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Abstract:

Two eigenvectors are necessary to explain about 99 % of the vertical and time variability of tropospheric
geopotential height observations at a single station (Berlin). Their structures and amplitudes characterize an
equivalent barotropic (external) and baroclinic (internal) mode of purely tropospheric dynamics which are
associated with two distinct time scales of about 5—6 and 2-3 days. An univariate stochastic ARMA process
is selected and applied to the amplitude of the barotropic eigenvector for predicting the 500 mbar geopoten-
tial height and its probability distribution up to a lead time of several days ahead. The model is verified by
hindcasting the observations used for model fitting and by independent predictions. In combination with
climatology and persistence, the forecast by ARMA processes provides another stringent evaluation standard
of comparison for numerical weather prediction models, which allows a phase prediction of highs and lows.
The advantage is a forecast skill which is generally better than persistence and climatology.

Zusammenfassung: Zur Stationsvorhersage (2. Teil): die vertikale und zeitliche Struktur des Geopotentials
und 500 mbar ARMA-Vorhersage '

Zwei Eigenvektoren sind notwendig, um etwa 99 % der vertikalen und zeitlichen Variabilitdt des troposphi-
rischen Geopotentials an einer Station (Berlin) zu beschreiben. Die vertikalen Profile und das zeitliche Ver-
halten der Amplituden der Eigenvektoren charakterisieren die dquivalent-barotropen (externen) und baro-
klinen (internen) Verhiltnisse der ausschlieBlich troposphérischen Dynamik. Zu diesen externen und internen
Moden gehdren zwei unterschiedliche Zeitmafistibe von 5—6 und 2—3 Tagen. Ein Univariater, stochasti-
scher ARMA-Prozet$ wird aut die vorhersage aer Ampiitude aes barotropen Eigenvektors angewandt, um
die geopotentielle Hohe des SO0 mbar Niveaus fiir mehrere Tage vorherzusagen. Das Modell wird durch die
Beobachtungen verifiziert, an denen es geeicht worden ist sowie durch unabhéngige Vorhersagen. Zusitz-
lich zur Klimamittel- und Persistenz-Prognose ist der ARMA-Prozef! ein weiteres Standard-Modell, mit dem
die Giite numerischer Wettervorhersage-Modelle lokal verglichen werden kann, zumal Vorhersagen der Pha-
sen von Hochs und Tiefs damit mdglich sind.

Résumé: Sur la prévision d une seule station (2e partie): la structure verticale et temporelle du géopotentiel
et la prévision ARMA 4 500 mbar.

Deux vecteurs propres sont nécessaires pour expliquer environ 99 % de la variabilité verticale et temporelle
de P’altitude géopotentielle troposphérique 4 une seule station (Berlin). Les profils verticaux et le comporte-
ment temporel des amplitudes des vecteurs propres caractérisent les modes barotrope équivalent (externe)
et barocline (interne) de la dynamique purement troposphérique. A ces modes sont associées deux échel-
les de temps distinctes de 5~6 et 2—3 jours. Un processus stochastique univarié ARMA est appliqué a
P’'amplitude du vecteur propre barotrope pour prédire 'altitude géopotentielle 4 500 mbar et sa distribution
en probabilité 4 plusieurs jours d’échéance. Le modéle est vérifié 4 1'aide des observations utilisées pour
I'ajustement du modéle et 4 l'aide de prévisions indépendantes. Combinée avec la climatologie et la per-
sistance, la prévision par le procédé ARMA fournit une autre évaluation standard pour comparer la qualité
de modéles numériques de prévision du temps, permettant la prévision des dépressions et des zones de haute
pression.
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1 Introduction

Weather forecasting is generally based on a network of many stations with various weather
elements; numerical and statistical weather predictions apply physical theory and empirical procedures,
respectively, to make these forecast objective. Compared with such a comprehensive background of data
and theory, forecasts using only single station observations appear inferior. But local weather data can
instantaneously be incorporated into suitable prediction models to guide a single station forecaster (see
for example FRAEDRICH and MULLER, 1983). Although local rawinsonde ascents contain much infor-
mation, particularly if time series are considered, this information has been used mainly to describe
atmospheric processes. Therefore an extension of these investigations towards a single station forecasting
is the subject of this paper applying autoregressive moving average (ARMA) models. They are particularly
useful in forecasting naturally persistent time series as occurring in geophysics (see e.g. KATZ and
SKAGGS, 1981). Before model building it appears necessary to reduce the data set to its basic meteo-
rological content suitable for prediction. Thus, the analysis will be confined to daily geopotential height
profiles on selected pressure levels. In Section 2 the vertical structure of the atmosphere is characterized by
empirical orthogonal functions (EOF) of the geopotential height below the tropopause representing only
tropospheric dynamics. The behaviour in the time domain is described by the related amplitudes of the ver-
tical EOF’s and their spectra (Section 3). Finally, a purely stochastic ARMA model is deduced (Section 4)
to forecast the SO0 mbar geopotential at a single station. Besides climatology and persistence forecasts
it should be applicable as a regionally relevant evaluation standard for numerical weather predictions.

2 The vertical structure of the troposphere

The data set analysed consists of daily radiosonde observations of the geopotential height Z
(gpm) on nine selected pressure levels from 950 to 300 mbar at Berlin-Tempelhof (52°29°N, 13°25’E
and 46 m elevation). The standard sample runs ten years from 1970 through 1979. Seasonal sets of 120
days are extracted for the analysis; the ten summer seasons start on 1 May, the ten winter seasons on
1 Novemnber. Additionally, the summer 1980 and winter 1980/81 seasons are used as a separate and
independent data set.

