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ABSTRACT

The scaling behaviour of rainfall is analysed both for a range of scales in time and for a given
scale in intensity using the statistics of the Fourier transform and the cumulative probability dis-
tribution. The analyses are applied to sets of long time series of daily rainfall (26 (8) files of 45
(90) years at 13 European stations) and sets of 5-min totals (13 single station summer seasons)
thus covering a wide scaling range. The results of both analyses are interpreted in terms of their
asymptotically hyperbolic (i.e., power law) behaviour: The ensemble averaged power spectra
exhibit distinct scaling regimes with their associated power law behaviour, P(f)~ f ~: a regime
of climatic variability (>3 years: b~ 0.7), a spectral plateau (3 years to 1 month: b~0) of
general circulation fluctuations, a transition regime (1 month to 3 days: a dropping power
spectrum without scaling), and a range governed by frontal systems (<3 days: b ~0.5). The
transition region -is interpreted as being generated by both of its neighbouring regimes whose
scaling can therefore be expanded into the transition regime. Finally an apparent break in scaling
(at 2.4 h) can possibly be attributed to the instruments inability to measure frequent weak
signals. The tail-end of the hyperbolic distribution (characterizing the intermittency regime) is
not approached smoothly but shows a break from the rest of the distribution. Finally, an outlook

to multifractal scaling is given.

1. Introduction

Time scales are introduced to characterize pro-
cesses which dominate the atmospheric dynamics.
They are commonly identified from the spectral
variance density distribution of an observed time
series using the extrema and their contribution to
the total variance. A famous example is the spec-
trum of high resolution with measurements at
experimental sites (Van der Hoven, 1957; Fiedler
and Panofsky, 1970; Vinnichenko, 1970). Other
examples, to mention a few, are the frequency
spectra deduced from daily rawin-observations at
weather ships and continental stations (Hartmann,
1974), wavenumber-frequency spectra of travelling
and quasi-stationary disturbances (Fraedrich and
Bottger, 1978).

However, (not only the) recent progress in
fractal data analysis provided some evidence
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that atmospheric scales may not be sufficiently
defined by one or several prominent spectral
peaks. On the contrary, the dynamics relevant to
atmospheric phenomena may be characterized
by a wide range of scales which exhibit scale
invariance or scaling behaviour; that is, fluctua-
tions at small scales are related to larger ones by
the same scaling law without showing any pre-
ferred mode. Thus, the scaling behaviour within a
frequency band (and not the spectral peak) may be
more useful and appropriate to characterize the
time scales of atmospheric dynamics. There are
examples for this approach: With his “parsnip-
experiment” Richardson (Ashford, 1985) applied
the Lagrangian two-particle dispersion method
to two-dimensional diffusion leading to his
celebrated scaling law. Other examples are the
Kolmogoroff 5/3-spectrum for isotropic three-
dimensional turbulence, Charney’s Ansatz for
geostrophic turbulence, etc. More recently, in their
analysis of temperatures Lovejoy and Schertzer
(1986) characterize climatological regimes by
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scale invariance; this was extended to rainfall
(Ladoy et al., 1991) with the emphasis to describe
extreme variability by scaling and intermittency.
Common to these analyses is the introduction of a
“generalised scale invariance” which generalises
the standard self-similar (isotropic) scaling
approach. Thus generalised scale invariance com-
bined with cascade models may be sufficient to
describe the effect of the nonlinear scale interaction
(see, for example, Lovejoy and Schertzer 1991).
The traditional hydrodynamic scale analysis,
however, requires the introduction of ad hoc scales
and characteristic fluctuations which break the
scaling. In this senses the scale analysis may be
re-interpreted as an analysis of regimes which
are characterized by scaling behaviour (and
dynamical equations are scaling) rather than by a
dominant spectral peak associated with the
characteristic fluctuations.

In this paper, we apply the scaling methods to
precipitation time series and identify weather and
climate time scales through their scaling behaviour
or scale invariance. Precipitation represents the
atmosphere’s input to the water (and energy) cycle
modifying the radiatively forced energy budget by
evaporation and thereby characterizing regional
climates and climate variability. Precipitation
fluctuations in time and space are due to a wide
spectrum of processes which range from climate
dynamics to droplet formation. This wide range of
interacting scales makes it an interesting candidate
for the analysis of scaling behaviour. As our main
emphasis lies on the climatological re-interpreta-
tion of scales in terms of scale invariance, the
discussion of the methods (Section 2) is rather
elaborate, to provide a perspective for future
extensions. Results are presented in Section 3; and
an outlook on multifractal analysis is given in the
conclusions.

