains are chosen as prediction models to provide
probability but not state variable forecasts. Such models have been successfully applied to rainfall simula-
tion since the 60’s (e.g. GABRIEL and NEUMANN, 1962). The following section reviews the theoretical
background; Markov chains, some related distributions and probability forecasts are briefly discussed, to
derive a linear, stochastic weather prediction model for the single station Berlin-Dahlem. The appropriate
sunshine and rainfall prediction schemes are deduced in Sections 3 and 4, respectively. These forecast
models are calibrated by the time history of the local weather data and evaluated to study the feasibility
of probability forecasts based on single station observations.

In another paper (FRAEDRICH and DUMMEL, 1983) the geopotential is described as an essentially sy-
noptic scale variable. The geopotential trajectory in time defines troughs and ridges passing over a station.
It is not so much the exact local geopotential amplitude (and level), which is of forecast value, but the
qualitative behaviour predicting the lead time of highs and lows. Gaussian processes in terms of auto-
regressive or moving average models will be applied; they have been successfully used to predict economic
time series (BOX and JENKINS, 1976) and to simulate some aspects of long range weather variations
(KATZ and SKAGGS, 1981).

2 Basic concepts

2.1 Markov chains repeated

A discrete point process Xy(i) or X; =i can be defined for discrete statesi (orj)=1,...,s
occurring at discrete time steps t=1,...,n (or m). In the theory of Markov chains the observed event
X(i), which can be regarded as the outcome of a trial at time t, depends on the outcome of the directly
preceeding trial (t — 1). Thus, the outcome is not associated with a fixed probability, prob {X; =i}, but
with a pair corresponding to a conditional probability py;:

pij = prob {X; =j Xy =1}

In the following section some basic information on first order Markov chains, which are ergodic and
finite, will be briefly summarized (FERSCHL, 1970; KEMENY and SNELL, 1976).
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A Markov chain consists of a transition probability matrix (p;;)

P11 Piz -
(Pij) = | P21 P22 ) 2.1)
mapping an initial state probability vector () linearly into a predicted state probability vector (a;):
(3j) = (@) (p;j) (2.2)

A probability vector (a;) defines a probability distribution. The vector components correspond to discrete
classes or states i=1,...,s of the probability distribution; they are non-negative and sum up to unity:

In applications it often happens that all components of an initial probability vector, e.g. (a;) = (0,0,1,...),
vanish except the initially observed state.
The transition probabilities p;; are conditional probabilities for the state j following the state i after a
one step transition; all possible states j combined follow a state i with probability Zjpij = 1; i.e. (pj;)
is a stochastic matrix; a double stochastic matrix has unit sums for both row and column vectors.
If the one step ahead probability forecast is successively repeated, one obtains the n-step or lead time n
forecast for a probability vector (a;)™ or its element a;(™, respectively:

@)™ = @) (i)™ or 3™ = Ta;p™ (2.3)
Powers of a transition matrix (p;; )®) remain stochastic matrices; their algebraic treatment depends on
powers of eigenvalues A:

()™ = N Co+AIC, + ...
which yield | AI<1 for stochastic matrices and can be ordered according to their magnitude,
1 =Xy >IA; I>...; the matrices, Cy, C;...., are defined by the left and right eigenvectors. The matrix
C, associated with Ay = 1, and the second largest eigenvalue, |\, | << 1, are of further interest.
The ergodic Markov chain settles down to a condition of statistical equilibrium after a sufficiently long
lead time (n + ). The equilibrium state probability vector or equilibrium state occupation probability,
(m) =(my, m2,...,ms), which an ergodic chain approaches, cannot be left again, (m;) - (pj;) = (7;), and is
independent of initial conditions a;:

lim (a)® = (m) (24)
n -+ o
The related equilibrium transition matrix, Cg, is composed of the equilibrium state vector (m;):
My, My e
lim (py)® = Co = [ mi,ma, .. (2.5)
n-* % . .

This guarantees independence of initial conditions, (m;) = (3;) - Co. The equilibrium is approached as the
powers of the eigenvalues tend to zero. A time scale, 7, can be defined by the largest eigenvalue, |, 1< 1,
in terms of an e-folding equivalent to the geometrically decreasing powers, A\] =e™' or

7= 1/ln X! (2.6)
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2.2 Some probability distributions

Probability distributions, P, related to discrete point processes X(i) can be evaluated empirically
from the observed time series P(X;) = prob { X;}, and derived for Markov chains from the estimated
transition probabilities.

Period lengths, first passage and recurrence times, and occupation times are defined in the following:

Period length: The probability distribution P (L; = n) of n successive time steps, L; = n, during which
the observed process, X; =1, remains in one and the same state i before leaving to another is formally
defined by

P(L;=n) = prob {Xm+ =i for 0<t<n—1, Xpsn #i |Xp-1 #1} (2.7a)

The expectation or mean values, E; (L;), are defined conditional on starting from statei:

Ei (L) = :flnP(wn)

For first order Markov chains one obtains a geometric distribution for the period length of state i:
P(Li=n) = pi' (1 —py) (2.7b)
with mean E; (L;) = (1 — p;)™" and variance Var (L;) = py (1 — pj;) 2. Period lengths of zero order Markov

chains can be defined by the equilibrium state probability (p;; = m;). In general, they deviate strongly
from the observed (2.7a) and first order Markov chain periods (2.7b).

First passage time: Conditional on state i being occupied initially, the probability, P (T; = n), that the
state j occurs at time T; = n and is avoided at times 1 <t<n -1, is called first passage probability from
state i tostate j:

P(T;j=n) = prob { Xp+¢ #j for 0 <St<n—1;Xp4n =j | X =1} (2.8a)
The first passage probability P(T; =n) = f;; for Markov chains can be evaluated successively from the
transition probabilities p;;

n
pign) = rg;lfi}r) Dij (2.8b)

starting at the first step, n = 1, with p;; = fj;. The mean first passage time E; (Tj) = my; and its variance can
be deduced in matrix form (KEMENY and SNELL, 1976):

(mij) = (I S Eng)D
with the fundamental matrix Z=(I—P +Cy)™", the diagonal matrix Zg4g of Z, the matrix D with only
diagonal elements dj; = 11]7’ , the unit matrix I, the matrix E with all entries 1.
A special case is defined by the return probability P(T; = n) = f; j(“) ; the related mean recurrence time from
state i to state j gives

Ej(Tj) = my;=nj'
which is identical to the inverse of the equilibrium state occupation probability.

