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ABSTRACT

The properties of the “free-ride” assumption of balance between diabatic heating and adiabatic cooling are
investigated by incorporating it into the classical two-level CISK (Conditional Instability of the Second Kind)
model of Charney and Eliassen. The free-ride model is found to give a CISK-type instability when the heating
amplitude exceeds the modified static stability (8 — a#). The free-ride solution is very similar in structure to
the CISK solution, except that the free-ride growth rate is independent of scale. R

Inspection of the classical CISK model reveals that its growth rate is also independent of scale over the range
of scales for which the instability is efficient, and over this range of scales the free-ride and the classical models
are essentially identical.

This leads to a new physical interpretation of CISK. Given that the cumulonimbus heating rate is proportional
(through the Ekman pumping effect) to the low-level vorticity, the CISK mechanism is interpreted in terms of
a balance and a feedback. The balance is the free-ride balance between the (Ekman) heating and the adiabatic
cooling by the divergent circulation. The feedback is through increase of the vorticity by the inward advection
of angular momentum by the divergent circulation,

This interpretation gives insight into the nature of the CISK mechanism. It explains why the characteristic
CISK time scale is half the Ekman spin-down time, and why the space scale is an order of magnitude below
the deformation radius. It also reveals that the CISK feedback is through the spinup brought about by the
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divergent circulation above the boundary layer.

1. Introduction: the free-ride hypothesis of cumulo-
nimbus convection

It has been long known that in tropical weather sys-
tems the diabatic latent heat source is an order of mag-
nitude larger than the response in terms of localized
rate of temperature change. This has been shown ob-
servationally for convection in GATE by Frank (1980)
and in radiosonde composite studies of developing
tropical cyclones by McBride (1981). It has also been
demonstrated by Holton (1972) and Webster (1983)
to be consistent with a scaling analysis of synoptic scale
variations at low latitudes.

Thus to first order the thermodynamic equation
consists of a balance between the diabatic heating and
the adiabatic cooling. One of us (JMcB) has been ex-
perimenting with the use of this balance as an hypoth-
esis for cumulus parameterization. Assumption of the
balance implies that at grid points diagnosed as having
convection, the vertically integrated potential temper-
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ature tendency can be set to zero. From this context
of obtaining a parameterization for free, the assumption
of the balance between diabatic heating and adiabatic
cooling is referred to here as the “free-ride” assumption.
It has been used in numerical models: by Chang (1973)
in a simulation of the ITCZ; and by Fingerhut (1978)
in a simulation of a steady state cloud cluster. It forms
the basis of McBride and Gray’s (1980) conceptual
theory for the diurnal variation of oceanic tropical
convection. Sardeshmukh and Hoskins (1988) adopted
it to justify the use of the barotropic vorticity equation
to study the generation of teleconnection patterns. -
With the above exceptions, however, the free-ride
assumption has not been used in tropical dynamics.
The aim of the current paper is to begin to explore its
theoretical implications. This is done by incorporating
it into a well-known simple model of tropical convec-
tion, the two-level CISK (Conditional Instability of the
Second Kind) model of Charney and Eliassen (1964 ).
It will be shown that the free-ride version of the CISK
model yields a solution almost identical in structure
to that of the original CISK model. Also the free-ride
growth rate is identical to that of CISK in the range of
length scales where the latter shows no scale depen-
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dence. This result is surprising as it has been thought
(for example, see Emanuel 1986) that the CISK insta-
bility inherently depended on a large reservoir of Con-
vective Available Potential Energy (CAPE) such that
the diabatic heating was much larger than the adiabatic
cooling.

Analysis of the time and space scales characteristic
of the original CISK solution reveals that the free-ride
balance is not only compatible with CISK but that it
also plays a fundamental role in the mechanism of
CISK.

CISK has previously been interpreted in terms of a
balance and a feedback. Given that the heating through
Ekman pumping arguments is proportional to the vor-
ticity, the balance is between the vorticity and the La-
placian of the geopotential perturbation. The feedback
is through the modification of the geopotential by the

heating. This interpretation is incorrect in that this’

mechanism is not responsible for the CISK instability.
For the mechanism actually operating in simple
CISK models, the relevant balance is the free-ride bal-
ance between the Ekman-specified heating and the
adiabatic cooling by the divergent circulation. The
feedback is the modification of the vorticity by the di-
vergent circulation above the boundary layer.