Data analysis: The observed geopotential height Z (p, t) is a time-dependent variable on discrete pres-
sure levels p and is represented by empirical orthogonal functions:

N
Z(p, )=<Z(p,)>+ D ca(t) Za(p) + res(p, 1) 2.1

n=1

where < > is the seasonal or ensemble average in time, c,(t) the time-dependent amplitude or coef-
ficient, Zo(p) the space function (EOF or eigenvector) with its components on the discrete pressure
levels p, N is the truncation limit of the EOF expansion, res (p, t) the residuum of the series expansion.
The space functions of EOF’s Zy(p) are determined from the observed sample Z(p, t) by standard
methods. They are orthogonal and normalized to their corresponding eigenvalues \2:

%: Z,(P)Zm(p) = ‘Sn,m >\?1 (2.2)
where &, m is the Kronecker delta (6am =0;1forn#m;n= m). Thus, the units related to an eigen-
vector Z,(p) or its components are the same as the units of the data set Z(p, t); their magnitudes,

however, provide a direct measure of the time variability (in terms of the standard deviation) of the
data as it can be explained by the eigenvector components. '
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The time-dependent coefficients c,(t) related to each EOF Z,(p) are orthogonal and normalized to
one: <c¢pCm > = 8, m. Thus, the vertical variance of an individual profile of the geopotential height
deviation explained by N EOF’s is
N
o*()= > cA(A2 (in gpm?) (23)

n=1

which leads to the total variance of the vertical and time sample

N N
<P?(H)>= ) <cA(M)>N= D2 (ingom?) (24)
n=1 n=1

i.e., the total variance explained by Z,(p) and its coefficient c,(t) is simply given by the corresponding
eigenvalue A2 with <c2(t) >=1,<c, >=0.

Pressure intervals or weighting functions dp/Ap may be attached to each component of an eigenvector.
They are normalized by % dp/Ap =1, where Ap = Ep dp is the total pressure interval, dp is the pressure

interval related to each pressure level p. These weighting functions have no influence on the structure of
the space functions Z,(p) but on their magnitudes; comparison with HOLMSTROM’s (1963) eigenvectors
is now possible after multiplication of Z,(p) by +/ Ap/dp at each level. The analysis of the data set leads
to space functions Z(p) after eliminating the seasonal mean vertical profile <Z > for both all summer

and all winter seasons combined.

General structure: Only two eigenvectors are needed to explain more than 99 % of the total space-time
variance of the seasonal data samples. These eigenvectors are shown in Figure 1. The first eigenvector
Z,(p) covers about 91-93 % of the total variance (summer: 91.2 %, winter: 92.6 %). It can be related
to the dominating barotropic or divergent barotropic mode of tropospheric dynamics and is comparable
with the external mode deduced by normal mode analysis (e.g. KASAHARA, 1976; GAVRILIN, 1965).
The second eigenvector Z,(p) explains almost all of the remaining variance (summer: 8.2%, winter:
7.0%). It can be related to the baroclinic nature of tropospheric dynamics and to the first internal mode
in connexion with normal mode analysis. From the observational point of view the relationship between
the space functions Z, (p), Z,(p) and the tropospheric dynamics will be discussed in terms of the spectra
of their time-dependent.amplitudes or coefficients ¢; 5 (t) (Section 3).

Seasonal variability: The basic structure of the first and second eigenvector evolves after a sequence of
10 to 20 days of local soundings. This is about the largest period resolvable from the variance produced
by tropospheric dynamics, where periods ranging from cyclones (< 5 days) and cyclone families (5—12
days) to high-low-index vacillations (> 12 days) are included. Furthermore, the vertical profiles and
the magnitudes of the eigenvector components hardly vary from season to season indicating their
stability. Observed extrema of an upper and lower level EOF-component are: Z; (300 mbar) ~— 0.49,
=0.59;Z, (300 mbar) ~—0.39,-0.52; Z, (950 mbar) ~~ 0.14, - 0.23; Z, (950 mbar) ~ 0.40, 0.45,
where the summer—winter difference is included. These numbers (normalized by the seasonal standard
deviations A,) are taken from first and second eigenvectors and eigenvalues A2, which are separately
determined for each individual season with its own seasonal average profile eliminated. As expected,
however, the total variances (or eigenvalues \3) of individual seasons vary considerably, but leaving
the structure of the space functions Z,(p) almost unchanged (summer: A3 ~ 40-77, A3 ~ 3-7.5;
winter: A7 ~ 90200, A3 ~ 913 in 10% gpm?).

Stratospheric levels: If four lower stratospheric levels (250, 200, 150, 100 mbar) are added to the EOF
analysis, the structure of the eigenvectors changes considerably. Three eigenvectors are necessary to
explain about 99 % of the observed total variance. This is illustrated by the three EOF’s deduced from
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the complete ten year data set (Figure 1c) with seasonal variations included. Their eigenvalues A? =
40.0,7\% =2.4,2% = 0.8 (in 10* gpm?) describe 92.2, 5.5 and 2.0% of the total space-time variance
(summer: 89.6, 5.8, 3.0%, winter: 90.6, 5.8, 3.0%).

The structures of these three eigenvectors (Figure 1c) below tropopause can be compared with the two
eigenvectors deduced from purely tropospheric data (Figures 1a, b). The first EOF’s (Z;) of each set

are similar as well as the third EOF Z3 (of the stratosphere plus troposphere sample) compared with the
second ones (Z,) of the purely tropospheric data set. However, another EOF (of rank two) occurs, if the
stratospheric levels are included. This EOF Z, (Figure 1c) describes the second largest amount of variance
(i.e., it is related to the second eigenvalue). As the vertical profile changes its sign at the tropopause, it
characterizes the lower stratosphere compensating the tropospheric processes which, of course, include
baroclinic effects in the troposphere. The related amplitude spectra support this conclusion. Their
variance densities are distributed amongst short, long and ultra-long period disturbances. There is almost
no time-scale preference, which, however, is observed for the external and first internal mode of the
purely tropospheric eigenvectors.

Highs and lows: Four different types of tropospheric weather systems can be distinguished by upper
and lower level geopotential height deviations from a synoptic scale area average: cold and warm lows,
cold and warm highs. At a single station this is possible only, if the seasonal time average <Z(t, p) >

of the geopotential height can be exchanged by a suitable and synoptically representative area average
[Z(p, t)] for any time of observation, i.e. <Z(t, p) > = [Z(p, t)]. This is assumed in the following.

