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SUMMARY

A nonlinear systems analysis is applied to the tracks of 249 tropical cyclones (with a six-hour sampling
time) in the Australian tropics for the period 1959-1980. First estimates are obtained of the degree of their
chaotic, or irregular, behaviour. The degree of chaos is estimated by normalizing all trajectories to a common
initial position and measuring the average rate at which initially close pairs of pieces of trajectories diverge.

It was found from the correlation integrals calculated for the tropical cyclone tracks that the dimensionality
of the underlying dynamical processes appears to be between six and eight, and that the time scale for e-folding
error growth is about one day. The results of this study therefore suggest that the movement of Australian
region tropical cyclones is predictable deterministically up to about 24 hours in advance. Beyond that limit,
consideration must be given to statistically based techniques.

These findings were supported further by comparing the rate of growth of the observed Australian region
tropical cyclone position variance with that derived from a random walk model superimposed on a mean drift.
The correspondence was very close, with both the empirical and theoretical position variances growing linearly
in time after approximately the first 18 to 24 hours, confirming that stochastic models have a role to play in
forecasts beyond 24 hours.

1. INTRODUCTION

The forecasting of tropical cyclone tracks is a problem of great importance because
of the annual loss of life and destruction of property caused by these systems. Forecasting
techniques used to predict the movement of tropical cyclones vary widely, from the
purely manual methods employed by operational forecasters through to the application
of high resolution numerical models.

Accordingly, tropical cyclones have been identified as the major forecasting problem
by all weather services affected by them, and concerted efforts have been made to
forecast their movement. However, operational position forecasts still show negligible
skill (McBride and Holland 1987; Iwasaki et al. 1987), where skill is defined as the ability
to improve upon simple statistical techniques based on climatology and/or persistence
(A.M.S. 1979), such as the climatology and persistence (CLIPER) models (Neumann
and Pelessier 1981).

Whereas the level of skill in forecasting tropical cyclones has so far proved to be
minimal, some significant variations in basic forecast difficulty have been noted. For
example, the degree of accuracy required for the threshold skill level to be reached
differs considerably between tropical cyclone basins around the world. In some basins
the tropical cyclones follow climatological tracks much more closely than in other basins.
It is of interest here to observe that the Australian—south-west Pacific basin (Fig. 1) has
been identified in a study of six major tropical cyclone areas as having the highest average
level of forecast difficulty (Pike and Neumann 1987).

It is clear from the discussion above that the question of the natural predictability
of tropical cyclone tracks is one that needs to be resolved. The difficulty in obtaining a
significant level of skill is very suggestive of the possibility that we are dealing with a
highly irregular dynamical system, with very sensitive dependence on initial conditions.
For predictability studies of this kind of phenomenon it is required to use appropriate
methods of nonlinear systems analysis (Eckmann and Ruelle 1985; Lorenz 1985). Such
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Figure 1. Two five-year samples (July 1970 to June 1975, July 1975 to June 1980) of tropical cyclone tracks
in the Australian basin. Three geographical regions of cyclone origin are distinguished: Region 1 (<130°E),
region 2 (between 130° and 145°E), region 3 (>145°E); the total basin also is considered.
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techniques have been available since the early 1980s but are only just being applied to
the geosciences.

In this study we will apply nonlinear systems analysis methods to the evolution of
tropical cyclone tracks to estimate their predictability. This is obtained from the prob-
ability distributions obtained by counting the number of initially close and independent
pairs of pieces of tropical cyclone track trajectories of successively increasing duration
that lie within a prescribed distance threshold. These probability distributions can then
be used to estimate both the dimensionality of the tropical cyclone attractor in phase
space and the predictability time scale averaged over it.

2. PREDICTABILITY OF CYCLONE TRACKS

A relevant measure of the predictability of a dynamical system is the rate at which
initially small errors grow. It can be obtained from phase space trajectories representing
the time evolution of the dynamical system. From initially close trajectory pieces a
suitably averaged divergence provides such a measure of predictability, because two
initially close states (one being true and the other erroneous) follow different trajectories
through phase space. The error growth is measured in terms of the distance between the
two close states, which increases with time. In this sense the predictability of a dynamical
system like the atmosphere may be related to the problem of its stability, that is, initially
small differences exceeding a threshold value after a finite time span characterize an
unstable process which eventually becomes unpredictable, and vice versa. It is obvious
that different regions of the phase space may lead to different growth rates of small errors
or, which is equivalent, to different rates of divergence of initially close pieces of
trajectories.

