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Summary

Errors produced by a nonlinear predictive scheme contain
information about both the observations and the prediction
system. Therefore, its error history would be expected to
contribute to increasing the skill of the predictions if it is
included in the forecast. In this study an error recycling
procedure is developed for tropical cyclone track predic-
tion. Errors are defined here as differences between the
model forecast and the best track position. Error histories
are incorporated into a nonlinear analogue. or simplex.
forecast scheme and applied to tropical cyclone track
prediction, using the archives of observed position data
associated with the forecast errors. Various forecast
experiments of the cyclone tracks are performed: standard
simplex predictions using observed positions only: simplex
predictions improved by error forecasts based on libraries
of both observations and the recycled forecast errors: and.
finally. predictions that include NWP-model forecasts and
their errors as predictors. The resulting gains in skill of
predictions out to 72 hours ahead are found to be
substantial.

1. Introduction

One of the most important applications of
weather forecasting is the prediction of tropical
cyclone motion. Meteorological services in
tropical regions affected by tropical cyclones
regard the prediction of these systems as their
major weather forecasting problem. Tropical
cyclones, also known as hurricanes and typhoons

in different parts of the world, are the most
destructive of all natural hazards in terms of loss
of life and property. Although tropical cyclone
position forecasting has been a major activity for
many decades, it has defined rapid improvement,
with an average of about one per cent reduction
per annum in mean 48 hour position errors over
the past decade or so. It is noted that there has
long been two distinct approaches to tropical
cyclone position forecasting. One kind is based
on statistical regression schemes, like CLIPER,
which as the name suggests is a blend of
climatology and persistence forecasts. Complete
descriptions of the approach may be found in
Neumann (1972), Leslie et al. (1990) and many
other sources. The second and major approach
employs deterministic algorithms, the main
example being numerical weather prediction
(NWP) models.

Traditionally, the statistical and deterministic
methods are used separately although there is
some work in which the techniques have been
linearly combined in a least squares error
minimizing fashion (see. for example, Thomp-
son, 1977; Fraedrich and Leslie, 1987). Such
optimal weighting of forecasts has also received
much attention in the economics, management
and statistics literature. In meteorology it is also
known that consensus forecasts provide in the
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average more accurate results than the individual
forecasts which comprise the consensus.

Although this is an incontrovertible fact, it still
does not appear to be widely recognized or
accepted. The linear error minimizing multi-
variate combination forecast of tropical cyclone
positions shows considerable forecast improve-
ment. especially when the numerical weather
prediction (NWP) model is combined with an
empirical forecast system based on nonlinear
analogue or statistical regression techniques (for
example, CLIPER). Independent forecast trials
by the authors have shown that the 24, 48 and 72-
hour position error of the combination forecast
can be reduced by 15-20%. Skill improvement of
that magnitude normally requires considerable
investment in the development of predictive
schemes, whereas the combined dynamical-
statistical schemes described above produce
cains at almost zero cost. For additional details.
the reader is referred to Fraedrich and Leslie
(1987). and Leslie and Fraedrich (1990). Infor-
mation on the practical implementation of the
scheme at the Joint Typhoon Warning Center
(Guam) and on the education of new typhoon
duty officers are given by Mundell and Rupp
(1995).

In this study we present another example of
our thesis of *“‘obtaining significant increases in
skill for almost insignificant cost™, in the short
term forecasting arena. As mentioned above, this
approach was applied with success over a decade
ago. beginning with the study by Fraedrich and
Leslie (1987). Here, we utilize the error history
of prediction schemes usually considered as
forecast dross. Errors occur in all practical
prediction models and traditionally are used in
two main ways: most commonly as a measure of
the skill of the model: or, occasionally. to
improve predictions by. for example, regressing
errors against observations. An entirely different
approach is presented here. together with an
application to forecasting tropical cyclone tracks.
The methodology is described in Sect. 2, results
are presented in Sect. 3. and conclusions and
discussion comprise Sect. 4.

2. Nonlinear forecasts with recycled errors

The standard approach to prediction can be
referred to as dualistic. That is. two separate

dynamical systems are formed, one by the
prediction vectors, X*, generated by an algo-
rithm applied to past and present observations.
and the other by the corresponding verification
data set, X. The forecast error vectors, defined as
e = X* — X, provide the link between the two.
However. forecast errors commonly are not
utilized as they are thought of as white noise.
which does not contain any useful information
about either X* or X. Relaxing this assumption
leads to the monistic approach: forecasts and
verifying observations are treated as a unified
dynamical system characterized by the expanded
state vector (X.e) rather than the original state
vector X and the corresponding predicted state
vector (X*.e*), instead of simply X*. Thus, if
the errors contain information about the observed
and the prediction system, the error history
should be expected to contribute to improving
the forecasts.