2. Methods of analysis

Rainfall fluctuations cover a wide range of
scales. Their variability can be analysed both for a
range of scales and for a single scale: (a) For a
range of scales, fluctuations may not display one or
several prominent time scales but exhibit scale
invariance (or scaling) such that fluctuations at
small scales are related to larger ones by the same
scaling law. (b) For a given time scale (minutes,
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days, months), fluctuations span a broad band of
intensities where the (tales of the) probability
distributions characterize intermittency. Both
scale invariance and intermittency are statistical
characteristics of the rainfall process; they can be
analysed and quantified in terms of their (asymp-
totically) hyperbolic or power law behaviour in
time which, however, is only a possibility but not
automatically valid. The estimates of the related
power law exponents and their range of validity
define the rainfall climate, which may be associated
with regions governed by the same dynamics.

2.1. Structure function and power spectrum
(Simple time scaling)

For a range of scales (regimes) the second
moment (variance) of a time series leads to an
understanding of much of its overall variability; for
multifractals, however, it leads to an understand-
ing of the variability of a single singularity only.
In the time domain a measure of the scaling
behaviour of the dynamics is defined by the struc-
ture function S(k) (see, for example, Monin and
Yaglom, 1975) which depends on the increments of
the observable X(z): X(r —k At) — X(¢). Assuming
a stationary process the structure function can be
expressed by the auto-covariance, B(k):

S(k) = {(X(t—k At)— X(1))*)

=2[B(0)— B(k)], 2.1)
where B(0) is the variance of the time series, Az the
sampling time, k the time lag, and the brackets ¢ )
denote ensemble averaging. For self-similar scal-
ing the structure function, S(k), follows a power-
law relating small time scales to small increments
and vice versa. Accordingly, the Fourier-transform
of the time series, X(¢), with such a scaling exhibits
a power-law spectrum, P(f):

S(k)=k*S(1),
P(f)=cf

where the scaling parameter 0< H<1 and C=
S(1)/n{T(1 +2H) sin(—nH)} with the gamma-
function T'. Thus, regimes or dynamical scales
associated with different scaling properties can
now be identified by the Fourier transform (or
power spectrum) of the time evolution when
displayed in a log-power, In P(f), versus log-
frequency, In f, diagram.

(2.2)
with b=1+2H,
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2.2. Distributions (Hyperbolic intermittency)

At a fixed time scale (for example given by the
sampling time), intermittency provides additional
information on the variability of the intensity of
the time series. An estimate is obtained from the
(tale of the) probability distribution for the variate
(rain), X, exceeding a fixed threshold, x:
F(x)=Prob{X>x}, (2.3)
where 0 < F<1. To compare and characterize
regional climates the events, X>x, may be
normalized such that they describe their relative
contribution, R(x) = [ xF, dx/{x, to the mean,
{x», where 0< R< 1. Eliminating x yields the
cumulative probability distribution as a function
of the amount, R(x), which the events X > x con-
tribute to the mean. Now, interpreting F as an
occupation time given by the relative number of
(rain) episodes, X > x, (of the length of the samp-
ling time), the following meteorologically relevant
interpretation is possible: The events X > x, which
occur in 100*F(x) % of the total time, contribute
100*R(x) % to the total rain.

Biased coin flip model and return period. Further
climatologically relevant information is extracted
from the probability. distribution by a dicho-
tomous analysis of the continuous rainfall variable
in terms of a biased coinflip model (Gumbel,
1958). Consider observations smaller than the
fixed threshold x:
g=1—F(x)=Prob{X <x}. (2.4)
Then a Bernoulli experiment for the first exceed-
ance of the threshold x at the nth trial leads to the
geometric distribution, w(n), with mean {(n) and
standard deviation s:

w(n)=Fg"~",
s=(T*=T)"2,

(ny=T=1JF,
(2.5)

