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ABSTRACT

In this article, the theory is presented for a linear combination of two independent predictive techniques
(either probabilistic or binary). It is shown that substantial gains might be expected for optimal weighting of
the combination. The theory is general but also is applied to several special cases which may be useful for both
short-term weather prediction and long-range forecasting. Using data from a recent operational evaluation of
techniques for the short-term predicting of rainfall, a linear combination of two independent predictive techniques
gives, in practice, improvement in skill compared with the techniques used individually. In the present case, a
Markov chain and a numerical weather prediction (NWP) model were combined. The half-Brier score of the
linear combination was 0.142 compared with individual scores of 0.164 for the Markov chain model and 0.258
for the NWP model. The combined Markov-NWP scheme may provide a possible simple alternative to the

MOS approach for predictions up to 12 hours ahead.

1. Introduction

Optimal weighting of forecasts has received much
attention in economics, management and statistics lit-
erature. In meteorology, also, it is known that consen-
sus forecasts and the linear combination of predictions
provide more accurate results than the individual fore-
casts which comprise the consenses. Although “this is
the incontrovertible fact,” and some combined schemes
have been assessed (Perrone and Miller, 1985; Balzer,
1986) it still “does not appear to be widely recognized
or accepted” (Thompson, 1977). In particular, short-
term prediction (up to 12 hours) at single stations and
long-range forecasting seem to be areas where a linear
combination of the following two independent predic-
tion schemes is promising: forecasts made by stochastic
models, such as Markov chains for discrete or auto-
regressive models for continuous variables, can be
combined with deterministic predictions, e.g., numer-
ical weather predictions (NWP). This is especially true
as the number of available predictive techniques has
proliferated in recent years.

With the advantages of NWPs being obvious, Mar-
kov chains and other stochastic techniques have shown
considerable short-term skill in forecasting various
weather variables: the probabilities of 12-hourly rainfall
predicted at midlatitude stations achieve half-Brier
scores between 0.12 and 0.17, and furthermore, these
predictions are only 20%-25% incorrect for wet and
dry categories after deriving an optimal probability
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threshold value (Fraedrich and Miiller, 1986). This level
of skill for rainfall prediction is comparable to that of
NWP models with (or without) applying MOS-tech-
niques (Fraedrich and Leslie, 1986). Therefore, the
purpose of this paper is to combine independent prob-
abilistic and categorical NWP predictions to enhance
forecasting skill.

In this article, Thompson’s (1977) analysis, which
combines two unbiased prediction schemes of contin-
uous variables, is extended to probabilistic predictions,
thereby constraining the variational principle to be ap-
plied. In some general format this has been described
by Passi (1975) who, however, used unbiased estimates.
In section 2, two independent probability forecasts are
linearly combined to obtain the best estimate, and some
basic examples are discussed briefly. In section 3 Mar-
kov and NWP predictions are combined to evaluate
the forecast skill of the daytime probability of rainfall
at a midlatitude station (Melbourne), which has direct
impact on the quality of routine weather forecasts. The
forecast skill is compared with that of the predictive
schemes individually.

2. Combining two independent probability forecasts

Let ¢ denote the probability of an event, such as a
wet or dry interval, forecast by some predictive scheme.
This prediction may be either a probabilistic variable
(0 < ¢ < 1), or a binary variable (¢ = 1 or 0). The aim
of the predictive scheme is to forecast the binary ob-
servation, 6, (6 = 1 or 0) with a high degree of skill.
One appropriate measure of success is the ensemble
mean-square error, or half-Brier score. For example,
the half-Brier score of a climatology prediction, ¢,
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where ¢, = {6), equals the natural variance of the sys-
tem

B:={(6— )=~ d> (N
noting that (6) = {(&§*) = ¢..

a. General case

Now consider two independent prediction schemes
of probabilistic variables ¢, and ¢,. For the linear

combination ¢,
b = ad, + be, (2)

to be a probabilistic variable requires that the weights
a, b satisfy

a+b=1. (3)

The related ensemble mean-square error (or half-Brier
score) is

By ={(6—¢:)%
= (8% = 2(b¢5) +(¢,°) +2a((8¢2) — ($2>)
=8¢y +{b192)) + a* (%) + {922~ 2{1¢2)) (4)

where @ = 1 — b has been introduced; {(¢,¢,) is the
-covariance between the predictions ¢; and ¢, {6¢)
and (8¢, are the covariances between either ¢, and
the observation § or ¢, and 8; {¢,%) and {¢,*) are mea-
sures of the prediction variance; and (62> is the ob-
served variability. Note that all these second moments
are not taken as deviations from their respective means.
As the half-Brier score (4) can be partitioned into
two additive terms denoting the (square of the) mean
error of the forecasts (bias or reliability) and its variance,
it appears to be the most appropriate measure of skill.
Therefore, we shall choose a such that the half-Brier
score (and thus bias and error variance) is minimized
by the combination forecast. Regarding the half-Brier
score as a function of a, we deduce from (4) that

