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SUMMARY

An ‘almost trivial’ climate system of geometrical dimension zero is analysed. It consists of the global
energy storage which is balanced by the globally averaged net radiation (solar input minus infrared emission)
with ice-albedo and greenhouse feedbacks included. This nonlinear and time-dependent climate system is
formulated as a gradient system of a potential. It can be analysed without explicit time integration according
to catastrophe theory, so that the resilience of the system, due to changes of the external parameters and due
to variations of the state variable, can be determined. For the ice-albedo or the greenhouse feedback alone,
two equilibrium solutions appear: the stable ones are attractors, characterizing the present day interglacial ;
the unstable ones define a lower or an upper bound, respectively, for temperature changes to be absorbed by
the systems. Beyond thresholds of external parameters (fold catastrophes) no equilibria exist, so that the
systems attain the states of ‘deep freeze’ and ‘desert heat’, respectively. The two feedbacks combined lead to
three equilibria, the stable interglacial being bounded by two unstable solutions, beyond which initial
temperature values tend towards the ‘deep freeze’ or ‘desert heat’. External parameter changes can lead to
structural instability occurring at fold lines, which meet at the cusp catastrophe. Outside the fold and cusp
catastrophes only unstable equilibria appear, from which initial temperature values tend towards ‘desert
heat’ or ‘deep freeze’ situations.

1. INTRODUCTION

Chance and necessity cooperate to achieve climate variations — both stochastic and
deterministic aspects have to be considered in the analysis of climate systems. Their effects
on the structural behaviour of the system can be determined by resiliences (e.g. Griimm
1976) which are due to changes in the state variables (or uncertainties of the initial condi-
tions) and due to changes of the external parameters (or boundary conditions). As an
example of such an analysis a simple climate system of geometrical dimension zero is
derived, describing the dynamics of a single state variable — the global mean temperature.
An earlier paper (Fraedrich 1978) is extended by parameterizations of two temperature-
dependent feedback mechanisms which are adopted from the literature, leading to a
gradient system for the internal climate state variable. Here it should be realized that it is
the main purpose of this paper to show qualitative aspects of the global climate system and
its feedbacks; not to simulate quantitative details. An analysis of this zero-dimensional
climate system has to include the effects of fluctuations of the internal variable and varia-
tions of external parameters: the origin of external parameter variations can be attributed to
relatively slow changes due to astronomical or anthropogenic processes. The analysis of
external parameter changes exhibits singularities (of smooth maps) which are called catas-
trophes. The analysis is completed by allowing for state variable fluctuations; the physical
origin of a fluctuating global mean temperature may be ascribed to large-scale atmospheric
or oceanic processes induced, e.g., by blocking action or anomalies of tropical circulation
patterns. This part of the analysis leads to limits for state variable fluctuations beyond which
the system attains a different structure. These limits depend on the external parameters only;
here, they are defined by the unstable solutions. :

In section 2 the basic climate system and the two feedback mechanisms are introduced.
Later sections describe a sequence of models with these feedbacks; the structure and the
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resilience of the feedback systems are discussed with respect to changes of external para-
‘meters and the internal variable. In section 7 some practical aspects of sensitivity and
stochastic forcing are discussed.

2. ZERO-DIMENSIONAL CLIMATE SYSTEM

A global climate system of geometrical dimension zero can be described by the energy
conservation law after integrating over the total mass (per unit area) of the system:

cdT|dt = R} —R} . . . @.1)

(For definitions of symbols see appendix.) The storage term (left) results from the imbalance
between net incoming solar radiation, R|, and outgoing emission, Rf.

The storage term characterizes the time-dependent behaviour of the system, its dynam-
ics being described by the single internal (or state) variable, T. The state variable is inter-
preted as an average surface temperature of, e.g., an ocean on a spherical planet which is
subject to radiative heating. This allows storage to be simplified by a constant thermal
inertia, ¢ > 0, if a mixed reservoir of fixed depth 4 and area coverage « is considered:

C = puCmha . . . . (2.2)

Incoming solar radiation,

R| = july(1—oay), . . . (2.3)

is modified by an external parameter, y, to allow for variations in the solar constant, J,, or
for long-term variations of the planetary orbit (von Woerkom 1953). Unless the planetary
albedo, «,, is taken as an external parameter, an ice-albedo feedback has to be introduced to
link variations in temperature with changes of ice (and/or cloudiness) and thus of albedo:

o, = a;—b,T? . . . (2.4)