Multiplied by the sampling time, the mean,
{(n)=T, is a measure of the expected return
period of (the occurrence of ) an intermittent event,
X > x, for which to happen once, T = 1/F trials are
necessary in the average; if x is the median, then
the event X' > x returns on the average every
second trial, T'=2; if x is the upper quartile: T=4
etc.
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Hyperbolic intermittency. Large intermittent
fluctuations may be characterized by a power law
(Pareto) distribution F(x) with density F, = f:

F(x)="Prob{X>x} = (K/x)",
flx)=F(x)=aK/x"*!,

where the intermittency parameter, a, and the min-
imum value, K, can be estimated from quantiles of
the distribution in a log F — log x diagram. As the
intermittent fluctuations show extreme variability,
higher moments {x*} of the order 4 > a diverge as
they tend to infinity for increasing sample size.
Only for h<a one finds (Johnson and Kotz,
1970):

M =jw x"F. dx=aK"/(a—h). (2.6)
K

which, for example, gives the mean rainfall rate
{x>=aK/(a—1). With the relative contribu-
tion to the mean, R(x)=(K/x)°"!, one can
deduce the cumulative distribution, F= R¥¢~1
or R=F"“~14 In this sense the hyperbolic or
power law distribution characterizes intermittent
behaviour by a single parameter, a, only. Here it
should be mentioned that hyperbolic intermittency
is the generic (but not necessary) behaviour of
multifractals, hence the interest in studying
it empirically. Furthermore, this power law
behaviour is another type of scaling with intensity
(not with spatial scale). The scale invariance is
more closely related to temporal (or space)
averages (say over regimes) than to fluctuations
discussed in connection with the structure func-
tion. Note, however, that the assumption of an
hyperbolic tail in time is quite possibly but not
automatically valid.

3. Analysis of daily and 5-minute rainfall data

Daily rainfall totals from 13 continental
European stations are analysed (Table 1; World
Weather records until 1970, Berliner Wetterkarte
from 1971). As the lengths of these time series
varied from 45 to 183 years we divided the longer
sets into 26 distinct separate ones of 45 years to
obtain basic features of the ensemble spectrum.
Then, 8 very long sets of 90 years are analysed to
extend the spectrum into the ultra-long period
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Table 1. Rainfall stations used for the analysis of
daily totals (and 5-min totals)

Stations: Years (from to)
Potsdam 1893-1986
Hohenpeissenberg 1879-1986
Frankfurt/M. 1870-1984
Uccle 1901-1986
Sonnblick 1887-1987
Geneva 1901-1985
Zurich 1901-1985
Fanoe Island 1874-1986
St. Petersburg 1881-1980
Stuttgart 1900-1976
Munich 1879-1986
Prague 1805-1988
Valentia 1939-1986

Potsdam 8 summers (May—Sept. 1975-82): 5 min totals

range. Finally, the analysis is extended to shorter
time scales using a single station time series with
observations of 5 minute resolution (Potsdam, 13
summers 1975-87, from May to September).
An extension to even smaller scales (1-min rainfall
from Bonn and HohenpeiBlenberg, one summer
only) is used for qualitative arguments only (and is
not shown). For the spectrum analysis we use FFT
transform (Press et al., 1989) allowing for 2" data
points per file.

3.1. Ensemble averaged spectra of daily and
S -minute rainfall

Ensemble averages of the sample spectra of the
continental European stations are presented. They
are taken as averages of the amplitude of each
frequency component (and then averaged over
logarithmically spaced bins). Ensemble averaging
has two advantages: first, the sample to sample
variability of the local effects on rainfall is reduced
and only dynamically relevant pattern remain.
Second, the number of cycles is greatly enhanced
(times the number of samples) so that the spectra
may be viewed with more confidence. This is
particularly so for the low frequency end of the
spectrum. Note also, that the stations are not
independent and the errors do not add linearly.
For the very high frequency end, a single station
analysis (with an ensemble of seasons) may be suf-
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ficient; our interest is only in identifying regions
associated with (loosely estimated) “straight-line-
regimes”. Here it may be noted that the ensemble
averaged spectrum of daily data of 26 files of
45 years length (Fig. 1a composed from different
stations) does not deviate qualitatively from a
single station ensemble mean (see Figure 2, dis-
cussed later). It exhibits several scaling regimes
with the following periods: >3 years, 3 years to
1 month, 1 month to 2-3 days.