Occupation time: The total number N of time steps a stochastic process X;(j) of 1 <t<m steps
spends in state i defines the total occupation time

Nm @ = tglh(i) (2.9a)
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where the counting variable {;(j)=1 or 0 for X; =j or =i. A mean occupation time, E;(Ny, §)) = 03,
of state j conditional on starting at state i can be defined for Markov chains:

0:= ZE &G = > p.{Y (2.9b)
B t=1"4

If related to first passage and recurrence times, additional information can be obtained. While the
stochastic process X; passes from state i to, say, state k, the occupation times of state jbetween the
states i and k can be evaluated applying the results of absorbing Markov chains (a state k which once
entered cannot be left, is classified absorbing with transition probability pyy = 1). While the Markov chain
passes from the initial state i to an absorbing state k, the average number (and variance) of time steps
occupied by state j yields in matrix form (KEMENY and SNELL, 1976):

Op =0-Q7"
where Q is a submatrix concerning all states i and j, but the absorbing state k and Iis the identity
matrix.
A special case evolves in connexion with the average recurrence time m;; = m; ' ; during the time interval n
a return to state i should occur n/m;;-times. Thus, the average occupation time of the state j between
the states i (i.e. during passage or return from state i to state i) simply yields mj/m; = (n/my;)/(n/mj;).

2.3 Probability forecasting and its verification

In this paper Markov chain models are applied to yield probability forecasts of weather elements.
At least two forecast objectives may be distinguished: The probability of an event to occur at a certain
future time (point forecast) or within a future time interval (integral forecast):
Point or time step forecasts: Given the initial probability distribution vector (a;) at time step n = 0;
the probability F(j) for astate j to occur at the n-th step ahead is given by the j-th element of the
probability vector ()™ :

For increasing time steps (n > =) the point forecasts of a state, aj(") approach the equilibrium or climate
probability ;.

Integral or time interval forecasts: Given the initial distribution vector (a;) at time step n = 0; the pro-
bability, F(j), for a first passage to the state j occurring within the next n steps following the initial
state is given by j-th element the probability vector (4; ym

n
F(j) = A® = 2 a ftt (2.11)

Thus, the probability of a first passage from state i to state j within the time interval n approaches the
value one after n > time steps.

If diurnal cycles are important, they can be incorporated by transition matrices fixed at the daily ob-
servation hours; the related conditional probabilities are determined by pairs of consecutive events at
these fixed hours. Point and integral forecasts are performed accordingly.

The forecasts have to be verified by observations. A common verification score of probability forecasts is
the so-called half Brier score, B, of 1 <t<n probability forecasts (BRIER, 1950):
n
B=n" tgl(FtG)_g‘t@))z (2.12)
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where F(j) is the forecast probability of one individual state j and 8(j) is either one or zero depending
on whether the individual state is or is not observed. As probability forecasts of the remaining (i.e. com-
plementary) states (1 — Fy(j)) are excluded, the half Brier score, B, ranges from zero to one with zero
indicating perfect forecasting. It should be noted that, besides quadratic scoring rules, logarithmic or
spherical scoring rules can be applied.

The Brier score can be extended to several or all components of the predicted state probability vector. If
the state vector as a whole is considered, the forecast probability Fy(j) is compared with the observed
probability §,(j) = 1. Thus, the resulting Brier score yields a forecast quality measure of the complete
model, which is not confined to selected states.

Forecast probabilities F of prediction models generally depend on the forecast lead time n. For Markov
chains, which are considered here, the forecast probability Fp(j) (= Fy(j)) is defined for point or integral
forecasts, respectively:

FmG) = 3™ or A® (2.13)

Generally point forecasts are verified. Verification scores of lead time dependent probability forecasts are
often compared with reference models which provide lead time independent predictions. Three reference
schemes are summarized:

(i) Climate or equilibrium predictions are defined by the transition matrix Co:
Fc() = 7 (2.14)
which is composed of the observed climate or state occupation probabilities ;.

(i) Persistence forecasts are made by the identity matrix, where both the initial and predicted state
concur with probability one:

F,(i) = Fp(j) = 1 (2.15)
(iii) Random forecasts yield equal probability for all states to be predicted:
F.(j) = (number of states predicted)™ (2.16)

i.e. the transition probability matrix for random forecasts is composed of the equilibrium state
occupation probabilities of a double stochastic transition matrix.
Markov probability forecasts tend to the observed equilibrium (or climate) state occupation probabilities
(m;) with increasing lead time. Therefore, it is reasonable to define a skill score, S, which relates both
Markov and equilibrium or climate forecasts:
B, —Bum
g = o o
B,
By is the Brier score for Markov prediction and B, is the Brier score using the equilibrium or climate

state probabilities as forecasts. A perfect skill score is 1, zero indicates no skill, negative skills are possible.
Skill scores, S, and S, related to persistence and random forecasts, can be defined analoguously.

(2.17)

2.4 Model building

The procedure to fit a stochastic model to a data set consists of three steps (BOX and JENKINS,
1976: KASHYAP and RAO, 1976), which follow the theoretical outline given above (Section 2.1 to 2.3).
A priori, the state variables have to be defined, i.e. the type, i, and number, s, of states to be predicted.
The model building scheme, described in this section, is prosecuted afterwards:
(i) Identification and estimation of the model: The identification technique determines whether the
model type (e.g. the Markov chain) fitting the data, is an appropriate choice. Therefore, model parameters
have to be estimated in advance to compare a variety of models, which are distinguished by their order.
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The question whether or not the observed data sequence can be represented by a r-th order Markov chain
of an s-state process is answered by several tests, which have the following procedure in common. The
order r should be chosen sufficiently large to include any reasonable model. Then it is possible to test
successfully lower orders until an order is reached below which it is unreasonable to go.

One test is based on Akaike’s information criterion (AIC) by minimizing the AIC estimate (see GATES
and TONG, 1976; EIDSVIK, 1980); it is not the goal of this test to select the model which produces
minimum prediction error, but to penalize the error by order (i.e. by twice the number of parameters) to
obtain a parsimonious model; i.e. the test procedure attempts to balance overfitting, which requires
more parameters, and underfitting, which leads to an increased residual variance.

Another method is based on an application of the chi-squared test (HOEL, 1954; ANDERSON and
GOODMAN, 1957; LOWRY and GUTHRIE, 1968). The test statistic Z compares the transition probabilities
Pij, ....k 1> of higher (i,j,..., k,1) and lower (j, ..., k, 1) order models of s states:

5
Z= X _lni,_i,.“,k,l(pi,j,.“,k,l)szpj,...,k,] (2.18)

with the absolute frequency n;j, .. k.- As Z is asymptomatically chi-squared distributed, the order

of the process can be estimated as follows:

(a) A chain of zero order ((p;;) = Co; i.e. the climate or equilibrium transition matrix) describes the data
sufficiently when it produces a non-significant test statistic compared with higher order models. Then,
predictable Markov properties cannot be extracted from the data.

(b) A chain of high order (p; j, ... k,1) describes the data sufficiently, when it produces a significant im-
provement compared with the lower and a non-significant test statistic compared with the higher Markov
chain. Thus, the testing procedure estimates whether the data series includes Markov properties at all (a)
and the goodness of fit.