2. A simple model

The concept of CISK was first formulated by Char-
ney and Eliassen (1964) and Ooyama (1964). The
model we have chosen to use here is that of Charney
and Eliassen (1964). The characteristics and solution
of that model are well documented; it has been studied
by Ogura (1964), Charney (1973), and Mak (1981)
as well. Henceforth this classical model and solution
will be referred to as CEM.

The CEM model is a two-layer model in pressure
coordinates for inviscid balanced perturbations about
a stratified basic state at rest. Following Charney (1973)
and Mak (1981), we choose a slab-symmetric model
geometry such that §/3X = 0. Thus all information
about the divergence is in the 7 component and all
vorticity information is in the U component of wind.
The alternative formulation (Charney and Eliassen
1964; Ogura 1964) is in cylindrical geometry with ax-
isymmetry (8/dX = 0). Then all divergence informa-
tion is in the radial wind component and all vorticity
information in the tangential wind component.

Following Mak (1981), the governing equations are:

u = fo

Ju=-9%,

%, = —RT/p
vy+w,=0

AT, = Swp/R + Q*/c,, (2.1)
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where the second momentum equation has assumed
gradient- (or quasi-geostrophic-) balance, and A is a
trace indicator such that under a free ride assumption
A would be set equal to zero. The terms u, v, w, ®, and
T are the velocity components in the x-, y-, and p-
directions, the geopotential height and the temperature;
R is the gas constant, S is the static stability, and Q*
is the cumulus heating to be parameterized. The two-
layer model geometry used by CEM is shown in Fig.
1. Expressing vertical derivatives in the corresponding
finite difference form, we obtain with the conventional
Ansatz (e.g., v = V() expot) for all variables:

olU, = fV;
olU; = fV3
SU = =&y
fUs = =3y

~Aop(®3 — ®,)/RAP = SW2p/R + 01/¢,
V|y+ Wz/AP= 0
Viy + (W, — W3)/AP = 0. (2.2)

The system of equations in (2.2) requires two more
relations for closure. These are the Ekman pumping
relationship for W,, and the CISK parameterization
of heating:

Wa= KUy, Q= —Cp&Ws+aW2)/R. (2.3)

As noted by Chang and Williams (1974), the deri-
vation of (2.3) requires that U; = U,, but is standard
in the CEM model solution procedure. The friction
parameter K is determined by Ekman dynamics of the
boundary layer which is assumed to exist below level
4 of the model. It is noted that the heating Q- is a
generalized form of the CEM heating as used by Char-
ney and Eliassen (1964) and Mak (1981). Ogura
(1964) and Charney (1973 ), however, did not include

LEVELS VARIABLES

Wo
v, @, U,
(1)21 2)02

—_ 3

Vy Dy5U,4

4 Wy

FIG. 1. The two-layer model geometry of the classical
CEM CISK model.
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W, on the right hand side; i.e., they put the coefficient
“a” to zero.
By algebraic manipulation, (2.2) and (2.3) can be

reduced to the following set of equations:;

Vi = —V3(1 + fK/ APo) (2.4)
~®y= f2V/o (2.5)
~&yy = V3]0 (2.6)
Wy = —VyAP (2.7)
—Xo(®;3 — ¥9,)/AP
= (S—ta)W, — tKfVay/a, (2.8)

where we have used the inner boundary condition that
Vi = V3 = 0 at the origin (y = 0) to derive (2.4).

3. The free-ride model
a. Solutions

By its nature the free-ride formulation involves con-
ditional heating; thus following Charney (1973) we in-
troduce an inner region (| y| < b) characterized by
upward vertical motion (i.e., W,, W, negative) and an
outer region (| y| > b) characterized by sinking motion.
The inner region will have cumulus heating, but the
nature of the solution will be determined by the free-
ride balance, i.e., terms involving the tracer A will be
assumed small. The outer region has no heat, so the
heating amplitude £ is set to zero. For both regions the
lower boundary condition is defined by the Ekman
relation (2.3). At the lateral boundary (| y| = b) they
.are coupled by the kinematic and dynamic boundary
conditions, i.e., by the continuity of mass and pressure..