>3 years. The low frequency range (in any
spectrum analysis) should be approached with
care, because power estimates are based only on a
small number of long period cycles. An ensemble
spectrum can therefore be viewed with more
confidence, because the number of cycles for the
estimate is 26 times (number of the data files)
better.

Towards the low frequency end the spectrum
rises with decreasing frequency well outside the
statistical fluctuations observed in the adjacent flat
power plateau. To quantify the rise in the low fre-
quency end, a power law behaviour, P(f)~ f =%, is
the simplest approach giving b =0.7. Deviations
from a straight line can be attributed to the small
number of points and the still relatively small num-
ber of cycles available for a stable estimate. The
smallest period peak at 3-4 years is ambiguous
whether the anomalously large amplitude with
respect to the “straight line” is statistical or due to
a real physical quasi-periodicity, the El Nifio/
Southern Oscillation, for example. Extending the
ultra-long fluctuations further and to substantiate
the power law governing this regime, the eight
90 year samples are averaged (Fig. 1b); they con-
firm the scaling behaviour. The single 180 year file
has too few cycles to reveal this regime at all (not
shown).

3 years to 1 month. This regime is charac-
terized by an almost flat spectrum or spectral
plateau. On this background several peaks rise
which are related to intrinsic periodicities
(Fig. 1c): the annual cycle, the half-annual sub-
harmonic and a bi-annual oscillation. There is,
however, another sharp but smaller peak at a
period of 1.17 years, which lies above the back-
ground variation peaks. Its nature is not clear, but
its period coincides with that of the Chandler
Wobble (about 14 months or 1.167 years; note that
the neighbouring points, at 1.18 and 1.12 years,
are given by the resolution of the transform).
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Fig. 1. Spectra of daily and 5-min rainfall totals at continental European stations: (a) Ensemble average over 26 files
of 45-years, the full range of scales; (b) the low frequency part as an ensemble average over 8 files of 90 years and
(c) the medium frequency part (enlarged from (a); (d) single station (Potsdam) 5-min data as the ensemble average
over 8 summers (May through September), the high frequency part (note the scale change on the frequency axis). The

power is averaged over logarithmically spaced bins.

1 month to 2-3 days. In this frequency range,
the spectrum drops with decreasing periods, but
not as a straight line in the log-log presentation
(Fig. 1a). An extension towards higher frequencies
and thus a clearer picture of this regime is obtained
from the 5-min single station data set (13 summers
from May to September in Potsdam). The season-
ensemble mean shows a remarkable convergence
to straight-line averages (Fig. 1d) revealing the
underlying universal scaling behaviour. The
regime of the dropping spectrum (1 month to
3 days) is almost fully conserved and can now be
extended to the very high frequency end as follows:
Commencing from longer periods (>1 month),
the zero-slope near 1 month and longer confirms
the flat plateau deduced from the daily data
(Fig. 1c) and drops smoothly with decreasing
period arriving at a slope of b ~ 0.5 near 2-3 days.
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<3 days. The slope, b=0.5, remains almost
unchanged from 2-3 days to a break at the period
of about 2.4 h. From 2.4 h towards the very high
frequency end a new power law is attained which
comes close to the famous 1/ f-noise: P(f) ~ 1/for
b~ 1. Afirst look at 1-min rainfall totals of a single
summer at HohenpeiBlenberg and at Bonn (based
on Ombrometer measurements, Breuer and
Kreuels, 1984) also revealed an almost 1/f-power
law behaviour down to scales well below 5 min.

Stability and ensemble averaging. The stability
of the spectral estimates and the effect of ensemble
averaging are demonstrated for a single station
time series (Prague 1805-1985, Fig.2). Noting
that our interest is only in regions associated with
straight-line-regimes, the following power spectral
estimates of 45-year subsets of the total time series
are shown: The first (a) and the last (b) subset
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hardly deviate from one another in terms of the
qualitative straight-line-scaling. To demonstrate
that a single station scaling of the power spectral
estimates does not deviate in a qualitative sense
from the total ensemble presented in Fig. 1, we
show (in an enlarged format with enhanced
scale in the ordinate); the associated ensemble
average (c) of the four 45-year files of the Prague
precipitation, which is comparable with the station
ensembles discussed in Fig. 1.