B, _
da

(8¢2) = (81 — ($*) + {(¢$162)
+ a(<¢12> + <¢22> - 2<¢1¢2>) =0. (5)

Solving for the weight @ = 1 — b in terms of the second
moments,

2= 881) = (8¢2) +{(9s*) = (d1¢)
(6% + (") = 2($1¢2)

Note that this weight a is not constrained to lie between
0 and 1, but in general could also be either negative or
greater than 1. Furthermore, it appears that a is simply
the slope of the regression of 6 — ¢, on (¢; — ¢»), which
arises due to the constraint that the weights (3) sum to
unity. With the optimum weight we can determine the
mean-square error B, of the best estimate, ¢,, by in-
troducing (6) into (4). After some algebra the result is

(6)
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By ={(6— 92>

81y = (8¢2) +(8:°) —(¢142))°
(0 +($:)=2b1¢y
where {(§ — ¢,)*) = B, is the half-Brier score for the
model ¢,.
Note that the covariance between model and obser-
vation can be deduced from the mean-square error
(half-Brier score) B; of the model ¢; (i = 1 or 2)

Bi={(6— ;) = (6%~ 2{6¢;) + (¢

(N

1
(8¢:) :5(¢c+<¢i2>)—3i/2' (8)
For the observations, 6 = 1 or 0, the mean and second
moment are equal; that is,

(@) =" =¢ ®

where ¢, is climatology. For practical purposes ¢. is
estimated by the relative frequency of the event 6 = 1
(for wet episodes). The same holds for a model predic-
tion ¢; = 1 or 0, which is associated with the model
climate ‘

(i) ={dy=q.

For a probabilistic prediction 0 < ¢; < 1, the model
climate yields (¢;) = ¢, but (¢> # ¢,.

In the following, some simplifications are introduced
to show the skill improving by the combination of two
independent probability predictions.

b. Special cases

1) BINARY (YES/NO) PREDICTION AND CLIMATOL-
OGY COMBINED

Let the binary prediction scheme be the variable ¢,
= 1 or 0; for example, the NWP model or persistence
forecasting can be a wet or dry time interval. Then the
following statistical relations are easily deduced:

<¢1> = <¢12> = ¢c,

1
<6¢1>=5(¢c+¢q—31). (10)
The model climate is the relative frequency of events
with ¢; = 1. The mean-square prediction error of ¢,
is determined by

B, ={(6—¢1?),

which is the relative frequency of incorrect ¢,-predic-
tions of the events or realizations § = 1 or 0.

The second prediction scheme is the observed cli-
matology, ¢, = ¢.. The associated statistical relation-
ships yield
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km and has 12 levels in the vertical. The model pro-
duces 36 hour forecasts twice-daily at 0000 UTC and
1200 UTC. Prediction of precipitation consists of two
adjustment procedures applied successively. The first
step is a simulation of cumulus convection based on a
modification of the Kuo scheme. The second step is a
large-scale saturation adjustment applied to all model
gridpoints when the mixing ratio exceeds 95% of the
saturation mixing ratio.

The model output statistics (MOS) scheme used by
the Australian Bureau of Meteorology was developed
for the seven major Australian cities, including Mel-
bourne (see Tapp et al., 1986). Probability of precipi-
tation is one of a number of predictands in the regres-
sion scheme which uses the operational NWP model
output as predictors.

4. Results

The practical advantages of combining independent
probabilistic and/or binary predictions are demon-
strated in this section, using some of the data from a
recently completed operational trial in which the skill
of various rainfall prediction schemes was compared.
The trial was carried out on a daily basis for the winter
season, June-August 1986, at the Melbourne weather
station. The forecast period each day was the 12 hour
interval 0600 to 1800 local time. Full details and results
of the trial will be published shortly by Fraedrich and
Leslie (1986). Among the individual schemes evaluated
in the following are the Markov chain with no lead
time, and NWP and MOS models with both 21 h lead
time. The performance of these schemes is given in
the upper half of column 3 of Table 1, for which the
half-Brier scores for July 1986 are shown and compared
with climatology. Not unexpectedly, the Markov chain
yields the best skill, with a score of 0.164, while the
NWP model has a score (0.258) comparable with cli-
matology (0.259); MOS obtains a half-Brier score of
0.184. »

For the purpose of this article it was decided to com-
bine the Markov chain and NWP models, as they are
independent schemes, and to compare them with the

TABLE 1. Half-Brier scores for July 1982-85 and July 1986.
Asterisks denote hindcasts.