Differentiating the thermodynamic equation (2.8)
with respect to Y and substituting the set (2.4)-(2.7)
vields:

(f1AP)*(20 + K/ AP)
R\, & ]
sl () 5w

The inner region solution can be obtained by putting
A to zero and solving (3.1), subject to the condition
that the meridional (i.e., divergent) wind be antisym-
metrical about the origin. This procedure yields

Vyi=—Vy/b, (3.2)

where V is a (constant) amplitude of the initial per-
turbation, and the subscript / denotes a solution for
the inner region. By substituting (3.2)into (2.2), inner
region solutions can be obtained for all variables.
Alternatively the solution for the inner region can
be obtained by putting A = 0 in the thermodynamic

Viyy — AV3 = 0.

(3.1)
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equation (2.8) and using (2.4), (2.7) to eliminate W,
yielding V3y:[(S — £@)(1 + fK/APs) — £fK/APg]
= (), For a nontrivial solution, the coefficient in the
square brackets equals zero and Viy; # (. This latter
condition has a range of solutions of which (3.2) is the
simplest.

The solution for the outer region is obtéined by put-
ting £ = 0in (3.1) and solving subject to the antisym-
metry of V about the origin. This yields the solution

V3 = —(sign y)Vexp[-A(ly| = b)], (3.3)

where the kinematic boundary condition has been ap-
plied at y = +b, and the lateral e-folding reduction of
the CISK signal, 4, is defined as the positive root of
the relation

(f/AP)*(20 + fK/AP)
S(q +fK/AP)

Substitution of (3.3) into (2.2) yields solutions for all
other variables in the outer region. Matching solutions

A% =

(3.4)

for @ at y = +b, and assuming the geopotential per-

turbation ® goes to zero as y approaches infinity pro-
vides values for the integration constants in (2.5),
(2.6). Thus the complete solutions for the lower model
layer are:

Inner region | y| < b:
Vii=—Vy/b
Usi = —fVy/ab
Wy = —KfV/ob
3, = ®30 + f2Vy?/2bo

= —f2V(b/2 + 1/A)] o + f2Vy?/2bs  (3.5)
and
Outer region | y| > b:
V; = —(signy)V exp[—A(| y| — b)]
U; = —(signy)fV/e exp[—A(| y| — b)]
W,=KfAV/o exp[—A(|y| — b)] .
®; = —f?V/oA exp[—A(| y| — b)]. (3.6)

This solution is sketched in Fig, 2. It is noteworthy that
the solution in the outer region is identical to the CEM
solution given by Charney ( 1973); for the inner region
the upward vertical motion is constant (i.c., indepen-
dent of y); and the geopotential heights are both con-
tinuous and differentiable at the boundary y = +b.

b. Stability

Setting A equal to zero in the thermodynamic equa-
tion (2.8) and substituting the inner region solution
yields an expression for the growth rate:

1
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OUTER REGION

wdown, U, >0

AMPLITUDES

-b

0 b

F1G. 2. Sketch of the solutions at the lower lay'er for the free-ride CISK model.

[

=ﬂ£[————(l+”)g~s]. (3.7)

AP S —at

Thus the growth rate is independent of the horizontal
scale b, and instability (positive ¢) requires that £ > S
—at> 0.

¢. A posteriori validation of free-ride balance

The underlying assumption of the free-ride balance
can be confirmed within the context of this model: that
is, T, is small in comparison with the diabatic heating
and adiabatic cooling terms in the thermodynamic
equation. We substitute the inner region solution (3.5)
into (2.8), set “a” equal to zero and replace £ by 78
[to allow direct comparison with Charney (1973)].
The condition that the left hand side of (2.8) is smaller
than either term on the right hand side then becomes

(2= 1/9)"26/R + (2 — 1/9)(b* — y*)/R* < 1.

- (3.8)
The maximum value is at the origin y = 0; R
= APVS’/ f is the Rossby radius of deformation and 4
= (2 — 1/7)"?/R is the lateral reduction of the CISK

signal. With Charney’s (1973) numerical value, 7
= 2.14, (3.8) reduces to

V3-1 _
(2= 1/m)'?

Noting that b is the half-width of the inner region, this
means the free-ride CISK model is confined to scales

b<R 0.6R. (3.9)

* significantly smaller that 1.2 times the Rossby defor-

mation radius.