As the main reason for forecast errors—at least in a perfect model—is uncertainty
in the initial conditions, we estimate average bounds of predictability by the rate of
separation between pairs of independent cyclones. For the analysis two simplifying
assumptions are made. First, each cyclone of the pairs to be analysed starts from the
same point. Relaxing this condition has shown basically unchanged results. Secondly, we
have composited and analysed independent cyclone tracks originating in three distinct
regions of the Australian basin (plus the total). Although this has not been proved to be
the optimal discriminator, we assume that regional differentiation accounts for much of
the external or climatic forcing and discard compositing with respect to the large-scale
background flow because the speed and direction can change considerably during the life
cycle of a cyclone.

(a) Basic concepts

(i) Correlation integral. A cyclone trajectory (or a part of it), X,,(¢;), commencing at time
t;, is sampled in a two-dimensional space, say X = (x, ), for m consecutive time steps 7:

Xo(t:) = [x(t), y(t); - - 5 2t + (m = D7), y(t; + (m — D7)]. (2.1)

Let the distance between a pair of cyclones with independent trajectories X,,(t;), X,(4)
(or pieces of it) be represented by the Euclidean norm after k time steps as

d;(k) = [{x(¢; + kt) — x(1; +k)}2 + {y(t; + k1) — y(t; + kT)}?]V>. (2.2)

Then, from a total of N,, cyclone tracks all those independent pairs N, (/) are counted,
whose distance is initially less than a given threshold value, say [, and remains so for the
m — 1 following time steps. That is

dyk)<l,  k=0,...,m—1 (2.3)
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This yields a probability estimate, C,(/), for independent pairs of pieces of cyclone
trajectories, X,,(#), of which N, (/) pairs remain less than a distance / apart from one
another:

Cou(D) = Nu()/(N» — 1) (2.4)

This distribution function, C,(/), is known as the correlation integral and provides
quantitative measures for the underlying mathematical structure leading to irregular time
evolution of the dynamical system, which occurs on attractors in phase space (Grassberger
and Proccacia 1984; Nicolis and Nicolis 1984). One such measure is the dimensionality
of attractors, that is, the number of parameters necessary to control the time evolution
in phase space. Some observations of weather variables (Fraedrich 1987; Essex et al.
1987) suggest low dimensionality which appears to be fractal and qualitatively char-
acterizes chaotic behaviour. Another measure is the rate of divergence of initially close
pieces of trajectories, which is a quantitative measure of the degree of chaos of the
system, or its predictability.

(ii) Dimensionality. Consider data points randomly distributed on a line, on a surface,
in a volume. The relative number of pairs of points, which are up to a distance / apart,
grows linearly, quadratically, cubically with increasing /, that is, proportional to [, I?, I°.
This qualitative view can be generalized to deterministic systems whose dynamics can
evolve on relatively low-dimensional attractors embedded in phase space of higher
dimension. The attractor dimension D, may then be estimated analogously using the
cumulative distance distribution (correlation integral):

C(l)~1P2 for I—0 2.5)

generalizing the Euclidean distance (2.2) according to the phase space dimension (see,
for example, Eckmann and Ruelle 1985 and references therein). A substitute phase space
may be used when analysing data (given, for example, by single- or two-variable time
series). Independent pieces of data trajectories of sufficiently long duration embed the
attractor in a substitute phase space spanned by the time-lagged coordinates provided by
the data. Then C,,(I) ~ IP2 for [— 0 and m sufficiently large (see Packard et al. 1980).
Note that in this study we are spanning a substitute phase space using two independent
time trajectories, x(¢) and y(f), whereas the more common type of nonlinear analysis of
climatological data is based on a single variable.

(iii) Predictability (degree of chaos). The probability, or relative number of cyclone pairs
remaining within a fixed distance /, decreases with increasing duration of their time
trajectory. Thus the change from (m —1)7 to m7 in duration and, related to it, from C,,
to C,, ., in probability, provides a measure of the mean escape rate (divergence) of close
pairs of pieces of trajectories from a tube of width /:

K, =Q1/t)InC,,()/C,us1 (D), for -0, m—> . (2.6)