A nonlinear predictive scheme may simply
be written as X* = §(X), where S is in general
a nonlinear forecasting algorithm, X* is the
predictand at t* + 7 with lead time 7.X(r) are
the verifying observables, wich also enter the
forecast algorithm, S, for + < *. The forecast
algorithm adopted here is the widely-used (non-
linear) simplex method of Sugihara and May
(1990) and is just one of a range of models that
might have been chosen. It is a form of analogue
prediction which, for a time-delay embedding of
dimension m, utilizes the m + 1 nearest neigh-
bors in the time-delay coordinate phase-space
chosen from the “library” or history of the
univariate observations. That is, the predictor
phase space is spanned by the m time-delay
components of X = {X(7).X(r — 7). X(r — 27
Xt = (m—=1)—=7)} with sampling time 7.
The parameter m is chosen to minimize the
forecast error at the first time-step. ¢ + 7, so that
future mappings may be performed. The time
evolution of the centroid of the enclosing
simplex provides the forecast. Other techniques.
such as the radial basis function approach of
Casdagli (1989). and Abarbanel et al. (1993), or
other approaches such as neural nets are not
considered in this study. Predictions, X; = S(X.
based on the calibration data set, X, provide a
first generation, /=1, of the forecast error
history. e :XT — X. They are recycled into
the prediction scheme and enhance the predictor
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Table 1. lteration procedure to obtain the library of recycled errors

Iteration first

second ... last

Forecast pair (X*. ex)
Error e,

(X,.e) =S(X.e, 1)

XJ-X e, =e, =X —X~e,

phase space from X to (X.e) entering the
forecast algorithm at r < r*. A second iteration,
i =2, is performed with the forecast scheme,
X} =S(X.e;). It provides a second generation
of errors, e> = X5 — X, wich, in general are
smaller than the first generation in a mean square
sense. Replacing the first error generation by the
second one and applying the predictive scheme
yields an iteration procedure (see Table ). The
process is continued until error saturation has
been established, without further reduction
achievable in the ensemble averaged sense,
(e2) = (e2)) ~ ((e,-1)"). This saturation error
history. e,, characterizes both the predictive
scheme used and the observed system to be
predicted. Now. both the forecast variable and
the forecast error can be predicted for indepen-
dent data, (X*.e*) =S(X.e,). using the data
library, which includes the recycled errors. In the
final step. this pair is used to further improve the
forecast by error correction, X™* = X* +e*.
Typically, for the geophysical systems we have
worked with thus far, only three or four iterations
are required to achieve saturation, that is, i ~ 3
to 4).

3. Application to reducing tropical cyclone
track errors

We now turn to the multivariate prediction of
cyclone positions. First. the predictands, X*
= S(X), are taken from the observations of the
actual positions, X. Then a library of position
errors of past forecasts, e, is established to unify
the prediction and verification system, as
described by the iteration procedure in Sect. 2.
This leads to the prediction algorithm for the
forecast and forecast error pair, (X*.e¥)=
S(X.e,).

3.1 Data set

The Australian region tropical cyclones and
hurricanes are selected for the forecast experi-

ments. The cyclone track data are available for
the period 1959 to 1998 at 6 hourly time steps.
The library of tracks and of saturation errors
established through error recycling is based on
the even-years of the data set. The optimal error
minimizing embedding dimension of the time-
delay coordinates is found to be m ~ 4. The odd
years chosen for the independent forecasts
comprise more than 150 tropical cyclones with
an average life-time of about 6 days. The
CLIPER statistical regression scheme of Leslie
et al. (1990) serves as a reference forecast. All
forecast errors are presented in a diagram of rms-
distances versus lead-time up to 72 hours.

3.2 Simplex forecasts with and without error
recyeling

Three sets of simplex experiments are per-
formed: first are standard simplex predictions of
observed positions only. X* = S(X); second are
simplex predictions of observations and errors
using the history of both observed positions and
the position errors, (X*.e*) = S(X.e,), and the
last employs the predicted error correction,
X** = X" +e’. The following results are
shown in Fig. 1. Note that the performance of
the standard simplex forecast, X* = S(X), is
comparable to the statistical forecast scheme
CLIPER in the first 24 hours and improved at
longer lead times (denoted by S and C,
respectively, in Fig. 1). Including the saturation
prediction error history in the forecast, X*
= S(X.e,), reduces the mean forecast error by
about 15 to 20km. This scheme is denoted by SE.
Finally, when the forecast X* is corrected by the
predicted error, e*, using the simplex forecast
pair (X*.e*)=S(X.e,). we obtain the best
forecast of all, X** = X* +e*, denoted by
SPE and gaining another 10 to 15 km compared
with the standard complex scheme, S. Expressed
in relative terms, the error reduction, relative to
CLIPER is about 30% for the SPE scheme,
which is very sizable indeed. This relative gain in
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Track Forecast Error (km)
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Fig. 1. Mean position errors
----spe  (km) of tropical cyclone track

forecasts (in the Australian ba-
sin) for up to 72 hours ahead. In
addition to CLIPER (C) there are
three predictions: standard sim-
plex (S). simplex with error

Time (hours)

skill is less for the S and SE schemes but is still
very significant at about 20% and 25%, respec-
tively. The rms error growth in all cases is almost
linear in the first two days but increases at a
slightly faster rate thereafter. This quasi-linear
behavior of the increase in mean tropical cyclone
position out to 72 hours is noted elsewhere in this
Special Issue, in the article by Leslie and Abbey.
It is also worth repeating that the scheme is
extremely quick, taking an insignificant amount
of time on any machine from a fast PC to a high
performance computer.