4, Comparison with CEM CISK

Equation (3.7) for the growth rate is a familiar one,
It is the growth rate for CEM CISK in the small scale
limit where the CEM growth rate becomes constant
(i.e., independent of scale). This is most easily dem-
onstrated by deriving the CEM growth rate for the case
of unconditional heating. In that case we can assume
a complex exponential form in the y direction, thus
replacing y-derivatives by the multiplier i/. Setting A
equal to 1, the growth rate is obtained by equating to
zero the determinant of the coefficients of the system
of Egs. (2.2) and (2.3). This yields

fFAPK[(1 + a)t — S]— 3K/ APP?
AP* (S — af) + 2f%/1?

In the limit as /2 approaches infinity, it is easily seen
that (4.1) reduces to the scale independent free-ride
growth rate Eq. (3.7).

Equation (4.1) was studied in detail by Mak (1981)
who demonstrated that the terms involving the param-
eter “a” result over certain length scales in an instability
that can be identified with the original conditional in-
stability model studied by Haque (1952), Lilly (1960)
and others. Thus to isolate the classical CEM CISK
mode we shall follow Ogura (1964) and Charney
(1973) by setting “a” equal to zero. Those authors
also replaced the heating amplitude ¢ by #S. Following

(4.1)

OCEM —
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the interpretation of Charney (1973), variations in the
numerical value of # are determined by the value of
the saturation mixing ratio in the Ekman boundary
layer,

Under these conditions, (4.1) becomes

_JAPKS(q— 1)~ 3K/ API?
IcEM AP2S + 212/

(4.2)

Defining the length scale L = x/2/, (4.2) shows that
o_is positive for all L smaller than (APVS/f)-
Vn — 1-7/2. Also ocem is effectively independent of
the scale L once the terms involving /2 in the numerator
and denominator of (4.2) are an order of magnitude
smaller than the other terms, i.e., once

' AP VS
10-L<min(7—2v:§,%,—l)\/§vn—lg). (4.3)

The numerical value of » is approximately 2.14
(Charney 1973); thus both terms on the right hand
side of (4.3) are of the order of the deformation radius
APVE/ /. Thus the dependence on scale of the CEM
growth rate is of the form shown in Fig. 3. The range
of scales over which the CEM CISK mechanism is ef-
ficient is that range where the growth rate is indepen-
dent of scale, i.e., the horizontal part of the curve in
Fig. 3. ‘

As shown in section 3c, the range of scales for which
the free-ride CISK model is self-consistent is that range
for which the temperature tendency term on the left
hand side of (2.8) is an order of magnitude smaller
than the adiabatic cooling SW,. From (3.9) thisis when
bis an order of magnitude smaller than the deformation
radius. Thus the range of length scales for which the
free-ride CISK model is self-consistent is the same range
for which the CEM CISK mechanism is efficient.

Therefore, in this range of length scales, the CEM
and the free-ride CISK models are essentially identical.
This is unexpected, as it has previously been thought
that the CISK instability resulted from an imbalance
between the Ekman-parameterized heating and the
adiabatic cooling. Based on the above analysis of the
free-ride CISK, in the following section we examine in
more detail the balance and feedback mechanisms op-
erating in both CEM and free-ride CISK.

5. The nature of the CISK mechanism

As documented above, the range of length scales over
which the classical CISK mechanism is efficient cor-
responds to the range over which the free ride balance
holds. This leads to an interesting insight on the nature
of the CISK mechanism.

In simplified form the governing equations for the
CISK model can be expressed as follows:
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GROWTH RATE

2(n-1)fK/Ap -

(n-1)fK/Ap

0

1 T T

0.1 1 10 100

0.001 0.01

DIMENSIONLESS SCAILLE
(L / Deformation radiue)

FIG. 3. Variations of the growth rate with length scale
for the CEM CISK model.

Balance:

Adiabatic cooling + Ekman heating = 0
S(AP-divergence — K- vorticity )+ £K - vorticity = 0
Feedback. (Secondary Circulation)

o+ vorticity = — f » divergence.

Substitution of the feedback c\quation into the bal-
ance equation and cancellation of the vorticity as a
common term from both sides of the equation yields
the familiar CISK growth rate, ¢ = (fK/AP)-(£—.S)/
S = (fK/AP)+(n — 1), where it is noted that 2AP/
fK is the Ekman spin-down time, and at latitude 15°
is about 6 days.