Strictly speaking, K, is the order-2 entropy and provides a lower bound for the
Kolmogoroff entropy, K= ZA;. For smooth dynamics, K can be shown to be identical
to the sum of all positive characteristic exponents A;>0, corresponding to the
expanding axes of an infinitesimally small error volume on the attractor. That is,
K > K, = —lim(I/m7)Zp(ig, ..., iy ) for m— o and 71— 0; p(ig, ..., in-;) is the joint
probability that the trajectory is in box i, at t=0, i; at t=1,...; the sum is the
probability that a pair of pieces of time trajectories fall into the same sequence of boxes
(igs -++51m—1) of the space—time partitioning (/, 7) with (/,7) — 0 (see for example Eck-
mann and Ruelle 1985; Schuster 1984; and for a qualitative interpretation see Fraedrich
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1987). The inverse value 1/K; in the domain of constant D,-slopes defines a mean time
scale (averaged over the attractor) up to which deterministic predictability may be
possible, considering an e-folding rate of the divergence of initially close trajectory pieces.

The combination of (2.5) and (2.6) shows that the correlation integral C, (/) scales
for m— e and [— 0 as

C,.() ~ IP2exp(—m1K,).

Estimates of the cumulative distribution C, (/) are presented in a InC,(/) versus In/
diagram for increasing embedding dimension m, that is for pieces of cyclone tracks of
duration m7. From these diagrams one can now derive, at least in principle, the saturation
dimension of the attractor, D,, from the slopes of the InC(/) graphs, which remain
unchanged for sufficiently large embedding m, and the predictability, K,, from the
distance between them.,

(b) A first application: Random walk cyclones with mean drift

As a first application and to demonstrate the method we consider random walk (or
Brownian motion) trajectories commencing from a regional pool of cyclones, whose
initial positions [x(t,), y(¢,)] are given by a bivariate circular Gaussian distribution with
mean [(x(%,)), (y(#))] and variance s? = s> = s>. Furthermore, let the new locus of the
cyclone after time step 7 be independent of the previous one (except for a mean drift
u,v) and generated by isotropic and Gaussian-distributed white noise g (with zero mean
and the same variance s} for the x and y coordinates). Then the x position of the cyclone
at time ¢, + kvt

x(t; + kt) = x(t;) + ukt + 2, g(kt) 2.7)
k

is Gaussian distributed with mean (x(;)) + ukt and variance s* + ks; s? is the variance
of the initial positions x(;) and s is the variance of the random noise g which is added
after each time step . Furthermore, the x difference between the positions of two
statistically independent cyclone events

d, (k) = x(t; + kz) — x(t; + kt) = x(t;) — x(t;) + % gi(kt) — % gikt) (2.8

is also Gaussian distributed with zero mean and variance
S2(k) = 2(s* + ksf),)‘ (2.9)

(i) Correlation integral. Identical expressions hold for the y difference due to the circular
distribution of the initial positions and the isotropy of the random noise. Then, each of
the two squared x- or y-difference components, d2(k) or d;(k), which enter the Euclidean
distance (2.2), is chi-squared distributed. That is, the distribution of either one of the
two components defining the squared distance d3(k) = d2(k) + d;(k) has the gamma
density (Feller 1966):

fila; v) = (1/T(0))a{d2(k)}* " expl—ad2(k)} (2.10)

where I'(v) is the gamma function, a = 1/25%k), v=1/2>0 or n=2v degrees of
freedom; the expectation and variance of this distribution are v/a and v/a?, respectively.
As the family of gamma densities is closed under convolutions (*), the sum of the
two independent gamma-distributed variables of the same variance, di(k) + dj(k),
remains gamma distributed, f(a;v,)*f(a;v,) = fla;v; + vy), with v, =v, =3 Thus
d2(k) = d2(k) + d}(k) is gamma distributed with the exponential density f, and the
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related distribution function Fj:
fr = {1/28%(k)} exp{—d} /28> (k)} }
prob{d} (k) < I’} = F, = 1 — exp{—1*/25%(k)}.