3.3 Nonlinear combination with NWP-forecasts

A further gain can be achieved by introducing an
independent forecast scheme, in this case the
numerical weather prediction (NWP) model
forecasts (Leslie and LeMarshall, 1998), denoted
by the stae vector, N. and their corresponding
forecast error histories. en. In this sense the
simplex prediction scheme operates as a method
which combines independent forecasts, namely
NWP and standard simplex, in a nonlinear
fashion. As before, forecast iterations establish
the saturation error history using a test data set
and the same iteration procedure described
above. The evaluation of the prediction scheme
is based on the same independent data set. Figure
2 includes the following results. The standard
simplex scheme S(X). again denoted by S: the
NWP forecast, denoted by N: the standard

60 72

history (SE), and simplex plus
error corrections (SPE)

simplex forecasts plus the NWP prediction.
X* = §(X.N), denoted by SN; and. finally, the
forecasts comprising the NWP-model and the
simplex error history, (X*.ef) = S(X.e,.N.ex).
This forecast is obtained by employing the
correction from the predicted error, X** =
X* + e, and is denoted by SNE. The following
features are of interest. The NWP forecasts, N.
are superior to the standard simplex. S. which
deteriorates at a larger rate after two days. Note.
however, that NWP still has difficulty beating
this empiricl method in the first 24 hours. After
24 hours, there is considerable forecast improve-
ment in N of about 15-20 km ove the NWP-
model by the nonlinear hybrid schemes, SN and
SNE where both the observations and the
independent NWP predictions enter into the
simplex forecast algorithm. This is not unex-
pected as the product may be interpreted as a
non-linear combination of the standard simplex,
S. and the NWP forecasts, that is, X* = S§(X, N).
This gain in performance is further increased
when not only NWP-model forecasts (and their
latest forecast errors) are introduced to the
simplex predictor set, but also the simplex errors
are utilized after recycling them (as described
above). X* = S(X.e,.N.ex). Finally. correcting
this forecast for the predicted forecast error.
X** = X* + e, leads to an additional large
gain. It amounts to of another 15-20 km
throughout the forecast interval ranging from
48 to 72 hours. This is a total of about 40 km
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N Fig. 2. Mean position errors
(km) of tropical cyclone track
- - SN . . .
forecasts (in the Australian ba-
— - sNe sin) by four prediction schemes:

the standard simplex scheme (S),
the NWP model (N), the ex-
tended simplex model including
the library of the observations
and the NWP forecasts (SN) and.

Time (hours)

reduction in the 48 to 72 hour forecast range at a
negligible computational cost. It also is an
improvement over CLIPER of about 35% and
relative the NWP model predictions, N, it is a
sizable 10%.

4. Discussion and conclusions

While the conventional approach to forecasting
might be termed dualistic, because it treats
predictions, X*, and observations, X. as two
totally different entities, the monistic approach.
unifies predictions and observations (or forecast
errors) into one system (X.e). In this sense
prediction errors, if included in a forecast model,
enhance the state space by combining observa-
tions and predictions to yield an enlarged state
vector. Therefore, predictions of observables and
predictions of the forecast error are naturally
coupled, (X*,e*), so that, in a final stage, the
forecasts can be improved by the predicted error,
X** = X* + e*. With NWP forecasts, N, being
available, an optimal nonlinear hybrid forecast
scheme. S, can be obtained which is comprised
of the NWP product, N, and its error history, ex.
the observed time series, X, and the error history,
e,, gained by error recycling (using the nonlinear
prediction scheme, S(N.en.X), iteratively). As
joint forecasts for both the variable and its
forecast error, X* and e*, are possible, namely,
(X*, e*) = S(N,en. X, e,), predictions may also
be amended by forecast error estimates, X**

72 finally, the simplex plus NWP
error corrections (SNE)

= X* +e*. This hybrid prediction may be
regarded as basically a weather analogue model
output statistics (A-MOS), which incorporates
the local history of the observed and the
predicted weather in an optimal nonlinear
fashion utilizing error recycling. Further itera-
tions, that is. predicting the error of the error
forecat and repeating the process until conver-
gence, may lead to more refined techniques of
dynamical systems analysis. Applied to tropical
cyclone tracks, the outcome of the monistic
approach. (X*.e*) = S(N.ex, X, e,), demon-
strated a significant improvement in the pre-
dictive skill of that model. The gain in skill
achieved here is indeed large relative to the small
amount of additional computational cost. It is
hoped that this method of recycling forecast
errors finds a similar practical application, both
in tropical cyclone track and numerous other
areas of weather forecasting.
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