- Therefore, the physical interpretation of the CISK
mechanism is as follows: In regions of cyclonic low
level vorticity the upward Ekman pumping of the moist
boundary layer air provides the heat source for con-
vective heating of the free atmosphere. On scales sig-
nificantly smaller than the deformation radius, this
heating is identically balanced by adiabatic cooling as-
sociated with a divergent secondary circulation. This
secondary circulation increases the vorticity through
stretching of vortex tubes. The increased vorticity
means greater Ekman pumping, hence a greater heat
source, which is then balanced by a greater-magnitude
divergent circulation. This is a positive feedback loop
generating a self-excited disturbance.

The feedback thus works through the vorticity equa-
tion {, = f * v, as is illustrated in Fig. 4. The midlevel
condition w, = 7wy is given by the free-ride balance
between adiabatic cooling S-w; and CISK heating
— S« 7+ w4. Also note that substituting n = ¥2 leads to
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Lid T we = 0
(= flw,—wo)/Ap
: Ao
n>1 Spin up ¢ = =T/ (n—1)
. W, = NW,
<1 Spin down
" P Qo= f(w4—wg)/Ap
Ap
{; = {aoexplin—=1)Kf/Aplt ¢
Ekman Pumping w, = — K,

FIG. 4. Vorticity balance of the two-layer free-ride CISK model. Each box includes the vorticity equation
for that layer, plus its solution. The upper and lower boundary conditions on w for each layer are given

along the right side of the diagram.

the classical Ekman spin-down problem where {; = {3
= o exp — t(fK/2AP).

This interpretation explains why the CISK time scale
is equal to half the Ekman spin-down time, and why
the length scale is approximately an order of magnitude
smaller than the deformation radius, the length scale
being where the free-ride balance applies. It also shows
that the feedback is the spinup associated with the di-
vergent circulation above the boundary layer. It also
shows that the CISK mechanism is applicable only on
space scales such that the width of the disturbance is
significantly smaller than the deformation radius.

It is appropriate to contrast this with previous phys-
ical interpretations of the CISK mechanism. For ex-
ample, Charney (1973) states that in regions of cyclonic
low level vorticity the upward Ekman pumping of the
moist boundary layer air provides the heat source for
convective heating of the free atmosphere. He then
states, however, that “as heat is liberated in the cyclonic
region, the pressure will fall and the geostrophic vor-
ticity will increase, thus leading to a self-excited dis-
turbance,” This interpretation assumes the important
balance is between the vorticity and the Laplacian of
the geopotential perturbation and that the feedback is
through the direct response of the pressure to the Ek-

"man heating. This feedback loop cannot, however, be
responsible for the instability acting in the classical
CEM model since when this feedback equation is sub-
stituted into this balance equation, the horizontal scale
remains through the Laplacian operator. Thus the
growth rate would be inversely proportional to the
length scale squared, a property not shown by the CISK
model. Also the above balance /feedback combination
does not give the Ekman spin-down time as the ap-
propriate time scale; plus it is known from the results
of Syono and Yamasaki (1966) and Mak (1981) that
the simple CISK instability model is not sensitive to
the assumption of gradient balance relationship.

6. Conclusions

We have found that the CISK instability present in
the CEM model is dependent on the free-ride balance
between diabatic (cumulus) heating and adiabatic
cooling. This offers a new interpretation of the physical
mechanism of CISK. It can be described by a feedback
loop which consists of the following components:

(i) The Ekman pumping relationship induces cu-
mulus heating proportional to the low level vorticity.

(ii) Through the free-ride balance the secondary
(divergent) circulation in the free atmosphere is pro-
portional to the cumulus heating,

(iii) The secondary circulation increases the low
level vorticity through conservation of angular mo-
mentum, which completes the positive feedback loop.

This physical mechanism, dependent on the free-
ride balance, explains simply the following features of
the CISK instability:

(i) The time scale of the instability is half the Ekman
spin-down time.

(ii) The space scale over which the instability is ef-
fective is the range an order of magnitude smaller than
the Rossby radius of deformation.

(iii) Over this space scale range, the growth rate is
independent of space scale.
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