In this paper the latter more traditional method is chosen for testing the order and the goodness of fit of
Markov chains. Although test statistics of both methods seem to be similar (instead of the quadratic a
logarithmic measure is used), the penalty function proportional to the number of parameters appears
somewhat arbitrary. Therefore, the automatic order determination by the AIC procedure is replaced by
judging the significance level. Furthermore, the prediction erroris preferred to be considered independently
of the order test by a problem orientated forecast verification scheme. Finally, confidence intervals are
placed on each estimated parameter (transition probability) applying standard methods.

(ii) Model analysis or diagnostic checking ascertain that important model related distributions fit the
observations. The chi-squared or Kolmogoroff-Smirnov test can be applied.

(iif) Decision making is the final step to ensure that the model has sufficient quality hindcasting the
observations being used to fit the model and, particularly, forecasting independent data. The quality is
evaluated by the quadratic Brier scoring rule.

3 The Berlin Sunshine Markov Chain

31 The observations: states of sunshine (6;)

25 years (1953—1977) of daily sunshine hours, @ 4, provide the basic data set, which is obtain-
ed from sunshine recorders (Campbell-Stokes, Stade) at the station Berlin-Dahlem. The day to day
O 4ps-records are normalized by the astonomically (i.e. maximum) possible sunshine duration D = 2 arccos
(— tan ¢ tan A) with the latitude ¢, the declination of the sun A and an estimated correction for the
horizontal extinction of 1.5 degrees for both sunrise and sunset. This leads to a new time series of the
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relative sunshine duration per day, 6 = 6 4,s/D (percentage of possible sunshine, or relative sunshine);
its complement C,

C,=1-6, 0<0<1

is an objectively observed approximation to the daytime average of the areal cloud cover, which is defined
by the downward projection of clouds on parallel lines. Synoptic surface observations of the total or point
cloud cover, C., however, provide a subjective measure ot the converging projection of all clouds in the
celestial sphere onto a point, i.e. the surface observer (HOYT, 1977; COURT, 1978; VACOWAR et. al., 1976).

Before building a sunshine Markov chain forecast model, the states to be predicted must be defined. A
descriptive statistic, which is discussed in the following, provides the climatologically relevant background
information:

(i) Annual cycle (Figure 1): A climograph of monthly means combines the relative sunshine 6 (or its
complement C,) and the independently observed total or point cloud cover C. which is averaged over the
synoptic surface observations during daylight hours. In winter months the daily and monthly averaged
point cloud cover C, underestimates the areal cloud cover C, = 1 — 6, whereas the opposite holds for

the summer, so that the annual means almost coincide. This should be realized in the following, when
interpreting relative sunshine in terms of cloudines (FOX, 1961).

(i) Frequency distribution (Figure 2): A seasonal frequency distribution (and its accumulation) of daily
records of relative sunshine 6 is based on 25 seasons and evaluated for ten @-classes

(6 > 0) of 0.1 - 0 interval length, plus aseparate (eleventh) class of no sunshine (6 = 0) per day. Additional
information is gained from the seasonal sunshine totals and how much each of the ten 6-classes contribute
(individually or accumulated) to it:

3 @® Figure 1

4 Climograph of relative sunshine

duration, 8, (ordinate) and total
cloud cover (abscissa) from sur-
oy 7 face observations averaged over

daytime.

o]
relative sunshine duration ©

T 6 5 ® Bild 1

Klimograph der relativen Sonnen-
5 total cloud cover (octas) scheindauer, @, (Ordinate) ur}d
M8 58 6/8 7/8 der Gesamthede.ckung (Abszisse),
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I ! T ! 1 Y I i
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total cloud cover (%)
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Figure 2 Relative and accumulated distributions in relative sunshine classes for summer (left) and winter (right);
bottom: relative frequencies; top: contributions to total sunshine hours.

Bild 2 Relative und akkumulierte Verteilungen in Klassen der relativen Sonnenscheindauer fiir Sommer (links) und
Winter (rechts); unten: Hiufigkeiten; oben: Beitriige zur Sonnenscheindauer.

The relative daily frequencies in summer are almost uniformely distributed over all classes of relative
sunshine duration per day, @, but they exhibit a tendency towards the normal distribution: the class
including the average 0.4 <@ <0.5 occurs most frequently. This is in contrast to the winter season, for
which the daily percentage sunshine, &, is almost exponentially geometrically distributed with about half
of all days being completely overcast (6 = 0).

The relative contributions to a season’s sunshine total by each 0-class show similar distributions for
summer and winter. Not unexpectedly, the few days with much relative sunshine, 6, contribute most of
the total. If accumulated, all classes above or below 8 ~ 0.7 account for about half of the sunshine hours
of a season. Days without sunshine (6 = 0) are, of course, excluded from this statistics.

(iii) Definition of 6;-states of relative sunshine duration (Table 1): The number of eleven 6-classes of
relative sunshine are reduced to four climatologically and statistically meaningful @ (or C, = 1 — 8) intervals
to be predicted. These four states are defined in analogy to the cloud amount categories of MOS forecasts
(see e.g. KLEIN, 1982):

(8) = (8,1,0,,0;5,04) = (OVC, BKN, SCT, CLR)
with overcast (OVC), broken (BKN), scattered (SCT), and clear (CLR) sky conditions.
In Table 1 they are related to the climatologically relevant statistics of relative sunshine duration. It should
be noted that the relative and absolute frequencies of the four classes change from summer to winter,
shifting the modal (most frequent) values from broken and scattered to overcast. But, contributions of the
four states to the total sunshine hours hardly vary from summer to winter (the same holds for spring and
fall, which are not considered here): About half of a season’s sunshine (52—54%) is observed during
scattered skies (63) about half of which (27—29%) occurs during the broken sky states (6, ), another half
(16—18%) comes from the clear sky category (64), and overcast (6,) contributes only a negligibly small
amount (1—-3%) to the total sunshine. Thus, these states, although referring to cloudiness categories and
varying in frequency from summer to winter, divide the sunshine totals into four uniquely defined and
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Table 1 States of relative sunshine duration, 6, their observed frequencies and contributions to total sunshine hours of
mean seasons.

Tabelle 1 Zustinde der relativen Sonnenscheindauer, 6, beobachtete Hiufigkeiten und Anteil am Gesamtsonnenschein
der mittleren Jahreszeiten.

Summer Winter
frequency total sunshine frequency total sunshine
relative hours hours
state sunshine abs. rel. abs. rel. abs. rel. abs. rel.
6y OVC overcast 0=9<01]| 324d 14% 7h 1% 1306d 59% 5h 3%
bedeckt
6, BKN broken 0.1<se<0.5]| 910d 40% 178 h 27% 501d 22% 43 h 29%
wolkig
63 SCT scattered |0.5<6<0.9 | 841d 37% 356 h 54% 344d 16% 78 h 52%
heiter
84 CLR clear 09<0<1.0| 200d 9% 119 h 18% 74 d 3% 24 h 16%
sonnig
212275d 100% 660 h 100% 2225d 100% 150 h  100%

seasonally stable classes. In this sense the four states of relative sunshine duration (conveniently attached
with cloud cover names) provide a climatologically meaningful measure of the total sunshine! The pro-
babilities of these four sunshine states define a vector of four components, which can be predicted by a
Markov chain model. The related transition matrix is estimated by the Berlin sunshine observations of
25 summer (June to August) and winter (December to February) seasons. This leads to a single station
probability forecast scheme of relative sunshine for one day time steps (next Section).