Since the d}(k) are statistically independent on random walk cyclone tracks (i = j),
(2.11) leads to the joint probability function of independent events (that is, of the squared
distances dj(k)):

prob{dj(k) <P fork=0,1,...,m =1} = C,,(I) = FoF, ... F,,_;. (2:12)

(2.11)

From the distribution function C,,(/) the dimensionality and predictability of the stochastic
system can be deduced, which may then serve as a standard of comparison for the results
obtained from data analysis.
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Figure 2. Random walk cyclones with mean drift: Theoretical cumulative distribution function C,(I) of the
number of pairs of independent cyclone tracks remaining within the distance [ for m = 1,. .. , 8 successive time
steps. The C,,(/) graphs are displayed in a In C,,(/) versus In (//s,) diagram with m increasing from left to right.
Changes in the Gaussian white noise standard deviation, s, are additive. The slopes approach D,— 2m for
decreasing distance threshold /, Eq. (2.13). Slope and distance lead to measures of dimension and entropy.
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(ii) Dimensionality. The C,(I) graphs are displayed in a In C,(/) versus In(//s,) diagram
(Fig. 2). The distance / has been scaled by the Gaussian white noise standard deviation,
s,, and all cyclones are assumed to commence at the same location so that s2=0in (2.9).
As expected from two-dimensional stochastic models, the slope D, of In C,(I) versus In!
for a given value of / increases in proportion to the duration as measured by m, and that

D, =dlnC,()/dlnl=2m for [—0. (2.13)

This result is obtained after introducing (2.12) into (2.13) and applying I'Hospital’s rule.
Thus the correlation dimension, D), of a two-dimensional stochastic random walk process
increases proportionally to each time step, and the constant of proportionality is given
by the dimension of the state space of the stochastic system, that is, with each time step
two new independent variables are created. This result can be generalized to deterministic
processes, where the attractor dimension converges to a finite saturation value
D, — D, <2m, which may be fractal or non-integral.

(iii) Predictability. From empirically determined C,,(/) graphs the mean rate of trajectory
separation (or mean divergence) can be deduced. In the case of the stochastic cyclone
model the definition (2.6) together with (2.12) leads to the following expression for the
order-2 entropy:

K, = —(1/7)InF,,. (2.14)

Here it becomes evident that K is a measure (lower bound) of the Kolmogoroff entropy
(or the degree of chaos), that is, the rate at which information about the state of an
evolving system is lost. Thus, in the case of a stochastic system like the random walk
cyclones, the degree of chaos or average rate of information loss (here K,) tends to
infinity both for /— 0 (that is, with decreasing scale of the observational network
measured in terms of cyclone distance [) and for m — oo (that is, for generating information
with each time step by successively adding random noise at fixed network scaling).

In this sense the inverse value, 1/K,, provides a mean time scale of predictability.
At the required limit (/— 0) it is not surprising that the predictability time scale (1/K,)
of a Gaussian stochastic system vanishes, as K, = o, after substituting (2.11) and (2.12)
into (2.14). The same holds at a fixed distance threshold /, when lead times become
larger (m — o), that is, when more degrees of freedom (random noise) are added. Figure
3 shows this structure for random walk (cyclone) trajectories commencing at a fixed
location (that is, s> = 0 in (2.9)). As in Fig. 2 the distance thresholds / are normalized by
the Gaussian white noise standard deviation s,.

3. RESULTS

The methods described in section 2 were applied to the three main Australian
tropical cyclone regions shown in Fig. 1, individually and collectively. The numbers of
tropical cyclones in these regions were 103, 47 and 99 respectively, a total of 249 tropical
cyclones for the period 1959-1980. A tropical cyclone is designated as being in a given
region if its initial position is in that region. Tropical cyclones may therefore, on occasion,
move from one region to another or re-develop in another region during their life time.

(a) Estimates of predictability time scales

The basic approach adopted here is to calculate the correlation integrals given by
Eq. (2.4). From the correlation integral the dimensionality and predictability can be
deduced. It is noted that the distance norm corresponding to Eq. (2.2) is now the great
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Figure 3. Random walk cyclones with mean drift: Predictability time scale (and order-2 entropy) depending
on the duration m of the trajectory and the distance scale [/ which is normalized with the Gaussian white noise
standard deviation, s,.

circle distance, rather than the straight line distance. It is also noted that the calculations
were performed twice, once with the original tropical cyclone position and once with the
position normalized initially to a common origin. In the following we will discuss mainly
the normalized results because the differences were negligible.

The analyses are displayed in a double logarithmic diagram (Figs. 4(a,b), with
in C,,(I) versus Inl) to make direct estimates of the dimensionality of the processes
involved and their predictability time scales as outlined in section 2. The following results
should be mentioned:

(i) A chi-squared goodness-of-fit test was applied to compare the correlation integrals of
the random walk or Brownian motion cyclone model (with mean drift, (2.12)) and the
related empirical results, (2.4); that is, a theoretical and an empirical distribution are
compared. The stochastic model has been calibrated by the observed position variances
S*(k) = ksZ, which increased linearly with the duration of the cyclone trajectory (2.9)
and show best fit to the observations after k7 > 12 hours (Fig. 5). This test leads to the
rejection of the null hypothesis of the similarity between the distributions (on a 95%
significance level).