3.2. Scaling regimes

These regimes identified by the spectral analysis
(Figs. 1a—d) are schematically comprised in Fig. 3;
the development of a more objective method for
this kind of scaling is beyond the scope of this note.
The interpretation may partially be guided by the
time statistics of central European fronts based
on the 3-hourly synoptic sampling time and on
rawinsonde spectra at European stations sampled
daily (Fraedrich et al., 1979, 1986):

Climatic fluctuations (>3 years). Climate fluc-
tuations of (relatively) short periods emerge with a
power law behaviour, P(f)~ f %7, which differs
from the “red noise” f ~*-type spectrum (Kutzbach
and Bryson, 1974) which has traditionally been
associated with the monoscaling Brownian motion
analogue of climate fluctuations (Hasselmann,
1976) or very long term variability. The processes
governing the rainfall fluctuations may follow
different (and possibly more complex) climate
dynamics. There is a difference between the tem-
perature (Lovejoy and Schertzer, 1986) and the
rainfall time series: The spectrum starts to
“redden” from 450 years at a point to 3-5 years for
northern hemisphere spatial averages, whereas the
rain is reddening for point measurements near 3—5
years. Of course, to substantiate the universality of
the rainfall scaling requires further analyses of very
long rainfall records in other climate regions and
with relatively homogeneous data sets. Finally, it
should be noted that one expects time scales to be
associated with the space scales of the processes.
Hence we expect this scaling regime to be essen-
tially related to variations in the whole earth’s
(northern hemisphere’s) average.

Spectral plateau (3 years to 1 month). This
regime, P(f)~ f° governing the rainfall in
continental Europe from about 3 years down to
3 days is basically flat except for the periodicities
fixed at the annual, semi- and bi-annual cycles.
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Fig. 2. Single station spectra of daily rainfall totals
(Prague) of 4 consecutive 45-year subsets: (a) The first
and (b) the last set; (c) the ensemble mean of all 4 sub-
sets.
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Fig. 3. Schematic diagram of the scaling regimes of continental European rainfall. The (apparent) break at 2.4 h and
the standard meteorological interpretation of the associated regimes are left as open questions (see text).

This flatness, however, does not necessarily mean
that the underlying process should be delta-
correlated. This regime governs inter- and intra-
seasonal vartability. In Europe this variability can
be manifested by the shifts of the sensitive tail end
of the cross Atlantic storm track, the random
occurrence of blocking episodes which may force
(or are forced by) this shift of the cyclone track;
pulses of the North Atlantic Oscillation and
even far distant teleconnections with/without the
influence of sea surface temperature variability,
etc. Note also that the ensemble average power
spectra identify a regime whose time scale limit
happens to coincide with the average recurrence of
one of the largest climate fluctuations on a global
scale, the Fl Nifio Oscillation (ENSO).

Transition region (1 month to 3 days). This
region of a dropping spectrum appears not to be
scaling (in the power law sense). It can be inter-
preted as a transition between two power law
regimes which are both active in the same region:
The flat spectrum process, P(f)~ f° (3 years to
1 month), continues down to the period of the syn-
optic disturbances (about 3 days). The power law
spectrum, P(f)~ f~% (3 days to 2.4 h), is also
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active from 2.4 hours via 3 days to about 1 month.
Thus nonlinear multiplicative interaction of these
two processes effecting the rainfall can be seen as
(a multiplication of the two power law straight
lines leading to) the dropping in this transition or
overlap region. Note that this transition region
coincides with the time scales associated with the
strongest synoptic scale activities (Hartmann,
1974; Speth, 1978). Plotting fP(f) versus In f
(rather than In P(f) versus In /') provides a direct
measure of the variance contributed by a fre-
quency band (=area under the f — In P(f’)-graph)
shows the “synoptic maximum” intensity near
20-30 days. This is the dynamics which, over
Europe, is responsible for the meridional energy
and momentum fluxes required to maintain the
general circulation in the jet exit area of the tale
end of the cross Atlantic cyclone track.

Frontal systems (<3 days). The average dura-
tion of warm and cold fronts and occlusions lies
between 8 and 12 hours and the sequence warm
front-sector-cold front lasts about 29 to 34 h;
modal values are shorter. Furthermore, the
average recurrence time between successive cold
(warm) fronts lies between 80 and 120 (230 and
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105) h in summer and winter. Thus the regime,
P(f)~f~%, of frontal disturbances (carrying
storms within them and clearly present from 3 days
to 2.4 h) can well be extended to longer periods;
that is, into the region (1 month to 3 days) of the
dropping spectrum.