Based on the truncated EQOF-expansion (2.1) the local height deviations AZ(p, t) in time are defined
with high accuracy by two eigenvectors Z; , and their time-dependent amplitudes ¢, ,:

2
AZ(p, ) =Z(p, ) ~<Z(t,p) >= D" ca()Za(p) (2.5)

n=1

Replacing the synoptic scale area average [Z(p, t)] by the seasonal long time mean <Z(p)> one obtains
a cold low (warm high), if AZ <0 (> 0) at p = 950 and 300 mbar; whereas warm lows (cold highs) are
defined by AZ <0 (> 0) at p = 950 mbar and AZ > 0 (< 0) at p = 300 mbar. The definition of lows
or highs refers to the lower pressure level. These four systems are separable from one another by the
two conditions: AZ(p, t) =0 at p = 950, 300 mbar (2.5).

But, instead of the two conditions of vanishing upper and lower level height deviations, AZ(p, t) =0,
the two EOF-amplitudes ¢ (t), ¢, (t) can be used to separate the four systems, given the eigenvectors
Zy(p) and Z,(p), or their components, respectively, at p = 950 and 300 mbar:

c1Zy(p) tc2Z,(p) =0 (2:6)
This leads to two “separatices” dividing highs from lows and warm cores from cold cores.
The results are shown schematically in the (c;, ¢, )-space (Figure 2). Further information on the upper
level structure may be gained: Warm lows are defined by a surface low with a warm core in the mid-
troposphere. Whether there is an upper layer high or low pressure system (extending from the mid-
troposphere upwards) sufficient to keep the core warm depends on the surface amplitude. Thus, the
level of change from upper low to high can be determined by additional separating lines in the
(c1, c2)-space improving the schematic diagram. The opposite holds for cold highs.
The coefficient ¢; associated with the first eigenvector predominatly describes changes from cold lows
to warm highs (and vice versa) and intermediate stages of their development or local realization. These
are systems modifying the upper and lower troposphere in the same sense, i.e. they are mainly baro-
tropic. The coefficient ¢, associated with the second eigenvector indicates the change from warm
low to cold high (and vice versa) modifying upper and lower troposphere in an opposite sense, i.e.

Beitr. Phys. Atmosph. Vol. 56 No. 2, May 1983 225



e Figure 2

Schematic thermal structure of syn-
optic disturbances classified by the
coefficients ¢; and c, of the two
geopotential height eigenvectors Z
and Z, in winter (W) and summer (S).

e Bild 2
Klassifikation der thermischen Struk-
tur synoptischer Stérungen mit Hil-
fe der Koeffizienten (Amplituden)
c; und ¢, der beiden Eigenvektoren
Z; und Z, des Geopotentials in
Winter (W) und Sommer (S).

these systems are mainly baroclinic. This synoptic and dynamic classification of the EOF-coefficients
allows a useful meteorological interpretation of time trajectories in the (c;, c,)-space. They charac-
terize sequences of weather systems by single station observations, provided that the assumed space-
time average exchange holds, i.e. [Z(p, t)] = <Z(t, p)>. An illustrative example follows.

The W-European drought (August 76): This event has been discussed from the British Isles’ point of
view, where it was most severe (e.g. GREEN, 1977). It also affected the eastern parts of W-Europe. From
the Berlin point of view the time development of this episode is shown by the time trajectory in the
(c1, c2)-space starting at 4 August and lasting 24 days until 27 August (Figure 3a). The trajectory of
the whole episode starts and ends near the climatic summer average (¢, » ~ 0) and describes an almost
closed orbit in the warm high basin. A close examination reveals that most of the time the local tra-
jectory moves along and across the separatrix between the cold and warm high sections representing
both divergent barotropic and baroclinic dynamics. Upper troughs erode the warm core system and lead
to its disappearence at the end of this episode. These two synoptic systems (warm and cold high) have
the surface high situation in common but can be distinguished in the upper layer by a ridge (warm high)
or a trough (cold 'high). Thus, the time average over the trajectory in the (¢, , ¢, )-space at Berlin yields
an intermediate situation between upper trough and ridge but a surface high (anticyclone). The com-
parison with available monthly averaged maps (Figure 3b, ¢;300 and 850 mbar) and, of course, daily
ones (which are not shown) supports the results from the purely local interpretation. It should be noted
that this summer has not been EOF-analysed individually but as one out of ten, using the ensemble (10
summer seasons) averaged <<Z>> and the related standard EOF’s with their coefficients. Other weather
sequences can be selected to demonstrate equally good agreement between the space and local time
structures. We conclude (until later disproved) that the space-time average exchange does not lead to
serious misinterpretation.

3 The structure in the time domain

The coefficients ¢, ,(t) related to the space functions Z, ,(p) of the purely tropospheric data
set are statistically analysed to describe the behaviourin the time domain for winter and summer seasons.
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Figure 3a—c

The W-European drought situation during August 1976; (a)
trajectory of the local eigenvector coefficients ¢y, ¢, at
Berlin; (b) 300 mbar and (c) 850 mbar level monthly mean
pressure height fields (Berliner Wetterkarte, 1976).

Bild 3a~c

Die westeuropiische Trockenperiode im August 1976; Trajekto-
rien der lokalen Eigenvektor-Koeffizienten c;, c; in Berlin (a);

Monatsmittel der geopotentiellen Hohenfelder in der oberen (b)
und unteren (c) Troposphire (Berliner Wetterkarte, 1976).

Histogram: The frequencies of the daily coefficients ¢, , are almost Gaussian distributed (Figure 4)
around the climatological mean (c; = ¢, = 0). A circle of radius 2 In (100/100-01)1/2 ~ 1.5 centered at
¢; = ¢, = 0 contains the standard deviation of a normal distribution (a = 68.3). This graphical illustra-
tion allows a visual control of the normal distribution of the data before Gaussian processes are applied.