Model 1982-85 1986
Individual predictions

. Markov 0.154 0.164

NWP 0.234 0.258

MOS —_ 0.184

Climatology 0.243* 0.259
Combined predictions

Markov and NWP 0.136* 0.142

Climatology and NWP 0.177* 0.196
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uncombined forecasts. If we denote the Markov prob-
abilistic predictions by ¢, (0 < ¢, < 1) and the NWP
model binary predictions by ¢, (=1 or 0), then an op-
timal combination

bx = ag, + (1 —a)ps, (20)
was obtained from four years (1982-85) of July Markov
and NWP forecasts with half-Brier scores of B, = 0.154
and B, = 0.234 (see column 2 of Table 1). The optimal
value of the weight a for the combined scheme (20)
was calculated from Eq. (6) and found to be 0.7. When
scheme (20) was used in this optimal hindcast form, a
half-Brier score of B, = 0.136 was obtained. Turning
from the hindcast mode to a true forecast mode, the
value of ¢ = 0.7 was retained and the combined scheme
(20) was applied to the July 1986 data. This leads to a
half-Brier score of B, = 0.142. Clearly, then, the ad-
vantages of the combined schemes implied by the the-
ory in section 2a have been verified in practice. As can
be seen in Table 1, column 3, the combined half-Brier
score for scheme (20) is about 15% lower than that of
the Markov scheme alone, and about 45% lower than
that of the NWP model alone.

In a broad sense, the MOS scheme can be seen as
combining NWP and climatology and as a rough test
of this idea, climatology and the NWP model were
combined. The theory of section 2b implies an optimal
weight of 0.5, and yielded a half-Brier score of 0.196
for July 1986 (see Table 1, column 3). This was only
7% worse than the score for MOS (0.184), thereby add-
ing support to our suggestion. Furthermore, interpret-
ing the different Brier scores as error variances of in-
dependent forecast samples taken from the same nor-
mal distribution, one cannot reject the null hypothesis
of similar or equal error variances of both MOS and
climate~-NWP (on a 5% significance level). Note that
this also holds for the MOS and Markov-NWP com-
parison,

As the MOS scheme available to the Australian Bu-
reau of Meteorology has been developed only for 23
UTC (0900 local time} data, the predictions made by
the MOS scheme for the period 0600 to 1800 local
time involve a lead time of 21 hours, which presumably
imposes a limitation on its performance. Moreover,
for predictions beyond 12 hours, the Markov chain
model discussed here would be of doubtful validity and
the MOS scheme would be preferred.

Given that the Markov chain is simple and imme-
diate to use, and requires minimal computing re-
sources, it would appear to provide an effective alter-
native to the MOS method which has gained such
widespread acceptance. Furthermore, only weighting
coefficients have to be newly evaluated for the com-
bined Markov—NWP scheme, if a NWP-model is sub-
stantially changed; the local Markov chains remain
unchanged.
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() =¢c, (B)=9.

<5¢2> = <6¢c> = ¢c<6> = ¢c2

B, = Bc = <(5 - ¢c)2> =@~ ¢02

The optimum linear combination ¢, = a¢, + (1
— a)¢, of both forecasts ¢, and ¢, is found by mini-

mizing the mean-square error B, associated with the
weight a, by substituting (10) and (11) into (6) and (7):

_ <5¢1> - ¢c,¢c
a ==,
¢c| + ¢)c - 2¢c1¢c

_ (8¢1) = e bc)
d)q + ¢c2 - 2¢q¢c '
If the prediction scheme ¢, is assumed to be un-
biased, i.e., with model variance B,, = ((¢; — ¢.)*)
equal to the natural variance ((§ — ¢.)*) = B, (e.g.,
persistence), then

.= ¢c; -and B.= Bcl =¢.— d)cz-

Now the weight a and the combined Brier scores B,
yield, after some algebra,

B, B/

2B’ By =By 4B,
Furthermore, if the mean-square error or the relative
frequency of incorrect ¢-predictions B;, coincides with
the natural variance, B,, then combining ¢, with cli-
matology or ¢.-forecasts, yields a = 0.5 and B, = 3B,/
4 which is a 25% improvement in skill. This optimal
combination is essentially a recalibration of categorical
forecasts so that they are reliable probability forecasts.
Such a conversion has been recently advocated for
scoring categorical forecasts (Murphy, 1986).