(ii) The cumulative distribution functions (correlation integrals) of the observed cyclone
tracks show a considerably smaller rate of increase in slope (dimension D, < 2m) with
increasing lead time than that of the stochastic model. Note, however, that the empirical
distributions do not exhibit an extensive linear domain (except for region 3 and perhaps
region 1) which is consistent with that expected for asymptotic behaviour. Therefore we
select =8 <InC,(I) <—4 as a suitable interval where the counting frequencies are
considered to be sufficiently large to allow meaningful estimates. A saturation dimension,
D,.=6-17, seems to be approached after m =15 six-hour time steps. That is, no
further increase in slope is expected when increasing the embedding dimension m. Not
unexpectedly this is in agreement with results from analyses of mid-latitude weather.
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suggesting it to be governed by a relatively low-dimensional attractor (Essex et al. 1987,
Fraedrich 1987). Although saturation appears to have been reached, a small doubt
remains because some subjective interpretation is involved in the limit process of fitting
C..(D) to IP2 for I— 0.

(iii) Using the saturation dimension, estimates of the order-2 entropy K, or predictability
1/K,, can be made, and provide a bound to the deterministic predictability in terms of
an e-folding time scale for error growth. This predictability time scale is found to lie
between 12 and 24 hours, estimated in the distance range 150km = /=< 400 km.

Finally, some comments on the limitations of this method applied to cyclone tracks
are in order. A cyclone track is an event of finite time span which does not necessarily
cover the phase space completely. Thus, when constructing the substitute phase space
using time-lagged coordinates, its dimension (necessary to embed the cyclone track
attractor) is limited by the life time of the cyclones. Therefore, it is more appropriate to
speak of average cyclone track predictability based on Lagrangian analogues when
analysing the distance statistics than of predictability averaged over the weather attractor.

(b) Comparison with random walk tropical cyclones

The results of section 3(a) suggest that tropical cyclones in the Australian region
have an e-folding error growth time scale of 1/K, =~ one day. The question that arises
immediately is how do tropical cyclones behave beyond this predictability limit, which is
the limit beyond which deterministic models cannot be used with confidence as forecasting
tools. As a first attempt to examine this aspect we decided to see if the simple stochastic
random walk model described in section 2(b) provides any insights. One of the results
of this model is that the variance of positions grows linearly with time.

The observed variance of tropical cyclone position with time was plotted for each
of the regions 1 to 3 and for the total region. These are given in Fig. 5 together with a
random walk model commencing at 12 hours. It is clear immediately that there is a very
close correspondence between the observed tropical cyclone and random walk cyclone
variance between 18 and 60 hours. This close match between observed and random walk
tropical cyclones gives further support for the deterministic predictability time scale of
12 to 24 hours.

Finally, some support for the relevance of a characteristic predictability time scale
of about 18 hours is provided by the duration of straight line segments (to the nearest
three hours). They are obtained from the Australian basin tropical cyclone tracks for the
five seasons 1961-63 and 1975-78 (Lajoie 1984). It appears (Fig. 6) that the numbers of
straight line segments on a tropical cyclone track which last longer than 18 hours, are
almost equally distributed. However, the statistics of straight line segments of shorter
duration show a more complex behaviour.

4. DISCUSSION AND CONCLUSIONS

The implications of the results obtained in section 3 are that for Australian region
tropical cyclones the e-folding error growth time scale appears to be quite short, about
one day. This time scale is consistent with the acknowledged position of the Australian—
south-west Pacific basin as the region of greatest tropical cyclone track forecast difficulty
(see, for example, Pike and Neumann 1987). It is also not surprising, therefore, that
forecasting the movement of tropical cyclones in the Australian region has so far shown
negligible skill.

It would appear, then, that for the Australian region, purely deterministic forecast
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Figure 4(a). Cumulative distance distribution C,(/) of pairs of independent trajectory pieces displayed in a
In C,(/) versus In / diagram for a sequence of m six-hour time steps (m = 1 to 15). Tropical cyclone trajectories
in the three geographical regions and the total Australian basin are analysed, with the position normalized
initially to a common origin.

models cannot be expected to provide skilful forecasts much beyond the predictability
time scale of about one day or so, because of the intrinsic sensitivity of the dynamics to
the initial conditions.