The climatic mean (or local ensemble average) is not really identical with the modal value. The most
frequent or long lasting weather systems at Berlin (representative for the continental part of W-Europe)
are warm highs with divergent barotropic dynamics. They are dominating the summer seasons more than
the winter. Less frequent are cold lows. Particularly during summer they have to be relatively strong in
order to balance the more frequent but relatively weak warm high situations, to obtain the climatic
mean. Secondary maxima may be identified along the “separatrix” between cold lows and cold highs;
i.e. upper level troughs of rather strong baroclinity (¢, >> 0) but hardly affecting the surface pressure
field (i.e. cut-off cyclones, etc.). Finally, it should be noted that the synoptic interpretation (besides the
dynamic one) is based on the space-time average exchange (Section 2).

Spectral estimation, significance and time scales: The seasonal time series ¢, 2(t) are transformed to
obtain power spectra. Computing the spectra, the lag-correlation method is applied (maximum lag 32
days) to which removal of a linear trend and application of a lag window is implicit (JENKINS and
WATTS, 1968). The Tukey window is used with an equivalent band width of 0.04167 cycles per day.
An area conserving transformation is applied by which the meteorologically relevant phenomena are
emphazised at the higher frequency end of the spectrum: the spectral densities are multiplied by fre-
quency and displayed on a logarithmic frequency scale labelled according to the period in days. The
results show computed variance densities averaged for the winter and summer seasons. The ensemble
averages are enveloped by the seasonal standard deviation (shaded) and their extrema (dotted) to in-
dicate stability and similarity of the seasonal spectra.
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- The observed seasofially averaged spectra are tested against the common null hypothesis of a discrete
first order autoregressive AR(1) or Markov process c(t) with the time step A = 1 day and the related
power spectrum p(f):

c()=drc(t—A) +a(t)

3.1
p() = 24sL (1 - ¢1)/(1 + ¢F — 2¢; cos2nfA) G0

The parameters of the process ¢(t) are deduced from initial estimates, i.e. fitted to the data (without
linear trend) by the lag I autocorrelation ¢, = <c(t) c(t — A)>/< c¢2(t)> and by the time series variance
s2 =<c? (t)>=1. The AR(1) process is forced by a white noise a(t) of zero mean and a variance

s2 = <a® ()>=s2 (1 — ¢?}). The serial correlation coeffient ¢, is related to the relaxation time scale

7 of the corresponding continuous Markov process

__A

1-¢
The relaxation time scales 7, , are different for both eigenvectors Z; , . The divergent barotropic mode
is characterized by the longer time scale 7,

. (3.2)

| 71 T2

Su | 53 3.1 days
Wil 54 2.2 days

i.e. the atmosphere’s linear memory is longer for slow divergent barotropic changes (Z,) between warm
high-cold low situations than for r, of the purely baroclinic activity (Z,) of migrating fronts and cyclon-
es. Besides their meteorological interpretation, the time scales 7; , allow a more realistic estimate of the
degrees of freedom (relevant to any significance test) by reducing the 120 days of observations per
season to approximately 120/ statistically independent realizations.

The choice of the first order Markov-process as null-hypothesis is based on the relatively large relaxa-
tion time scales 7 indicating a significant linear correlation (¢; = 0.5) between consecutive days for all
time series; k furtherlags still fulfill ¢y ~ ¢%. However, white noise could also be a relevant null-hypothesis
particularly for the second (or baroclinic) mode Z, due to its shorter period fluctuations. Therefore,
the c,-series are tested against both red and white noise the latter having the same spectral density for
all frequencies 2 s3 A (i.e. eq. 3.1 for ¢, = 0.). An a priori significance level of 95% for selected frequency
bands is chosen due to prior knowledge of the related meteorological phenomena from different data
sets (e.g. BOTTGER and FRAEDRICH, 1980) and circulation models (e.g. HAYASHI and GQLDER, 1977).

Three peaks at short (< 5 days), long (5—12 days) and ultra-long (> 12 days) periods are tested to be
distinct from the red and white noise spectra. When ensemble averaged over the ten summer-seasons,
the ultra-long period of the divergent barotropic mode and the long period disturbances of the baro-
clinic and barotropic mode contribute variance beyond the 95 % significance level of ensemble averaged
red noise. For the winter seasons, only the 8—15 day period disturbances of both the first and second
EOF are about to reach this significance level. However, no seasonal ensemble average peak is significant,
if the more realistic degrees of freedom (d.o.f) based on independent data (i.e. reduced by the appro-
priate time scales) are used. The confidence limits are given by the chi-squared distribution;the d.o.f.
are estimated by (2N-m/2)/m with the number of days reduced to statistically independent observations
N = (1200 days)/r, the maximum lag m = 32, and a weighting factor of 4/3 due to application of the
Tukey window (JENKINS and WATTS, 1968).

Two conclusions can be drawn from these results:

(i) Any physical interpretation of the peaks (in the following subsection) remains merely qualitative.
Additionally, the predominating periods have hardly any predictive value on the regional or local scale.
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Nevertheless, the spectral peaks are still meteorologically meaningful, for they occur in almost all in-
dividual seasons. However, they vary in intensity and preferred period because single station observa-
tions are rather sensitive to small regional displacement of large-scale phenomena.

(i) A statistical single station forecast seems to provide a reasonable approach because red and white

noise processes are able to describe much of the observed spectral variance distribution, at least in an

averaged sense. Some methods of univariate stochastic predictions are applied (Section 4) to obtain
purely statistical standards of single station forecast skills of geopotential height.

Vacillation, cyclone families and cyclones: Figure 5 shows clearly that the EOF Z, describes longer
periods: There are variance contributions by ultraong periods (>> 12—15 days), which can be related to
the barotropic or external mode Z; only. They are synoptically realized by longer lasting warm highs
followed (and preceeded) by cold lows (see interpretation of histogram). The relatively shorter periods
(<12 days) are dominated by the first internal or baroclinic mode Z, with cyclones (< 5 days) and
cyclone families (5—12 days). Here it should be realized that the spectra are normalized by variance,
i.e. A2 >> 22 (Section 2).

