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ABSTRACT

A “minimal” model is proposed here for the short-term prediction (up to 12 h ahead) of precipitation occurrence
in the tropics. The model is purely statistical, consisting of an optimally weighted linear combination of a
Markov chain and persistence. It is minimal in the sense that only surface data are needed, and the computing

requirements are almost nil.

In this study the skill of the minimal model, i.e., accuracy relative to climatology and/or persistence, is
demonstrated in theory and practice. The model was tested in real time during the 1986/87 Australian monsoon

season at the tropical city of Darwin.

Results of the real-time experiment reveal that the minimal model was the only model of those available to
the Australian Bureau of Meteorology (including manual forecasts, a regional NWP model, and a model output
statistics (MOS) scheme) that exhibited forecast accuracy greater than that of both climatology and persistence.

1. Introduction

It has been pointed out elsewhere (for example Hol-
land et al. 1987) that short-range forecasting in the
tropics is often not as good as that obtained using cli-
matology and/or persistence. The truth of this claim
has been substantiated further by a recent real-time
trial of methods for the short-term prediction of pre-
cipitation at the Australian tropical city of Darwin
{Fraedrich and Leslie 1988). In this real-time trial, five
methods were evaluated and compared with climatol-
ogy and persistence. The methods included manual
forecasts, the Australian region numerical weather
prediction (NWP) model forecasts, model output sta-
tistics (MOS) schemes, a Markov chain model, and a
linear combination of persistence and the Markov
chain. Results of the real-time trial revealed that of all
the schemes, only the Markov chain model and the
Markov chain-persistence model showed a level of skill,
i.e., accuracy, greater than both climatology and per-
sistence. Moreover, the Markov chain model by itself
was only marginally superior to climatology.

Two main findings emerged from the 1986/87 Dar-
win real-time trial, First, it showed that purely statistical
models requiring only minimal resources were still
clearly superior to other methods and, currently, were
the only skillful methods. Second, the potency of the
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linear combination of the Markov chain model and
persistence merited further investigation, in the sense
that the meteorological and statistical background also
needs to be analyzed.

The purpose of this note is to show that for tropical
stations like Darwin, the most effective short-term
forecasts of precipitation are obtainable from purely
statistical methods like the Markov-persistence scheme.
Deterministic methods may well prove to be the most
accurate in the future but are currently inferior to the
statistical schemes.

2. Combining probability forecasts

Two probabilistic forecast schemes, ¢, and ¢, pre-
dicting the binary variable, §, (e.g., rainfall occurrence)
can be linearly combined:

¢s = ady + (1 — )¢, 2.1

satisfying 0 < ¢, < 1. Minimizing the ensemble mean
square error (or half-Brier score) of the combination
forecast,

By = {6 — ¢4 2.2)

One obtains the optimal weighting factor weight, a, of
the combination forecast ¢, (2.1) and the related half-
Brier score, B,, after some algebra (Fraedrich and Les-
lie 1987):

a= 8¢y — {b¢p2) + <¢22> — {$192)
(@:%) + (¢2%) — 2 $192)
B, = {(6 — ¢2)*)
_ ((81) — (8¢2) + {$2*) — {$:162))
(6:%) + (%) — 212

(2.3)
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where ((5 — ¢2)*) = B, is the half-Brier score for the
model ¢;; (¢1¢,) the covariance between the predic-
tions ¢, and ¢,, (6¢,) and (5¢,) are the covariances
between either ¢, and the observation § or ¢, and §;
{$:*) and {¢,*) are measures of the prediction vari-
ances; and (4%) is the observed variability. All of these
second moments are not taken as deviations from their
respective means. Two probabilistic forecast models of
the same variable may then be combined optimally
after evaluating the required statistics. The following
two basic statistical schemes are combined to obtain
an optimal and simply applicable model for the short-
term prediction of rainfall during the tropical wet sea-
son: a Markov chain and persistence. Note that the
combination of purely statistical schemes may be re-
placed by a simple model using multiple regression
techniques for a probabilistic variable. However, pos-
sible scale interactions could remain unresolved.

a. Two rainfall forecast models

1) THE MARKOV CHAIN MODEL

The Markov chain model for short-term precipi-
tation forecasts, originally developed by Fraedrich and
Muller (1983) and applied by Miller and Leslie (1985)
to a number of Australian cities, is based on imme-
diately available 3 h single station surface observations.
It was used to predict the probability of a binary (yes/
no) observable (i.e., the occurrence of at least one rain-
fall event during the half-day period 0600 to 1800 LST).
For the prediction of the probability of any precipita-
tion, four mutually exclusive states (k) are used. These
are three cloud-states (0-2, 3-5, and 6-8 oktas, all with
no rain) and one rain state, which includes precipitation
not only at a station, but also evidence of precipitation
in the neighborhood (denoted by the international
weather codes WW = 13-17, 20, 21, 25, 27, 50-69,
80-99). For the Markov chain model, the probability
of precipitation for a given state k (=1, - -+, 4), at
current time ¢, and for 4 (=12 h) ahead is