3.2 The model; hindcast and forecast

Maximum likelihood estimates of transition probabilities, p;;, are obtained from normalized
joint frequency distributions of present (t) and preceeding (t — 1) sunshine states (Table 2). The seasons are
defined to coincide with the beginning and the end of a sunshine state period, which must not be inter-
rupted by calendar date. This leads to the small differences in the equilibrium or climate state occupation
frequencies depending on whether the summation is taken over past (t — 1) or present (t) days.

(i) Model identification and estimation (Table 2): The model identification and estimation procedure
(Section 2.4) leads to a first order Markov chain (Section 2.1) for both summer and winter seasons. The
chi-squared and AIC tests lead to the same conclusion; furthermore, forecasts with higher order chains did
not improve the skill considerably. The estimated transition probability matrices are discussed in the
following. They include 95% confidence limits for the parameters and exhibit great differences between
summer and winter seasons:

In summer, cloudy weather has the tendency to improve; with 50% probability an overcast day (t — 1:

6, = OVC) will be followed by a broken sky day (t: 8, = BKN). The states of broken and scattered
cloudiness tend to persist with high probabilities of about 50%, whereas a clear sky day (t — 1: 84 =CLR)
is more frequently followed by a scattered (t: 3 = SCT) than by another clear sky day. This reflects the
enhanced chances of shower activity (or their nocturnal left over) on days following a clear or sunny day.
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B Table 2 Estimated joint frequency distributions and transition probabilities for present (t) and preceeding (t—1)
sunshine states (#;). Bottom: equilibrium (climate) state occupation probabilities.

B Tabelle 2 Geschitzte Hiufigkeitsverteilungen und Ubergangswahrscheinlichkeiten zwischen gegenwiirtigen (t) und
vorangegangenen (t—1) Zustdanden der relativen Sonnenscheindauer (8;). Untere Reihe: Gleichgewichts-(Klima-)
Wahrscheinlichkeiten der Besetzung von Zustinden 6;.

relative Sonnenscheindauer — relative sunshine duration
Sommer Hiiufiekeit £ gec P Ubergangswahrscheinlichkeiten £ 95% Konfidenz
Summer autigketten — frequencie a transition probabilities + 95% confidence limits
t Zustand — state Zustand — state
t—1 i 1 2 3 4 z j: 1 2 3 4 P,
i
ove 1 82 16l 74 8| 325 252 £.047 495+ .054 228+ .045 .025:0.16 | 1.
BKN 2 142 437 298 26| 903 157 +£.023 484 +.032 .330+.030 .029:.010 | I.
SCT 3 85 291 381 91| 848 100 £.020 .343+.031 450+ .033 .107 £.020 | 1.
CLR 4 15 21 88 75| 199 075+ .036 .106+.042 442+ .069 .377 = .067 1.
Klima
. 324 910 841 200 (2275 mi: .142.£.014 400 +.020 .370:.019 .088+ .011 1.
climate J
; : Ubergangswahrscheinlichkeiten + 95% Konfidenz
Wint 4 ten — f Pji:
R Hanflgkeiten=frequendcles ij transition probabilities + 95% confidence limits
t Zustand — state Zustand — state
t—1 A | 2 3 4 = j 1 2 3 4 z
i
ove 1 859 285 148 15 1307 657 +.025 218 +.022 .113:.017 .012+.005 j
BKN 2 278 131 78 12| 499 557 +.043 .262+.038 .156+.031 .024 +.013 8
SCT 3 149 70 101 25| 345 431+.052 .203:.042 .293+.048 .073+.027 1.
CLR 4 20 15 17 22 74 2270+ .101 203+ .091 .230+.095 .297 +.104 | 1.
Klima 1306 501 344 74 | 2225 mj: 587 +.020 .225+.017 .155+0.15 .033+.007 | 1.
climate

In winter, as expected, the most frequently occupied overcast state (OVC) is the main attractor for all
predictions; e.g. an overcast day (t — 1: 8, = OVC) is followed by another overcast day (t: 8, = OVC)
with 65% probability. Additionally, all states inhibit the tendency of persistence as a secondary attractor,
which is indicated by the magnitude of the diagonal elements of the transition probability matrix. The
tendency towards persistence grows when states of enhanced relative sunshine duration occur: A clear
day (t —1: 64 = CLR) is followed by another clear day (t: 84, = CLR) with 30%, by an overcast day

(t: 8, = OVC) with 27% probability; the other two states share the remaining probabilities. As these
transition probabilities are almost equally distributed between 20% and 30%, probability forecasts from
a clear winter day to the next day are nearly random; i.e. for this initial condition both the persistence
and the overcast attractors have strong influence on the prediction. The Markov chain forecasts approach
the climate states (m;) after a few time steps. The related e-folding time scale 7 (2.6) yields 7~ 1.1 d for
summer and 0.9 d for winter seasons.
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B Table 3 Average first passage times and period lengths of the sunshine Markov chain and of
the observations (in brackets). The diagonal values are mean recurrence times 'nj' 7

B Tabelle 3 Mittlere Durchgangszeiten und Periodenlingen der Sonnenschein-Markov-Kette und
der Beobachtungen (in Klammern). Die Diagonalelemente sind mittlere Riickkehrzeiten 11‘]71.

Mittlere Durchgangszeit in Tagen mittlere Perioden
Summer ] N :
mean first passage time in days mean periods
nach to Zustand — state
von fro i 1 2 3 4 L
i
ovc 1 7.0(6.0) 2.4(2.6) 3.5(3.7) 18.0(16.7) 1.3(1.3)
BKN 2 7.8(6.4) 2.5(2.5) 3.1(3.1) 17.7(16.4) 1.91.9)
SCT 3 8.4(7.3) 3.0(3.1) 2.7(2.6) 16.2(14.1) 1.8(1.8)
CLR 4 8.9(7.5) 4.0(4.3) 2.6(2.4) 11.4(7.8) 1.6(1.6)
?I‘jl
; Mittlere Durchgangszeit in Tagen mittlere Perioden
Winter S ;
mean first passage time in days mean periods
nach to ; Zustand — state
von fro & 1 2 3 4 L
ove 1 1.8(1.7)  4.6(5.2) 7.9(8.0) 42.3(24.0) 2.9(2.9)
BKN 2 1.9(2.0) 4.54.2) 17.6(7.3) 41.6(21.8) 1.4(1.4)
SCT 3 2.3(2.4) 4.8(5.3) 6.4(6.1) 39.1(20.2) 1.4(1.4)
CLR 4 2.7(2.8) 4.8(5.5) 6.6(6.1) 30.0(12.5) 1.4(1.4)
-1
m
]

(ii) Model analysis (Figure 3, Tables 3 and 4): Distributions, means and variances of meteorologically
relevant time or period scales (Section 2.2) are compared between model and observations. This includes
the period length of states, and the first passage and recurrence times for the extreme states overcast,
OVC, and clear, CLR (Figure 3, Table 3). The hypothesized similarity between model and observations
can be accepted for almost all distributions by visual inspection and, with 95% significance, by a chi-
squared test. The only exceptions are the winter first passage times to the clear state (0.9 <0 < 1.0);

the Markov chain tends to underestimate the frequency of short first passage times, and vice versa.