Spectral densities of both the divergent barotropic Z, and the baroclinic Z, modes occur in the 10—15 day
period interval in winter. This indicates the existence of a vacillation or index cycle, which consists of

a baroclinically active part with maximum length of about 10~15 days (cyclone families) or shorter
(cyclones), plus a more inactive part of about the same length; thus a period of 20—30 days is obtained.
The barotropic mode (Z, ) participates in both the quiescent and synoptically more active phase of the
cycle when excited by major slowly progressive waves (cold lows). These waves define the lower time
scale limit for divergent barotropic mode dynamics with a period of about 10 days. The baroclinic mode
(Z2) has an upper limit at about the 15 day period. Therefore, it can be concluded from this overlap-
ping that the vacillation cycle is effected by both baroclinic and barotropic dynamics (at least during
the phase of transition).

4 ARMA prediction of the local 500 mbar geopotential height

As the baroclinic or second eigenvector Z, changes sign in the mid-troposphere, it does not
contribute to the 500 mbar geopotential height variations which, therefore, are almost completely deter-
mined by the 500 mbar component of the first eigenvector Z; (500 mbar) multiplied with the time-
dependent coefficient ¢, (t). However, the accuracy of the first EOF to describe the complete geo-
potential height structure decreases from almost perfect at 500 mbar towards both higher and lower
levels due to the missing baroclinic mode. There are two data sets available to fit univariate stochastic
models for predicting the 500 mbar geopotential height. They can physically be interpreted as statistical
analogies of (i) “barotropic” forecasting: both predictor and predictand are taken from the same data
set, which is the 500 mbar geopotential at a single station, and (ii) “equivalent barotropic’ forecasting:
the amplitude ¢, (t) of the first eigenvector Z; serves as predictor, whereas the predictand (i.e. the
local 500 mbar height) is approximated by the product of the 500 mbar component of the first EOF
Z, (500 mbar) and the predicted coefficient ¢, . The emphasis of this section lies on “‘equivalent baro-
tropic” forecasting at a single station.

Forecasts made by univariate statistics, e.g. chance, persistence or climatology, provide the common
standards of comparison to evaluate the utility of numerical weather prediction models. In the fol-
lowing a purely stochastic univariate model is developed to serve as an improved evaluation standard of
comparison and a guidance for local forecasters. It is applied to the 500 mbar height at a single station.

The ARMA model: Mixed autoregressive (order p) moving average (order q) or ARMA (p, q) models
are only a first approximation to simulate meteorological observations c(t) for t = 1,2 ..., because they
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define a stationary stochastic process. An ARMA process (as described in textbooks: BOX and JENKINS,
1976; KASHYAP and RAO, 1976; etc.) can be expressed in the following form

P q
c(t)=_¢ic(t—i)—z 6;a(t —i) +a(t) : 4.1)
i=1 i=1

assuming zero mean for the variable ¢ with variance s = <c?(t)>. The a’s are a white noise forcing
process, which is normally distributed with zero mean and variance s = <a®(t)>. The white noise may
also be interpreted as the uncorrelated error or residual of one step ahead forecasts.

The observed power spectra (Section 3) and the sample autocorrelation functions (Figure 6) of the
first EOF amplitude ¢, suggest that the seasonal time series can be identified as a low order stochastic
process because the apparent periodicities are not strong and significant enough compared with red
noise. A mixed autoregressive and moving average process can also serve as a possible model because
the observed spectral densities and autocorrelations occur in the neighbourhood of AR(1), AR(2) and
ARMA (1, 1) processes determined by initial estimates (Figure 6). The pure moving average process
MA(q), however, can be excluded from the model building procedure; e.g. MA(1) requires a lag 1
autocorrelation coefficient < 0.5 to obtain real values for the moving average parameter 6, .

The parameters 6;, ¢; of a sequence autoregressive and mixed autoregressive and moving average models
are estimated using the maximum likelihood method. For the summer season the ensemble averaged
linear trend has been removed and is added as a deterministic model component. The ARMA (1,1)
process appears to be the most adequate fit to the data set; for winter the second order autoregressive
model AR(2) is also suitable. Table 1 shows the BIC measures (see Appendix), on which the model
selection is based, and the related forecast error estimates {white noise levels), s2 = <a2(t)>, which can
be compared with the observed normalized variance s2 = <c?> = 1. Fitting higher order ARMA models
does not necessarily lead to significantly smaller forecast errors. The ARMA (1,1) models, their power
spectra (Figure 6) and time scales -

c(t)y=¢,ct—1)~0,a(t—1)+a()

1 - ¢} 1 +¢? =26, cos2nfA 4.2
p(f) = 2452 o1 i 1 (4.2)
1+6% ~26,0, 1+¢7~2¢, cos2nfA
1-¢,6 -0
S S Gl S 0VI( l)}~4.2d
I=é 1_9%_291%

are defined by the following parameter estimates (¢,, 6,) = (0.705, — 0.344) and (0.745, — 0.215)
for summer and winter fulfilling the conditions of stationarity and invertibility.

Hindcast and independent forecast: Forecasts & (1) are made by an estimated ARMA model at the
origin t for lead time or forecast range |, if ¢(t—i) and a(t—i) in (4.1) are recursively replaced by
&i(1-1) and &(t + 1 — i) starting with nowcasting ¢,(0) = c(t). Any forecast &(1) of an ARMA model
suffers from the unpredictable noise or error a(t + 1) = c(t + 1) — &,(1). The expected mean squared
forecast error can be derived from (4.1).

-1
<P +D>=<(ct+D &M’ >=3 {1+ yi} (4.3)
=1
For extending the forecast range, 1 - o, the forecast error <a?(t +1)> grows continuously to an upper

bound given by the variance of the time series. The y/; weights are easily calculated recursively from
equation (4.1): Y5 =¢; ¥y +...t b, Yjp =0, where Y, = 1, y5=0 for j<0and §; =0 forj > q.
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Figure 6 Left: Autocorrelation of the first eigenvector coefficient ¢, : observed ensemble averages (dots) and vari-
ous stochastic models fitted to the winter and summer seasons.