A further interesting result discussed in section 3 was the close correspondence in
the growth of tropical cyclone position variance, after about 18 hours, between the
observed tropical cyclones and a theoretical model comprising a random walk process
superimposed on a mean drift. This close correspondence after about 18 hours confirmed
the anticipated role that stochastic models such as that of Keenan (1985)—in particular
if they are based on climatological information including the mean drift—might be
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expected to play in forecasting tropical cyclone positions beyond the deterministic
predictability time scale.

It should be noted that the techniques used in obtaining the e-folding error growth
time scale are fairly new and are still being refined. In section 3, for example, it is
mentioned that sometimes it is difficult to decide objectively whether the correlation
integrals truly have reached saturation, particularly in cases where not all of the attractor
has been captured. As yet the method used here may not allow for variable external
forcing that might lead to a relatively large number of degrees of freedom in the
deterministic processes.
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Figure 6. Statistics of straight line segments in the tracks of Australian basin tropical cyclones: Cumulative
percentages of straight line segments versus their duration in three-hour intervals (after Lajoie 1984).

In a comparison study to be carried out in the future we intend to apply a similar
methodology to that used in this study to examine the predictability characteristics of
extratropical cyclone tracks. In the case of extratropical cyclone tracks, we expect that
quite different dimensionality and predictability time scales will emerge.

ACKNOWLEDGMENTS

We would like to express our appreciation for the stimulating discussions on this
topic we have had with BMRC staff, particularly Tom Keenan, Greg Holland and France
Lajoie. We would also like to thank Kelvin Wong and Peter Yew for drafting assistance,
Fay Stroumos and Lucie Crivera for typing the manuscript, and referees for their
comments.



92 K. FRAEDRICH and L. M. LESLIE

American Meteorological Society

Eckmann, J. P. and Ruelle, D.

Essex, C., Lookman, T. and
Nerenberg, M. A. H.

Feller, W.

Fraedrich, K.

Grassberger, P. and Proccacia, 1.

Iwasaki, T., Nakano, H. and
Sugi, M.

Keenan, T. D.

Lajoie, F. A.

Lorenz, E. N.

McBride, J. L. and Holland, G. I.

Neumann, C. J. and Pelissier, J. M.

Nicolis, C. and Nicolis, G.

Packard, N. J., Crutchfield, J. P.,
Farmer, J. D. and Shaw, R. S.

Pike, A. C. and Neumann, C. J.

Schuster, J. G.

1979

1985
1987
1966
1987
1984

1987

1985
1984

1985

1987

1981

1984
1980
1987

1984

REFERENCES

Policy statement of the American Meteorological Society on
weather forecasting. Bull. Am. Meteorol. Soc., 60, 1453—
1454

Ergodic theory of chaos and strange attractors. Rev. Modern
Phys., 57, 617-656

The climate attractor over short timescales. Nature, 326, 64—
66

An introduction to probability theory and its applications. Vol.
II. John Wiley & Sons

Estimating weather and climate predictability on attractors. J.
Atmos. Sci., 44, 722-728

Dimensions and entropies of strange attractors from a fluc-
tuating dynamics approach. Physica, 13D, 34-54

The performance of a typhoon track prediction model with
cumulus parameterization. J. Meteorol. Soc. Jap., 65,
555-570

Statistical forecasting of tropical cyclone movement in the
Australian region. Q. J. R. Meteorol. Soc., 111, 603-615

‘Report on the movement of tropical cyclones in the Australian
region’. Australian Bureau of Meteorology, Technical
report 58

“The growth of errors in prediction’. Pp. 243-265 in Turbulence
and predictability in geophysicl fluid dynamics and climate
dynamics. Eds. M. Ghil, R. Benzi and G. Parisi. North-
Holland

Tropical cyclone forecasting: a worldwide summary of tech-
niques of verification statistics. Bull. Am. Meteorol. Soc.,
68, 1230-1238

Models of the prediction of tropical cyclone motion over the
North Atlantic: An operational evaluation. Mon.
Weather Rev., 109, 522-538

Is there a climate attractor? Nature, 311, 529-532

Geometry from a time series. Phys. Rev. Lett., 45, 712-716

The variation of track forecast difficulty among tropical cyclone
basins. Weather and Forecasting, 2, 237-241
Deterministic chaos. Physik Verlag, Weinheim