A one day period length (2.7) occurs most frequently for all states in both Markov and observed distribu-
tions; the observed frequencies reveal a rapid geometric decrease with increasing period length which is
well simulated by the Markov chain. The average period length is generally shorter than two time steps;
only overcast days'in winter last, in the average, three days. First passage times (2.8) from one extreme
state (e.g. 6, = OVC) to another (e.g. 4 = CLR) have their frequency maximum between two and five
days. The probabilities decrease slowly with almost periodic ups and downs of the same length. This is
caused by disturbances passing the station, but it is smoothed out by the Markov chain model. The re-
currence times (2.8) to the initial state show the phenomenon of persistence; i.e. the system is very likely
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B Table 4 Average Markov chain and observed (in brackets) occupation times during passage between extreme states.

¥ Tabelle 4 Mittlere Besetzizeiten der Markov-Kette und der Beobachtungen (in Klammern) wihrend eines mittleren Durchgangs zwischen
extremen Zustinden.

Summer

Winter

Mittlere Besetztzeit wihrend des Durchgangs zum absorbierenden Zustand OVC (1) und CLR (4)
Mean occupation time during passage to the absorbing state OVC (1) and CLR (4)

OVC (1) CLR (4)
. (] w
im Zustand — state 5 E im Zustand — state 3 &
in gﬂ % in %9
o 2 58
von 2 g || von = &
from 1 2 3 4 QS g from 1 2 3 4 g g
i 17
ovC 1 1.0(1.0) 2.8(2.4) 2.6(2.1) 0.6(0.5) | 7.0(6.0) ovC 1 3.8(3.6) 7.9(7.4) 6.3(5.7) / 18.0(16.7)
BKN 2 / 4.1(3.6) 3.0(2.3) 0.7(0.5) | 7.8(6.4) BKN 2 2.7(2.4) B.7(8.2) 6.3(5.8) / 17.7(16.4)
SCT 3 / 3.1(2.5) 4.4(4.0) 0.9(0.8) | 8.4(7.3) SCT 3 2.4(1.9) 6.9(5.8) 6.9(6.4) / 16.2(14.1)
CLR 4 / 292.2) 3.7(2.9) 2.3(2.4) |8.9(7.5) || CLR 4| 1.6(1.0) 4.6(3.0) 4.2(2.8) 1.0(1.0)| 11.4( 7.8)
ovC (1) CLR (4)
(4] Qo
im Zustand — state § E im Zustand — state = §
. . N
in En % n %n gﬂ
o™ A
von 2 & || von %ﬂ 2
from 1 2 3 4 g g from 1 2 3 4 g g
i i
OVC 1| 1.0(1.0) 0.4(0.4) 0.3(0.2) 0.1(0.1) |1.8(L.7) || OVC 1| 26.4(14.7) 9.5(5.6) 6.4(3.7) | 42.3(24.0)
BKN 2 / 1.5(1.5) 0.3(0.4) 0.1(0.1) |1.9(2.0) || BKN 2| 24.9(12.1) 10.4(6.2) 6.3(3.5) [ 41.6(21.8)
SCT- 3 / 0.5(0.5) 1.6(1.7) 0.2(0.2) [2.3(2.4) || SCT 3| 23.2(10.9) 8.8(4.9) 7.1(4.4) / 39.1(20.2)
CLR 4 / 0.6(0.5) 0.6(0.8) 1.5(1.5) |2.7(2.8) || CLR 4| 17.6( 6.8) 6.7(2.8) 4.7(1.9) 1.0(1.0)| 30.0(12.5)




to return to the initial state one day later, despite the short mean period length. The Markov chain
describes this effect with high accuracy. Averages of period length, first passage time and recurrence time
are deduced (Table 3) from the observed and Markov chain probability distributions (2.7, 2.8). Although
not presented, it should be mentioned that standard deviations and means are of about the same magni-
tude. Largest discrepancies between the first order Markov chain and the empirical (in brackets) averages
oceur for all winter first passage times to the clear state (84 = CLR). The rarely observed clear sky state in
winter (m4 = 0.03, Table 2), leads to unstable model estimates and explains why model and observed
distributions hardly coincide. All other mean values show good to excellent agreement.

A mean occupation time (2.9) defines the average number of model days, on which various states are
occupied by the Markov chain while passing to a final or returning to an initial state. As all mean occupa-
tion times (Table 4) add up to the related mean first passage or recurrence time, they provide further use-
ful information on the structure of the Markov chain. The basic patterns of the sunshine Markov chain
also influence the magnitude of the mean occupation times; the main attractors are defined by persistency
and by the most frequently observed states (BKN and SCT in summer, OVC in winter).

Table 5 Hindcast and independent forecast skill of all sunshine states. Brier scores of Markov
chain, climate, random and persistence forecasts (Byf, Be, By, Bp); Skill scores of Markov
chain predictions compared with climate random and persistence forecasts (S, Sy, Sp)-

Tabelle 5 Vorhersage-Giite aller Sonnenscheinklassen; Brier scores der Markov-Ketten-, Klima-,
Zufall- und Persistenz-Vorhersagen (By, Be, By, Bp). Giite der Markov-Kette im Vergleich zur
Klima-, Zufall- und Persistenz-Vorhersage (S¢, Sy und Sp).