Right: Frequency-multiplied power spectra of the first eigenvector coefficient for summer and winter: observed (full
line) and fitted ARMA (1,1) model (fine line) with 95 % significance levels for peaks and gaps (dashed).

Bild 6 Links: Autokorrelation des ersten Eigenvektor-Koeffizienten cy : empirisches Ensemble-Mittel (Punkte) und
verschiedene stochastische Modelle, die an die Winter- und Sommer-Jahreszeiten angepaft sind.

Rechts: Frequenzgewichtete Power-Spektren des ersten Eigenvektor-Koeffizienten fir Sommer und Winter: beob-
achtet (durchgezogen) und angepafites ARMA (1,1) Modell (diinn), sowie 95 % Signifikanz-Niveau (gestrichelt) fir
Minima und Maxima.

The mean squared error transformed to 500 mbar geopotential height deviations
<a?(t+ 1)>=<(Z(t + 1, 500 mbar) — Z; (500 mbar) - ¢;(1))* >

starts with an initial value at the forecast origin t or 1 = 0 (Figure 7), because the first EOF describes
the geopotential height at 500 mbar with negligibly small but existing error. With increasing lead time 1
the stationary and invertible ARMA (1,1) model approaches the ensemble averaged seasonal mean or
trend (for summer only) eliminated before model building. Thus, the ARMA forecast (1) is attracted
by the stationary climate state defined by the first moment of the time series. Consequently, the Gaus-
sian distributed forecast errors grow to an upper limit of zero skill obtained by seasonal mean forecasts.
Thus, the ARMA forecast error <a?(t + 1) >and its Gaussian distribution is attracted by the climate
state defined by data variance (second moment) and frequency distribution.

The ARMA (1,1) prediction improves the 500 mbar geopotential persistence forecast skill by about
6—7 % in summer but only 3—4 % in winter for one day ahead predictions (Figure 7 and Table 1). A
skill of S = 50% appears to be a reasonable lower bound for meteorologically meaningful stochastic
prognoses when forecast error and forecast (as derivates from the climate mean state) have equal chance



B Table 1 The mean squared lead time one forecast error and skill, the information criterion BIC and the
portmanteau lack of fit test (Appendix) of various stochastic models predicting the coefficients of
the first eigenvector.

B Tabelle 1 Mittleres Fehlerquadrat und Giite der Eintages-Vorhersage, Informationskriterium BIC und
Anpassungstest (Anhang) verschiedener stochastischer Modelle zur Vorhersage des ersten Eigenvektor-
Koeffizienten.

mean squared forecast BIC portmanteau test
Model error (Skill) Q versus x2
SU Wl SU  WI SU WI 95%
Persistence 0.32(67%) 0.37 (63%) -~ 585 508 [ 124 89 36.4
AR (1) 0.27(73%) 0.34 (66%) | —671 —559 [ 109 59 364
~ ARMA(1,1) | 0.25(75%) 0.325(67%) | —710 -574 | 33 14 35.2
& AR(2) 0.25(75%) 0.325(67%) | —706 —574 | 40 14 352
g ARMA (2,1) | 0.25(75%) 0.325(67 %) -708 -S572 33 13 33.9
= ARMA (1,2) | 0.25(75%) 0.327(67%) | —708 —572 | 33 13 339
ARMA (2,2) | 0.25(75%) 0.325(67%) | —707 -569 | 34 18  32.7
% Persistence 0.28(72%) 0.70 (42 %) 25 33
§ ARMA (1,1) | 0.24 (76 %) 0.57 (53 %) 13 21
o
G
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20
’ 16
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g -0
T ~ »
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= ~
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e Figure 7
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to meet the observations. The ARMA (1,1) model reaches this limit at predictions of about two days
ahead. This, of course, lies beyond the persistence forecast quality crossing the zero skill of climatology
prediction after the lead time of two days. The ARMA process, however, hardly produces forecast errors
of less than zero skill, because the estimated first and second moments hardly change.

The summer 1980 and winter 1980/81 seasons have been omitted from the standard set (used for model
fitting) to make independent ARMA (1,1) forecasts (see Figure 7 and Table 1). The first EOF amplitudes
¢, (predictors) are deduced by the standard eigenvectors Z; multiplied with the independent daily
geopotential heights deviating from the standard mean <Z>>. The verification measures of the inde-
pendent summer 1980 forecasts hardly differ from hindcasting the observations (standard set) used for
model building. But the winter 1980/81 shows larger discrepancies. They are caused by a shift in the
winter 80/81 mean state: Although the first moment hardly changes(i.e. it vanishes), the second moment
(variance) differs considerably;it is not unity but < ¢? >wisoys1 = 1.2. This result clearly demonstrates
one of the major drawbacks of ARMA prediction applied to meteorology; all seasons deviate more or
less from a seasonal mean or standard climate state, particularly if the synoptically active winters are
considered. This also explains the relatively low winter hindcast skill of the ARMA models compared
with the summer performance. Fitting an independent ARMA (1,1) model to this winter 1980/81
season yields parameters ¢, , 8, which lie outside the 99 % confidence contour line established in Figure 8
(Appendix). An additional result should be mentioned; the “equivalent barotropic” ARMA (1,1) fore-
cast skill is about 1 to 2 % better than the “barotropic” ARMA (1,1) forecasts, which are directly
derived from the 500 mbar geopotential without using the information of the first EOF. Although this
result is not surprising it is achieved despite the small initial error made by the EOF transformation.

Forecasting phases of highs and lows: The local pressure or geopotential height trajectory in time de-
fines troughs and ridges passing over a station. It is not so much the local pressure height amplitude or
its level, which is of forecast value, but the qualitative behaviour, how a model predicts the lead time of
lows and highs. Therefore, observed or predicted lows (or highs) are quantitatively defined by five local
pressure height values of consecutive time steps: A low or trough occurs at time t, if its 500 mbar geo-
potential

ZO<Z(t£)<Z(t +2) 4.4)

achieves a relative minimum between two past and two preceeding neighbours. Thus, a forecast of at
least two time steps is required to define a present day (t) geopotential height minimum as a real low,
and a forecast of three time steps that tomorrow’s minimum is a low, etc. The analogue procedure is ap-
plied, if highs or ridges are considered. It is obvious from the definitions of the stochastic processes that
an ARMA (1,1) model predicts all extrema to occur within the first forecast time step(1=0and 1=1).
AR(2) models are able to distribute the predicted extrema over a wider range of lead times, which
does not necessarily lead to better forecasts. We evaluate the performance of the ARMA (1,1) and the
AR(2) models for the ten winter seasons, when both models produce hindcast skills of comparable
magnitude.