¢1 = ¢m(k, Z h) = a(k’ Z h) + 2 bl(k, [ h)/Yl (2-4)
The four covariates X;(/ = 1, - « «, 4) are the surface
pressure, the diurnally corrected 3 h pressure change,
the dewpoint depression, and the east—west component
of the wind, respectively. The introduction of other
possible predictors from surface observations did not
lead to a significant improvement in the forecast ac-
curacy. The intercepts a(k, ¢, h) are different for each
month but common slopes are fitted for all months.
The states k and covariates X; are given by 3 h surface
observations prior to the forecast period so that there
is no lead time involved. These predictors can be in-
terpreted as a single station mesoscale dataset with the
Markov chain operating as a statistical mesoscale pre-
diction model for the probability of rainfall.
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2) PERSISTENCE FORECASTS

Persistence forecasts generally provide one kind of
“zero skill”” base from which one evaluates the quality
of forecasts obtained by individual techniques. Here it
is a binary (yes/no) forecast of the half-day (0600 to
1800 LST) observable, 8(¢), using the previous half-
day’s observation, (¢ — 24 h), which is available with
a 12 h lead time:

o2 = ¢p = 8(t — 24 h). (2.5)

Due to the time scale involved, persistence provides
information on the synoptic scale, which is particularly
useful in regions dominated by extended spells, such
as monsoonal periods and breaks.

Thus, a linear combination of the Markov chain with
persistence may be interpreted as a mesoscale model
correcting the larger-scale forecasts.

b. Estimating the optimal weighting factor a

There are two methods for estimating the optimal
value of @ and the associated half-Brier score, B, . First,
the value of 2 may be derived from hindcasts using the
long-term data records at the station. Direct substitu-
tion into (2.3) will then provide the optimal values for
a and B, . Alternatively, a first-order estimate of the
value of @ may be obtained theoretically, as described
in the Appendix. If it is assumed that the second mo-
ments are dominated by the means (and not the de-
viations) then, for the Markov chain—-persistence com-
bination, the optimal values of g and B, are found io
be [Eq. (A6) in the Appendix]

a ~ 3+ (B, ~ B)2B,,

B, ~ B,— a’B,,
where B, B,, and B, are the Brier scores of persistence,
the Markov chain, and climatology, respectively.

The results of a precipitation forecast trial (Fraedrich
and Leslie 1987) for the Australian tropical station
Darwin provide a check of the value of the optimal
weighting factor, a, as will be shown in section 3.

Persistence-climatology, as an optimized linear
combination of forecast schemes, defines the level of
zero-skill for combined predictions. The optimal values
for the weighting factor 4 and, in particular, the half-
Brier score B,, (Fraedrich and Leslic 1988, Eq. 14 with
¢1 = d’p),

a=1- B,/2B,
By = B, — B/*/4B,

are also discussed in section 3.

3. Results from the 1986/87 real-time trial

Half-Brier scores were computed for a number of
schemes in the real-time trial for the monsoon season
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TABLE 1. Half-Brier score for the various schemes are shown for
the real-time trial of short-term rainfall prediction at Darwin. Also
included are the half-Brier scores for climatology and persistence.
The half-Brier scores are given for both WW-rain and RR-rain (in
parentheses). Smaller half-Brier scores indicate greater accuracy.

Method Half-Brier score
Manual forecasts 0.187 (0.226)
NWP model 0.461 (0.539)
MOS 0.221 (0.223)
Markov chain 0.147 (0.173)
Markov chain-persistence 0.127 (0.167)
Climatology 0.153 (0.216)
Persistence 0.222 (0.356)

Persistence—climatology 0.142 (0.209)

December 1986 to February 1987. The results are de-
scribed in detail by Fraedrich and Leslie (1988) and
only a few relevant results are needed here.

In Table 1, the performance of five forecasting tech-
nigues is summarized. These include the manual fore-
casts, numerical weather prediction model forecasts,
model output statistics, Markov chain forecasts, and
the combined persistence-Markov chain forecasts.
They are compared with climatology, persistence and
persistence—climatology, which may be regarded as
levels of zero skill. The results are presented for both
WW- and RR-rainfall (using the International Weather
Code notation). It is immediately clear from Table 1
that the only prediction scheme which is significantly
more accurate than climatology, persistence, and per-
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sistence~climatology is the Markov-persistence com-
bination.

The optimal weighting factor, a, for the Markov-
persistence combination was chosen from the 20-yr
1962-1981 surface dataset. The value of ¢, computed
from (2.3), was @ = 0.66 for WW-rain and 0.90 for
RR-rain. The Appendix also provides for an estimate
of the value of g, from (A6), of a = 0.74 (0.92), using
the 1986/87 data. This close correspondence between
the estimates of g, using the general theory of Fraedrich
and Leslie (1987) and the first-order estimate in the
Appendix, gives added confidence in the value of a
and its stability from season to season.