The break at 2-3 hours. An apparently dif-
ferent scaling regime occurs from 2.4 h towards
the very high frequency end of the spectrum. Note
that for all the above regions we were able to
associate corresponding scale divisions commonly
recognized in meteorology, which are associated
with the predominance of one distinct physical
process. Following this approach, we may identify
this region as characterizing the fluctuations
within the individual rain-producing meso-scale
system. However, this break in scaling at 2-3 h is
not generally accepted: Vinnichenko (1970) found
no evidence for a meso-scale gap whereas van der
Hoven’s (1957) “meso-scale gap” is based on data
taken under “near hurricane conditions.” There-
fore one has to search for sources of artificial
breaks, possibly in the instrument itself. For
example, the instrument’s ability to measure
frequent weak signals. There is a finite threshold
defining the weakest signal measurable. One hypo-
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thesis is that if this threshold is too high, the small
signal information loss is enough to cause the
scaling to break. Indeed, first tests indicate this.
Simulating an even larger threshold, the break is
even stronger. Working the other way, a small
enough threshold could eventually cause the break
at 2.4 hour to disappear. This will be discussed in
more detail in a forthcoming paper.

3.3. Hyperbolic intermittency

The full range of scales has been conveniently
displayed by the power spectrum analyses and
their ensemble averages (see above). However,
this analysis is confined to the second moments
(variances) and their time scaling, which needs to
be extended to higher moments or, equivalently
(in principle), to the complete probability distri-
bution. In this first analysis, we have confined
ourselves to the probability distribution at a given
scale only, in order to obtain additional informa-
tion about its intensity fluctuations, in particular
extreme intermittency (and thus the higher
moments) which is represented by the tail end of
the cumulative distribution. The 5-min rainfall
totals (shown in Fig.4) reveal the following
patterns. The linear drop of the tail end of the

1ecm

-1 -0.5 0
log( R' )

0.5

Fig. 4. Probability distribution of rainfall in a log-log diagram: Single station (Potsdam) 5-min data, distribution

averaged over 8 summers.
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probability distribution is not approached
smoothly from the curve of the “bulk™ of the dis-
tribution, but rather abruptly as a break from the
rest of the distribution. Quantitatively, the tail of
the distribution, if approximated by a power law of
the type F(x)=Prob{X > x} ~ x ¢ shows a lesser
reduction in probability for increasing intensity
fluctuations in the 1 mm to 2 cm regime (a ~ 1.7),
than for intensities >2 cm (a~ 3.0). That is, the
recurrence time of the same hypothetically large
event is shorter for the smaller slope (and vice
versa). For example: an event >10cm, which
occurs with probability 10~¢ in the a ~ 3.0 regime,
would, in the a~ 1.7 regime, occur with proba-
bility 107> and thus return an order of magnitude
earlier, a more pessimistic scenario.

4. Conclusions and outlook

The two methods of analysis demonstrated here
are only a first step towards analysing stochastic
nonlinear variability. Both techniques are based
on a power law (or hyperbolic) behavior to quan-
tify, in a monotonically decreasing fashion, the
time and intensity structure of the rainfall signal.
(1) Based on the analysis of the second moment,
rainfall fluctuations are scaled in the time domain
(which is equivalent to a power law structure of
power spectra in the frequency domain). Thus
regimes with a scaling structure can be identified
and quantitatively described. (2) Using the cumu-
lative probability distribution, the time scaling is
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supplemented by an amplitude scaling; an
asymptotic power law behaviour of the (mono-
tonically decreasing) intensity distribution of
the signal appears to be a particularly suitable
description for the occurrence of extreme events
and also thus of the higher moments of the distri-
bution. Indeed, combining both aspects (1 and 2)
into the asymptotically hyperbolic distribution
(and evaluating it by its moments):

Prob{X > x} ~ x =),

leads to the more general multifractal methods, a
single description for the entire distribution at any
(all) resolution(s). This spectrum of dimensions
advocated by Lovejoy and Schertzer (1991)
characterizes the nonlinear variability and is
closely related to its (underlying) generative model
of cascade processes.
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