A control of the lead time prediction of phases of highs and lows has to be necessary and sufficient:

1) If lows or highs are observed withinlead time 1 = 0 to 1 = 1, how many (%) have been predicted?
A total of 91 lows and 87 highs defined by (4.4) is observed in the time series. For daily ARMA (1,1)
and AR(2) predictions these reference numbers of lows and highs rise according to the control;i.e. as
the lead time 1 = 0 approaches the observed extremum, a reference low or high may be counted several
times, depending on the lead time length considered for the daily forecasts. In this sense ARMA (1,1)
and AR(2) models realize 73% (69%) of the observed lows between lead time 1 = 0 and 1 = 1,and 73%
(73%) between 1 =0 and 1 = 2. They predict 70% (65%) of the highs from 1 =0to 1 = 1, and 70%
(68%) from 1 =0to 1 = 2 days.
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(iD) If lows or highs are predicted within lead time 1 =0to 1 = 1, how many (%) will be observed?
Considering extrema at lead time | =0 and 1 =1, every day ARMA (1,1) and AR (2) forecasts realize a
total of 261 (238) lows, 51 % (53 %) of which are observed to occur between lead time 1=0 and 1= 1;
62 % (63 %) between1=0and1=2,and 77 % (79 %) between 1 = 0 and | = 5 days. The ARMA (1,1)
and AR(2) models predict 249 (221) highs between 1 = 0 and 1 = 1, of which 49% (51%) are observed
to occur between lead time 1 =0and 1 = 1,57% (60%) from 1=0to 1 = 2, and 67% (68%) from
1=0to 1 =75 days.

The results of the control can be summarized as follows. If ARMA or AR models predict a low (high)
at short lead times, it will be observed with almost 80% (70%) chance within the following five day
period. Additionally, if a lowis predicted at these short lead times, a low (but not a high) will be observed,
and vice versa. This holds for both controls (i) and (ii).

5 Conclusion and outlook

If the single station geopotential height profiles are confined to the troposphere, the mechan-
ism of stratospheric compensation is excluded and only two eigenvectors (EOF’s) are necessary to des-
cribe 99% of the vertical and time variability. These two EOF’s characterize the barotropic or equivalent
barotropic and baroclinic mode of tropospheric dynamics. The associated amplitudes allow a definition
of two distinct stochastic time scales related to the dynamic models. The first eigenvectors and their
amplitudes can be used as the basis for univariate stochastic prediction of the summer and winter 500
mbar geopotential heights at a single station. A mixed autoregressive and moving average model of first
order is selected to perform daily predictions up to a lead time of several days ahead. Higher order
models do not lead to a considerable skill improvement, because very high frequency variance (which
is implicitly eliminated by the first or equivalent barotropic eigenvector) does not need to be resolved
or predicted. The results of the ARMA forecasts may satisty some practical aspects, because they allow
a qualitative lead time prediction of highs and lows. Additionally, they provide a better standard of
comparison for NWP models than climatology and persistence, particularly if extended or medium range
forecasts are considered. Direct comparison 1s not yet possible because NWP verifications are generally
based on area and not single station rms errors.

Stochastic models may continue to evolve and improve. They would therefore represent increasingly
stringent standards of comparison (BAUER and KUTZBACH, 1974). To reduce some of the basic defi-
ciencies of single station stochastic prediction there are some improvements besides an extension in
space dimensions: (i) The univariate predictand and predictor can be replaced by a vector variate; such
multivariate models may lead to a higher forecast skill; however, the problem of model performance
versus model significance arises. (ii) GroBwetter related stochastic models may be developed (SPEKAT
et al., 1983); e.g. some stochastic models may perform better during situations of high index, others
for low index.
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Appendix

(i) Stochastic information criteria need to be introduced to provide quantitative measures
for model order selection demanding parsimony in model building. This ensures that as few 0;, ¢; para-
meters are estimated as necessary to fit the data adequately.
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One objective measure is the Bayesian Information Criterion or BIC (SCHWARZ 1978) which has been
applied to ARMA models by KATZ and SKAGGS (1981); accordingly, the orders p and q minimizing

BIC(p, q) =nlog <a} 4(t)>+(p+q+1)logn

are selected. The first term on the right hand side is a measure of goodness of fit (mean square error)
of the model; the second term is a penalty function for the number of parameters (p + q + 1) required,
and n is the number of observations to fit the model. It is not the goal to select the model producing
minimum error (as usually done by regression analysis which leads to overfitting) but to penalize error
by order to obtain parsimonious models.
(i) An approximate (1—pr) confidence region of the estimated parameters ¢, , 6, is limited by contour
lines :
X%r(P +q) 3

n
measured in terms of model error and defined by the chi-squared distribution xpzr(K) for(p +q) d.o.f.
at the probability level pr; (for I-pr =99 % and p + q = 2:x* = 9.21). The relation between the ap-
proximate parameter interval of prescribed confidence and the model error is determined by the com-
plete error topography projected into the parameter ¢, —8, plane (Figure 8). This is obtained from all’
ARMA (1,1) processes applied to the data. Even with 99 % confidence the most likely summer and
winter parameters (8, ¢, ) vary so little that they cannot be exchanged for predicting the opposite
seasons. The parameter variation decreases, if lower confidence is requested.

si {1+

(iif) The portmanteau lack of fit test (Table 1) selects those models which provide suffiently uncor-
K

related residuals a(t). The residuals are taken as a whole by Q =n Z < 1,(k) >? with n = 1200 obser-

k=1
vations to fit the model and tested against a chi-squared distribution x* (K-p-q), with K-p-q degrees of
freedom; r,(k) is the estimated k-lag sample autocorrelation of the white noise residual; for K = 25 lags
and a chi-squared distribution at 95% confidence the test is satisfied by the estimated ARMA (1,1)
process selected according to the BIC measure.