(11)

By=B. (12)

a=1 (14)

2) TwO BINARY PREDICTION SCHEMES COMBINED

Let the prediction schemes ¢; and ¢, attain the val-
ues 1 or 0; then for (6) and (7) we have

<5> = <52> =, <¢1> = <¢12> = ¢,
($2)=(9:D =0, (50,) = 2 (Bt 6~ B),

<6¢2> = %(d)c + ¢cz - Bz)
(15)

Note that the Brier scores B, and B, are now equivalent
to the relative number of incorrect predictions of the
two predictive schemes ¢, and ¢,. Assuming that both
prediction models are unbiased with the same skill B,
= B, = B, then

b= ¢, = ¢,
(661) =(b¢2) = .~ BY2. (16)

Now one obtains for the combination of thé two
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independent forecasts, ¢, = a¢, + (1 — a)¢, the fol-
lowing weights and the Brier score after substituting
(15) and (16) into (6) and (7):
1
a=05, By=B-3(6—(t:6s).  (17)
where (¢,¢,) is the second mixed moment between
the two prediction schemes. Perfect correlation between
both schemes ¢; = ¢, or {¢1¢,) = ¢,, does not lead to
skill improvement (B, = B), which is not surprising.
If there is no correlation between the schemes, then

(102 ={d12) — (¢ ){2) =0,
<¢I¢)2> = ¢c| : d)cz = ¢02- (18)

Clearly there is some skill improvement as we then
have after substituting (18) into (17), By = B — iB..
If the models’ skills equal the natural variance (or cli-
matology predictions), B.., then the combination fore-
cast skill improves to B, = 0.5 B,, which is a 50%
improvement in skill,

or

3. The prediction schemes

There are two basic prediction schemes discussed in
this article: a Markov chain model and an operational
limited area NWP model; a MOS scheme which utilizes
the NWP model forecasts will be used for further com-
parison. These prediction schemes will be subsequently
briefly discussed.

The Markov chain model is an extension of that
devised by Fraedrich and Miiller (1983). A second-or-
der Markov chairi is approximated by a first-order
Markov chain in which the transition probabilities are
taken to be linear functions of the previous state (Miller
and Leslie, 1985). Monthly changes are included by
fitting different models each month and allowance is
made for incorporating the effects of other surface data.
Four states based upon cloud cover and rainfall are
defined, and the probability of precipitation from cur-
rent state j, at current time ¢, for ~ hours ahead is

3
P(m,j,t,h)=a(m,j,t,h)+ 2 bj, WX,  (19)

k=1

where m is the month, and the covariates X, (x = 1, 2,
3) are the station pressure, the dewpoint depression,
and the east-west wind component. Notice that while
different intercepts, a, are used for each month, com-
mon slopes, b, are fitted for all months. The model has
been fitted by ordinary least-squares to the data. For
the Melbourne weather station, other covariates such
as the pressure change from the previous state were
not found to be significant.

The NWP model is the Australian Bureau of Me-
teorology’s new operational limited-area model (Leslie
et al., 1985) which has a horizontal resolution of 150
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5. Conclusions

In both theory and practice, two independent pre-
diction schemes for short-term (up to 12 hours) pre-
diction can be linearly combined in an optimal manner
to obtain a skill level that exceeds the skill of each
prediction scheme independently.

The optimal weighting coefficient was calculated for
a linear combination of a Markov chain model and
the Australian Bureau of Meterology’s limited area
NWP model, using four years (1982-85) of July daily
12-hour precipitation predictions. When the combined
Markov-NWP model was run in a hindcast mode with
the optimal weighting, an improved half-Brier skill
score of 0.136 was obtained, compared with individual
scores of 0.154 and 0.234 for the uncombined Markov
and NWP models, respectively. In a forecast made for
July 1986, using the weighting calculated from the 1982
to 1985 data, the margin of improvement was retained,
with a half-Brier score of the combined scheme of 0.142
compared with individual Markov and NWP scores of
0.164 and 0.258. The performance of the combined
Markov-NWP predictions suggests that they might be
an alternative to the MOS approach for short-term
forecasting, at least up to 12 hours ahead.
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