Hindcast — Independent forecast

Summer:
pred. hindcast
(25 summers) summer 78 summer 79 summer 80
score 1d 2d 1d 2d 1d 2d 1d 2d
By 43 46 43 46 .40 42 44 .48
Be 47 47 47 47 43 43 .49 49
By .56 .56 .56 .56 .56 .56 .56 .56
Bp 57 .63 .58 .69 51 .55 .57 .59
S¢ .09 .02 .09 .02 .07 .02 .10 .02
5S¢ .23 .18 23 .18 .29 25 21 .14
Sp .25 .27 .26 .28 22 .24 .23 .19
Winter:
pred. hindcast
(25 winters) winter 78/79 winter 79/80
score 1d 2d 1d 2d 1d 2d
BMm .36 .38 .35 .36 .34 .35
Bc .38 .38 .36 .36 .36 .36
B, .56 .56 .56 .56 .56 .56
Bp .50 .53 42 .55 .44 .50
S .05 .00 .03 .00 .06 .03
S; .36 .32 .38 36 .39 .38
Sp .28 .28 17 .34 23 .30
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(iii) Hindcast and forecast (Table 5): The final decision on a potential applicability of Markov chain pre-
dictions is based on the hindcast and independent forecast skill (Section 2.3). The Brier scores, By, are
evaluated for predictions of the first order sunshine Markov chain as a whole. They are compared with
reference models of lead time independent forecast probabilities (B, : climate; B;: random; B,: per-
sistence). The related skill scores, S, are added for convenience to estimate the relative (percentage)
improvement of the sunshine Markov chain over its reference models (S : climate; S;: random; S : per-
sistence). Table 5 shows the results of one and two day predictions. Hindcasts and independent fore-
casts are of the same quality and, of course, reveal the tendency of skills decreasing with lead time. The
Markov chain beats its most important competitor, the climate model, Co, by about 10% (5%) in
summer (winter). Both climate and Markov forecasts skills can hardly be distinguished at the lead time of
two days when the Markov chain loses its memory of the initial state. The skill of other reference models
(persistence and random) can be neglected; Markov chains perform about S, ~ 25% better than per-
sistence.
(iv) An application: Instead of summarizing the results we apply the above Markov chain analysis to a
series of specific user orientated questions, which may arise and for which answers from a stochastic
model seem to be reasonable: Say, today has been a sunny or clear (#4 = CLR) summer day; i.e. the
initial state probabilities are 8; =0 fir i=1, 2,3 (OVC, BKN, SCT) and 84 =1 for CLR. Now, the
Markov forecaster can be asked about
a) the probability of another clear day tomorrow; the transition probability is psq ~ 38% (Table 2);
b) the quality of this forecast compared to less competent forecasters as the climatologist or the per-
sistence; the skill scores reveala S, ~ 8% or S, ~ 25% improvement (Table 5);

c) the forecaster’s expectation of the length (average and distribution) of the sunny period; the average
period length is about one to two days (Table 3);

d) the forecaster’s expectation of the next clear or overcast day (because the average clear period lasts
less than two days); the Markov recurrence and first passage times are more than a week (Table 3);

¢) how many broken, scattered or overcast days are expected; between a clear and overcast day the
Markov forecaster expects occupation times of 2.9 broken, 3.7 scattered, and 2.3 clear days, and
between a clear and another clear day the Markov forecast yields 1.6 overcast, 4.6 broken, and
4.2 scattered days (Table 4).

4 A Berlin Rainfall Markov Chain

The predictand rainfall should not be separated from those weather phenomena to which it is
closely related. The synoptic scale dynamics and its vertical motion field must be connected with the
rainfall process, if medium range forecasts are considered. For our purposes of stochastic short range
predictions, the rainfall will be linked with cloudiness; i.e. dry and wet weather states are predicted by a
closed meso-scale information set. This information is contained in the past weather data characterizing
ten distinct rain, cloud cover, etc. states, which are mutually exclusive. These weather states are regularly
observed at synoptic stations for three or six hourly time intervals, which represent the weather develop-
ments by a higher time resolution than the daytime averaged sunshine or cloud cover data (Section 3).

4.1 The observations: past weather states (W;)

At Berlin-Dahlem three hourly observations of the past weather development are documented in
the past weather (W) code (Berliner Wetterkarte, 1970—81). This code (W) contains ten different weather
states, which exclude one another at the same time. The ten components of past weather states can be
reduced to five (or less), if states rarely observed are combined with meteorologically more relevant ones.
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This leads to three states classifying the total cloud cover (in octas):
1 (0): <4/8

2 (®): ~4/8

3 (®): >4/8 orfog;

and two further states describing the rainfall process:

n

1
i
i

i =4 (@) : rainorsnow or drizzle
i =5 (W¥): shower or thunderstorm

1

Sandstorms are not observed. These five classes define the components of a state probability vector
(wl) 5 (wls W2, '--) = (O: 0: .; ’3 v)
which is to be predicted by a Markov chain using a time step of three hours.
Forecast verifications are based on to two alternative models (Section 4.2):
a minimum two state Markov chain of a single wet state (i = 4 or 5) and a single dry state (i=1 or 2 or 3):

(W1,2,3, Wa,5) =(W;) and
a four state Markov chain with the same wet state (i =4 or 5) but three dry or cloud cover states (i= 1,2,3):
(Wl s Wa, W3, W4,s) =(W).

The Markov chain model is fitted to the weather data of ten summer (June to August) and ten winter
seasons (December to February) observed at Berlin-Dahlem from 1970 to 1980, summer 1981 and winter
1980/81 are left for independent forecasts. The beginning and the end of a season is required to coincide
with the beginning or the end of a weather state period, which should not be interrupted artificially. This,
and the fact that all seasons start independently of each other, lead to small discrepancies in the accu-
mulated joint frequencies of present and past states (Table 6). The following discussion on model identi-
fication, estimation and analysis is reduced to a necessary minimum, because the forecasting of rainfall
probabilities (W4, W5 or W4 5) is emphasized in this section.

Table 6 Estimated joint probability distributions and transition probabilities for present (t) and preceeding (t— 1) past
weather states (Wj). Bottom: Equilibrium (climate) state occupation probabilities.

Tabelle 6 Geschiitzte Wahrscheinlichkeitsverteilungen und Ubergangswahrscheinlichkeiten zwischen gegenwirtigen (t)
und vorangegangenen (t—1) Zustinden des vergangenen Wetters (W;). Untere Reihe: Gleichgewichts-(Klima-)
Wahrscheinlichkeiten der Besetzung von Zustinden Wj.

Sommer Hiuriekeiten — f G P Ubergangswahrscheinlichkeiten + 95% Konfidenz
Summer Slexelen = reduengles y transition probabilities + 95% confidence limts
t Zustand — state Zustand — state

t-IN_|j: © > e e vV > i o ) ° 9 v b
i
o] 1674 449 4 1 15 | 2143 J781 = 018 .209 £ .017 .002 £.002 .001 +.001 .007 +.004 | 1.
1] 418 859 452 44 125 | 1898 .220 £ .019 453 +£.022 .238 £.019 .023 +.007 .066 = .011 |1.
[ ] 2 387 1140 225 242 | 1996 001+ 001 .194 +.017 .571+.022 .113 +.014° .121 +.014 |1.
[ ] ] 50 212 316 74 658 .009 +.020 .076 £.020 .322 £.036 .480+.038 .113:.024 |1.
v 39 157 189 72 198 655 059« .018 .240+.033 .289 +.035 .110 +.024 .302 :.035 |1.

fl:i::lte 2139 1902 1997 658 654 | 7350 .291 +.010 .259 £.010 .272 +.010 .089 +.006 .089 +.006 | 1.
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Joint frequencies are derived and normalized to obtain the maximum likelihood estimates of the past
weather transition probabilities between three hourly time intervals. Again, first order Markov chains
describe the data set significantly better than the zero order Markov chains, which are defined by the
equilibrium state occupation probabilities, i.e. there are predictable Markov properties in the past weather
time series. Higher order models hardly improve the hindcast skill. If both shower and rainfall states are
combined, the Markov chains reveal seasonally stable structures; i.e.seasonal variations of transition
probabilities occur within the 95 %-confidence intervals. Therefore, only the transition probabilities of

the summer Markov chain are documented (Table 6). The model diagnosis shows that, in general, the
Markov chain distributions do not significantly deviate from the empirical distributions (applying chi-
squared tests with 95 % significance levels). The related averages of model and observed first passage times,
recurrence times and period lengths are useful forecast aids and therefore documented in Table 7.