(iv) A Gaussian error distribution or forecast probability density (with zero mean and variance
<a®(t +1)>) can be placed on the forecast (see Figure 9). It diffuses with increasing lead time 1 and

(2]
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Figure 8 Estimated contours of ARMA (1,1) model error and 99% confidence region (shaded) in the (¢1,0;) -plane
for summer and winter.

Bild 8 Geschitzter ARMA (1,1) Modellfehler und 99 % Konfidenz-Bereich (schattiert) in der Parameterebene
(¢1, 01) fiir Sommer und Winter.
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Figure 9 Example of a ¢;-ARMA (1,1) prediction (8—20 August 1976): Observations (full line), one day ahead
predictions (dots), and predictions for lead time I = 1—12 (crosses) starting at 8 August. Probability limits (68.3%)
and distributions for some lead times (1 = 1,2,4,8) are included.

Bild 9 Beispiel fiir eine c;-ARMA (1,1) Vorhersage (8.—20. August 1976): Beobachtungen (durchgezogen), Tages-
prognose (Punkte) und Vorhersage firl= 1 bis 12 Tage (Kreuze), die am 8. August beginnt. Gaufische Wahrschein-
lichkeits- oder Fehlergrenzen (68.3 %) und Verteilungen fiir einige Vorhersage-Zeitpunkte (1= 1,2,4,8) sind eben-
falls eingetragen.

growing error variance and approaches the (presumed) Gaussian distribution of the data set. Probability
limits pr can be attached to each forecast using (4.2). They grow from s, -u(pr) at lead time 1= 1 to

-1
G s, u(en) {1+ v Y7

i=1

Thus, for the one sigma probability limits, u(pr = 68.3 %) = 1, there is a pr = 68.3 % chance that observa-
tions meet the forecast interval within the positive and negative standard deviation of forecast error
about &(1). With growing lead time, 1 = o, the 68.3 % probability limit of the forecast,u = 1, approaches
the estimated standard deviation of the data set, s, = <c?>!/2. Other probability limits are u(pr = 50%)
=0.674, u(pr = 95 %) = 1.96 etc. An August 1976 period (discussed in Section 2) is selected to present
a direct application of a stochastic or ARMA (1,1) prediction up to a lead time of 12 days. This hind-
cast example includes the estimated probability distribution and confidence limit changing with in-
creasing lead time (Figure 9).
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List of Symbols
Z(t: p)y Z],2,3(p)

p,t,f
c(t), ¢1,2(1), A2

s2,< 0*>

$,0,p,9
AR, MA, ARMA; p(f)

a(t); s = <a®(t) >

=4 D <c(t)e(tk)>/<c(1)>

geopotential height; first, second and third eigenvector of geo-
potential height v

pressure, time, frequency 0 <f < 1/2A

time-dependent coefficient or amplitude of eigenvector Z, or Z,,
eigenvalue

time variance of ¢, , space-time variance

parameters and order of ARMA model

autoregressive, moving average and mixed stochastic model; related
power spectrum

error, residual or white noise; its estimated variance

integral-, macro- or relaxation time scale

k=0
A time step 1 day
<>1l1] seasonal time or ensemble average; area average (section 2 only)
& (D forecast estimate of ¢, starting at time t for lead time 1
S, rms skill, root mean square
X2, u(pr) chi-squared distribution, deviate exceeded by proportion pr of the
unit Gaussian distribution
References

BAUER, G. K. and J. E, KUTZBACH, 1974: Evaluation standards for dynamical prediction models. J. Appl. Meteor.
13,505-506.

Berliner Wetterkarte, 1976: Beilage 99/76 (KEU VIII/76) and Beilage 100/76 (KNH VIII/76).

BOX, G. E. P. and G. M. JENKINS, 1976: Time series analysis. Holden-Day, 575 pp.

BOTTGER, H. and K. FRAEDRICH, 1980: Disturbances in the wavenumber-frequency domain observed along 50° N.
Beitr. Phys. Atmosph. §3, 90-105.

FRAEDRICH, K. and K. MULLER, 1983: On single station forecasting: sunshine and rainfall Markov chains. Beitr.
Phys. Atmosph. 56, 108—134.

GAVRILIN, B. L., 1965: On the description of vertical structure of synoptical processes. Jzv. Atmos. Oceanic Phys.
1,4-8. .

GREEN, J. 8. A., 1977: The weather during July 1976: Some dynamical considerations of the drought. Weather 32,
120-128. )

HAYASHL Y. and D. G. GOLDER, 1977: Space-time spectral analysis of mid-latitude disturbances appearing in a
GFDL general circulation model. J. Atmos. Sci. 34, 237-262.

HOLMSTROM, 1., 1963: On a method for parameteric representation of the state of the atmosphere. Tellus 15, 127—
149.

JENKINS, G. M. and D. G. WATTS, 1968: Spectral analysis and its applications. Holden-Day Inc. San Francisco,
525 pp.

KASAHARA, A., 1976: Normal models of ultralong waves in the atmosphere. Mon. Wea. Rev. 104, 669-690.

KASHYAP, R. L. and R. A. RAOQ, 1976: Dynamic stochastic models from empirical data. Acad. Press, 334 pp.

KATZ, R. W. and R. H. SKAGGS, 1981: On the use of autoregressive-moving average processes to model meteorol-
ogical time series. Mon. Wea. Rev. 109, 479-484.

SCHWARZ, G., 1978: Estimating the dimension of a model. Ann. Statist. 6, 461—464.

SPEKAT, A,, B. HELLER-SCHULZE and M. LUTZ, 1983: Uber Grofiwetter und Markov-Ketten. Met. Rdsch., in
press.

Beitr. Phys. Atmosph. Vol. 56 No. 2, May 1983 239