Why is the combination of persistence and the Mar-
kov chain so effective? Part of the answer lies in Fig.
1, which shows the observed half-day (0600 to 1800
LST) rainfall for Darwin during the period 1 December
1986-28 February 1987. Also shown by broken heavy
lines are the periods during which measurable precip-
itation at the station was recorded and the periods dur-
ing which measurable rainfall or evidence of rainfall
near the station was recorded. Particularly in the case
of WW-rain, there are extended wet and dry spells,
characteristic of a monsoon regime. In simplistic terms,
it appears that the role of persistence is to represent
the synoptic scale and the Markov chain, which uses
observed data at the time the forecast is made to provide
the embedded mesoscale information.

4. Conclusions

It has been demonstrated, both in theory and in
practice, that a minimal model consisting of a optimally
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FI1G. 1. The observed half-day (0600 to 1800 LST) rainfall at Darwin for the period 1 December 1986 to 28 February 1987 is shown
(in mm). Also represented schematically by heavy lines are the observed half-days on which RR- and WW-rainfall was reported.
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weighted linear combination of persistence, and a
Markov chain fitted to-3 h surface data, is the most
skillful of all the models tested in a real-time trial of
short-term rainfall prediction for the Australian tropical
station of Darwin. In fact, the Markov-persistence
model was the only model that exhibited accuracy sig-
nificantly greater than that of climatology.

The results of the trial and the theory contained in
the Appendix suggest that such a “minimal” model
should prove to be an effective forecasting tool for
tropical stations like Darwin, which have reasonably
extended spells of dry and wet weather. The attrac-
tiveness of the model is enhanced by the fact that only
surface data is needed and the computing resources
required are very small.

It is reasonable to anticipate that deterministic
methods, such as dynamical weather prediction models
developed specifically for the tropics, will eventually
reach levels of skill beyond these of the statistical
methods. In the meantime, however, such models as
the one described here appear to be essential for a skill-
ful short-term forecast of precipitation in the tropics.

APPENDIX
Estimation of Weighting Factor a

The required statistical parameters (2.3) for the
combination forecast (2.1) are estimated as follows.
They can be derived in terms of the error of each in-
dividual scheme. Thus, from the half-Brier scores of
each forecast scheme, ¢; with i = m or p, one can
deduce the covariance between its prediction and the
observation:

Bi={(6— ¢:)%) = (8 + (%) — 2{d¢:)
(5¢:) = (¢ + (d%) — B)/2. (A1)

First, the statistics of predictions based on the climate
probability are determined for further reference and
comparison. The climate probability, ¢., to forecast
the binary observable, 6 = 1 or 0 is given by the mean,
(8) = (8*) = ¢.; the half-Brier score and the second
moments of the climate forecasts are then

Bc'= oc — ¢02 A
{8y = ¢(8) = (o3 = ¢ (A2)

Next consider persistence, ¢; = ¢,, as a binary pre-
diction model for the binary variable 8. The required
statistical relationships are readily deduced:

By = 2¢c = (3¢p))
(8¢,y = (8(D)3(t — 24 h)y = ¢. — B,/2
(8p) = (&) = 6.

Note that the mean of the original time series, (¢)
= ¢, and the mean of a persistence forecast, say from
one day to the next, (¢,), are identical because the
two time series differ only by a time shift.

(A3)
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For categorical predictions (such as persistence of
the rainfall occurrence), the half-Brier score B, is iden-
tical to the relative number of incorrect forecasts.

Finally, the Markov chain, ¢; = ¢,,, is introduced
as a probabilistic forecast scheme calibrated by past
weather observations. The half-Brier score and the sec-
ond moment are

B = (8%) + {¢m’) = 2{8bm)
<6¢m> = (¢ + <¢m2> = B)/2. (A4a)

One may assume that there will be good reliability
(or small bias) for a forecast scheme like the Markov
chain, if it is based on statistically stable estimates from
a sufficiently large dataset (i.e., {(¢my ~ {¢.)). Fur-
thermore, one may assume that if the second moment
is dominated by the mean and not the deviations, then

(b)Y = L bmp* + {dm’y ~ &> (AdD)

This assumption should only be made if the mean,
($my ~ ¢.1is large, i.e., the rainfall occurrence is the
dominating mode of the time series for which persis-
tence provides relatively good forecasts. The last sta-
tistical parameter to be determined for the combination
forecast is the covariance between the predictive
schemes, ¢; and ¢,:

(bro) = (S by + () ~ (SmX ). (AS)

Again, as a first estimate, one may assume the second
moment to be dominated by the means and neglect
the contribution by the deviations, i.e., the second term
in (AS).

Introducing (A2) to (A5) into (2.3) leads to first-order
estimates of the weight of the Markov-persistence
combination and its half-Brier score:

an~ % + (B, — B)/2B.

B, ~ B, — a*B.. (A6)
A special case arises when a climate-persistence

- combination is considered. Replacing ¢, by ¢., B, by

B,, etc., yields the following weight and error (note
that they are not approximated):

a= B,/2B,
B, = B.(1 = (1 — a). (A7)
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