Table 7 Average first passage times and period lengths of the past weather Markov chain and of the
observations (in brackets). The diagonal values are mean recurrence times ﬁ]’ .

Tabelle 7 Mittlere Durchgangszeiten und Periodenlingen der Wetter-Markov-Kette und der Beobachtungen

(in Klammern). Die Diagonalelemente sind mittlere Riickkehrzeiten srj‘ .

S Mittlere Durchgangszeit in Stunden mittlere Perioden
ummer : s 2 7
mean first passage time in hours mean periods
nach Zustand — state
to
von
from j ] 4] ® 9 v L
i
W;=0 10.3(10.1) 14.4(25.4) 35.7(48.2) 82.8(115.3) 60.5(83.4) 13.7(13.6)
Wy=0 33.1(31.7) 1l.6(11.5) 22.5(22.7) 69.9 (96.5) 48.4(58.8) 5.5 (5.5)
Wi=e 46.9(50.4) 16.6(19.8) 11.0(10.9) 55.3 (68.9) 39.0(50.3) 7.0 (7.0)
Ws=@ 49.0(57.0) 19.6(25.1) 13.4(12.7) 33.4 (31.5) 38.1(44.9) 5.8 (5.8)
Ws=V¥ 42.8(46.3) 15.5(17.7) 17.2(15.5) 58.2 (66.2) 33.6(32.8) 4.3 (4.3)
Wi Mittlere Durchgangszeit in Stunden mittlere Perioden
inter s :
mean first passage time in hours mean periods
nach Zustand — state
to
von
from 37 @] @ ® 9 v L
i
W;=0 20.0(19.5) 14.5(29.1) 26.0(27.0) 39.0(52.3) 120.0(227.4) 11.5(11.2)
Wa=0 62.9(56.3) 19.3(18.8) 15.5(13.4) 29.0(36.8) 110.1(162.4) 4.8 (4.8)
Wi;=@ 87.9(83.2) 31.8(40.1) 7.5 (7.5) 19.7(26.9) 107.1(158.3) 8.9 (8.9)
Wys=@ 88.5(90.6) 33.9(48.1) 12.2(13.1) 11.4(11.1) 104.7(133.9) 7.8 (7.7)
W=V 78.0(86.8) 27.5(30.3) 14.0(14.9) 21.6(18.4) 83.4 (68.6) 4.1 (4.1)
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In the following it should be realized that a past weather state characterizes the weather development
during the preceeding three hours; i.e. the past weather set as a whole evolves continuously, although it is
forecasted in discrete 3h time steps. This is a time analogue of layer versus level models.

4.2 Forecasting rainfall probabilities

The estimated transition matrices (Table 6) define the Markov chain models by which pro-
babilities of rainfall and other past weather states can be predicted. Several different Markov chain fore-
casts are made and compared to demonstrate a few potential applications. They start either from the dry
states of a low or high amount of cloud cover, or from a single wet state (W, 5) combining rainfall and
showers (i = 4 and 5). Accordingly, forecasts are performed by a Markov chain of five, or four states,
respectively. Both point (time step) and integral (time interval) forecasts are discussed, and the diurnal
cycle modifying the summer forecasts.

(i) Time step and time interval predictions (Figure 4): The common lead time n predictions are obtained
by the n-th power of the Markov chain transition matrix, (p;;)®™. This leads to time trajectories of past
weather state probabilities, (W;)®), which depend on the forecast time step n (see Section 2.1). The model
behaviour is displayed in Figure 4. The time trajectories start from two different initial conditions at

n = 0 with state probabilities zero or one, respectively; if there is low cloud amount at n = 0,then W, =1
and W;=0 for i=2,...,5; awet state at n=0 means W4 5 =1 and W;=0 for i=1,2,3. As the time evolves, all
state probability trajectories, (W;)®, tend towards their equilibria, (m;), by which the climate state or
reference prediction is defined. A related e-folding time scale 7 (2.6) is derived from the eigenvalue A,
(Section 2.1). While approaching the equilibrium, the Markov chain reduces its memory of the initial
condition by 1/e after about four time steps; in summer 7~ 12h, in winter 7 ~ 13 h. The equilibria,
which are independent of the initial conditions, are indicated at the ordinate (i.e. state probability axis).

The point forecasts are complemented by probability predictions of first passage and recurrence times,
(£ )(“) integrated (or accumulated) over an interval of consecutive time steps. Such a forecast scheme
deﬁnes probability measures, which quantify the chances of rainfall and shower occurring (at least once)
within a specified time interval (Sections 2.1 and 2.3). With increasing length of the forecast time interval
the first passage or recurrence time probabilities accumulate to one. As all states form a closed set they
can pass from one to another or return to the initial state at least once during an infinitely long time
interval.

Such integral (or interval) forecasts can be made by Markov chain models (full lines in Figure 4). The
results are compared with observations (dotted symbols) and with predictions by the related zero order
climate or equilibrium probability matrix, Co (dashed).

There are significant deviations between the first and zero order Markov chains. Only the first order
chain fits the observations within a lead time interval up to 24—36h. The Kolmogoroff-Smirnov test
has to be applied to these accumulated distribution.

(ii) Forecast skill (Figure 5): Both the time step and the time interval probability forecasts are quanti-
tatively evaluated for a single wet state (W4 5), which combines rainfall (W, ) and shower (Ws ). Thus, wet
state Brier scores, By4 (dashed line) and skill scores, Sp4 (full line) are determined by four state Markov
chain predictions. Additionally, this wet state prognosis is compared with analoguous results from an
alternative Markov chain which has been reduced to a minimum of two states, wet and dry (Section 4.1).
The initially high skill score of the Markov chain point forecasts decreases with increasing lead time.
After about one day (i.e. 2 7 or 8 time steps) the Markov chain Brier score, By, can hardly be distinguish-
ed from the reference forecasts, B, by the climate state probabilities (i.e. S; ~ 0). Although the summer
model predicts the wet state probabilities better than the winter Markov chain (Byg (summer) > Byig
(winter)), the improvement over the reference model forecasts is almost the same for both seasons. The
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0
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forecast time siep
® Figure 4 Summer and winter forecast probabilities of wet weather states (rainfall and/or showers) for increasing time
steps (left); accumulated probabilities of wet state passage or return times within time intervals (right). The forecast

probabilities depend on the initial conditions which are indicated at the top. Markov chain forecasts (full line) are
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den beobachteten (Punkte) und den Klima-Wahrscheinlichkeiten (gestrichelt).
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® Figure 5 Summer forecast probabilities and the diurnal cycle. All forecasts start at 6 GMT where initial states attain
probability one.
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Anfangszustinde von der Wahrscheinlichkeit eins ausgehen.
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minimum Markov chain provides comparatively poor probability prediction scores (Bysz , S¢,) in summer.
But, as almost 80% of all winter days have overcast or broken sky conditions (Section 3.1), the additional
prediction of cloud cover states in winter does not considerably improve the wet state forecasts.

Within short and long time intervals the Markov chains perform well in predicting first passage or return
times to the wet state. Although time intervals of about one day are relatively poorly predicted (according
to the high Brier scores By ), forecasts show maximum skill score, S, if compared with its climatic
reference. Finally, it should be noted that both the independent forecast and hindcast scores are of the
same magnitude.

(iii) Diurnal cycle (Figure 6): In summer the diurnal cycle modifies the rainfall considerably. If this
effect is added to a probability prediction scheme, it can improve practical forecasts. An example is
briefly discussed in the following. Three hourly transition probability matrices are evaluated at fixed
hours (GMT) of the day and the related probability forecasts are made accordingly; after each time step
the transition matrices are replaced by their successors. The resulting past weather probability trajec-
tories, which include the diumnal cycle, are shown in Figure 6. They start at 6 GMT from various initial
conditions (W; =1, W3 =1 and Wy 5 =1).

Obviously, all trajectories are attracted by the diumnal “limit™ cycle, which is defined by the climate or
equilibrium state occupation probabilities at the fixed hours of the day. It should be mentioned that the
cycle average is identical with the overall equilibrium state probabilities (7;) of the Markov chain
(Table 6), which is estimated by disregarding diurnal effects. Again, after about one day the initial con-
ditions are lost by the forecast model and the diumal limit cycle dominates the forecast probabilities.

Table 8 12h-forecasts of the summer rainfall and shower probabilities, conditional on various initial past
weather states Wj. From left to right: time step and time interval forecasts independent of the diurnal
cycle; forecasts from 6 to 18 GMT with diurnal cycle (see text).

Tabelle 8 12-Stunden-Vorhersage sommerlicher Niederschlags- und Schauerwahrscheinlichkeiten in Abhingig-
keit vom Anfangszustand des Wetters. Von links nach rechts: Zeit—Schritt- und Zeit—Intervall-Vorhersage
unabhingig vom Tagesgang; Vorhersagen von 6 nach 12 GMT unter Beriicksichtigung des Tagesgangs
(siehe Text).

Summer point forecast interval forecast diurnal cycle
12h § : state probabilities passage Or recurrence state probabilities
Orecasting after 4 time steps probabilities in at 18 GMT
12h time interval
QiR | H0 Mal:kov abs. climate Mar.kov obs. climate Mar'kov obs. climate
state | state chain chain chain
.03 .02 .09 .04 .05 .31 .02 .02 .06
O .05 .05 .09 .03 .10 31 12 i | .18
o+ v |.08 .07 .18 +12 12 .54 14 A3 .24
° 13 13 .09 31 .30 31 .09 .05 .06
@ v 12 .10 .09 .36 .34 31 21 .23 A7
9 +v |.25 23 .18 .57 .53 .55 .30 .28 23
9+v | @+ v |25 .30 .18 .70 73 55 31 .38 .23
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(iv) An application (Table 8): A specific example is presented for 12-hour predictions of rainfall and
shower probabilities in summer. The forecast time length corresponds to the e-folding time scale 7. The
probability predictions start from various initial past weather states (W;) and are determined by the fitted
(five state) Markov chain model (Table 6). Point forecasts are evaluated to yield probabilities at the fourth
time step which cover the past weather between 9—12 h; interval forecasts provide the wet state first
passage (or return) probability within the time interval from O to 12 hours. Finally, the diurmnal cycle is
also considered, for which the initial conditions are fixed at 6 GMT; the wet state probabilities are predic-
ted for 12h in advance. i.e. the 18 GMT prognosis covers the time between 15 to 18 GTM. The results are
compared with the climate or reference forecast model and observations. The latter are joint probabilities
estimated from observed 12 h time steps probabilites and from the observed first passage distributions.
The Markov chain predictions and empirical probabilities are in good agreement, from which the climate
forecasts, however, deviate.

State probabilities of shower and rainfall are additive, if point forecasts are considered. They are valid for
a past weather interval of 3 h ending at the forecast time; e.g. a twelve hour prediction means the past
weather from 9 to 12 h. Forecasting 12 h in advance yields 8 % or less chances of rainfall and showers, if
the initial state has low amount of cloud cover (W; ). The chances increase to 14%, if afternoon forecasts
are made, and the diurnal cycle is included. The probabilities rise even further to 25% without (and 31%
with) the diurnal cycle, if initial past weather states tend towards overcast or wet weather conditions.
Considering the wet state interval forecasts (i.e. first passage probability accumulations), shower and
rainfall are, in general, not additive. If the cloud amount is low, there are 12% chances of rain and/or
shower occurring at least once within the next twelve hours. If rainfall and/or showers have occurred at
the beginning of the forecast interval, the chances rise to 70%, which is due to persistence. The probability
of rain and/or shower within the next 12h is 57%, when the cloud amount has been high, initially.
Additional forecast probabilities may be extracted from these prediction schemes. But, our purpose was
to present some simple models and evaluate examples of probability forecasting at a single station. Further-
more, this study may help to emphasize the relevance of this type of probability prediction (see e.g.
MURPHY and WILLIAMSON, 1976), and possibly contributes further aspects to it.

5 Outlook

Probability forecasting by elementary stochastic models is applied to short range weather predic-
tion using single station observations only. In this pilot study we have derived and applied probability
prediction schemes to support short range forecasts or nowcasts issued by local weather services. The
capacity of these models is, of course, not infinite, but for a single station forecaster some advantages
seem to be evident.

(i) The models are fitted to the local climatology of the station for which the forecaster has to formulate
the prediction. Thus, the model transfers local weather history by a linear Markov chain memory into the
future. Furthermore, the inherent randomness or uncertainty of the weather process is quantitatively in-
cluded in the forecast.

(if) Stochastic single station models can be run any time when a surface observation becomes available.
They do not depend on the fixed upper air cycle, no initialization is required, and almost no computer
time is consumed. Therefore, these models may help to close a time lag of 6—12h, before the latest deter-
ministic nonlinear numerical weather predictions, based on the upper air cycle, are available.

(iii) Finally, linear stochastic forecast models are transparent and simple. As they provide the weather
information adequately in probabilistic terms, these models seem to be a useful local forecast guidance.
However, comprehensive mesoscale models nested into a numerical weather prediction scheme are a com-
pletely different approach to guide local forecasters.

Beitr. Phys. Atmosph. Vol. 56 No. 1, February 1983 133



Of course, numerical weather prediction models, which include model output statistics, are superior to
this classical stochastic approach after, say, 24 h (KLEIN, 1982). This gap, however, can be filled by
stochastic models, which may develop in the future.
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