The linear feedback «, = a; —b, T introduced to climate modelling by Budyko (1969) and
Sellers (1969) is replaced by a quadratic relation of the same slope, b, = 2b,T,, and same
value, a,, at present day, T,, conditions. Some reasons for introducing Eq. (2.4) may be
mentioned: (i) The quadratic feedback is similar to the greenhouse effect (discussed later in
this section), modifying the effective emissivity. (i) This formulation leads to simple and
analytic expressions for the equilibria of the feedback models to be discussed in the follow-
ing sections. (iii) There is hardly'any qualitative difference in the structure for the equilibria
using either parameterization. (iv) Within a realistic temperature interval, there are only
small differences between the quadratic and linear ice-albedo feedbacks. This is shown in
Fig. 1 for present day conditions, external parameters being indicated by the additional
subscript ‘o’

Infrared emission is better correlated with the mass-averaged temperature of the atmos-
phere than with the surface temperature. But it is the surface temperature which determines
the formation of ice and which is therefore used in the following parameterizations. This
leads to a net outgoing longwave radiation R{ determined by a contribution from the
surface, LT = ¢,0T*, and diminished by atmospheric counter-radiation, L| = g,0T*:

Rt = e, 0T* . . . . (2.5)

where the effective emissivity &, = & —e¢,. The longwave emission from the surface, L1, is
prescribed by a Stefan-Boltzmann law with surface emissivity &; atmospheric radiation,
L], is assumed to be proportional to blackbody surface emission (g,: atmospheric emit-
tance). Unless the atmospheric emittance in Eq. (2.5) is assumed to be an external parameter,
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Figure 1. External parameters at ‘present day’ reference conditions (subscript *o’): temperature-dependent
planetary albedo (ice-albedo feedback) and atmospheric emittance (greenhouse effect).

atmospheric radiation, L|, has to be parameterized; we use Swinbank’s (1963) empirical
formula L} ~ T, the theoretical derivation of which has been attempted by Deacon (1970).
This allows us to represent the greenhouse effect of longwave counter-radiation by a
temperature-dependent feedback for the atmospheric emittance ¢,, ~ 7. Such a temperature
" feedback allows for variations in the amount of water vapour, which is closely related to
temperature. The effect of carbon dioxide may be considered separately, using the
following formulation for CO, emittance, ¢, = 0-0235In(CO,), CO, in ppm, where a
correction for band-overlap has been incorporated (for details see Bryson and Dittberner
1976). This combination leads to a temperature feedback parameterization for the green-
house effect:

g, = g, +kT? . . . . (2.6)

It is obvious that this feedback mechanism shows, apart from its sign, simila1ity to the ice-
albedo feedback, Eq. (2.4). As the parameterization (2.6) is based upon Swinbank’s formula,
it is subject to the assumption of a clear sky. In the following it will be presumed that this
parameterization can be generalized to global conditions such that its structure (~7T°) is
not altered, i.e. only empirical (external) parameters are allowed to vary. An adjustment to
present day conditions is presented in section 3. Again, it should be emphasized that it is the
main purpose of this paper to show the qualitative effect of the greenhouse feedback on the
structural behaviour of the zero-dimensional climate system.

A general comment seems appropriate on the ice-albedo and greenhouse feedback
mechanisms (Eqs. (2.4) and (2.6)) characterizing the climatic sub-systems cryosphere,
hydrosphere and atmosphere. It is implicitly assumed that both the extent of the cryo-
sphere (ice-albedo feedback) and the amount of water vapour in the atmosphere (green-
house effect) instantaneously respond to changes in 7. Additionally, the storage term is
given by a constant thermal inertia of the hydrosphere. Thus, the description of the dynamics
of this model is confined to the three climatic sub-systems being in equilibrium with each
other. ' '

The zero-dimensional climate system is obtained by combining Egs. (2.1), (2.3) and
(2.5). Introducing the parameterizations of the ice-albedo feedback, Eq. (2.4), and the
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greenhouse effect, Eq. (2.6), a series of climate systems can be investigated. They all take the
general form of a gradient system which evolves according to

dT/dt = f(T;x) . . . Q.7

for fixed external parameters x = (i, &y, a5, b,, &, &,, &, K, ¢), not all of which will appear in
any one problem.

The method of analysis of Eq. (2.7) follows the principles of catastrophe theory,
according to which the geometrical structure of a gradient system f(T) = —dV/dT of a
potential V(T) can be described and classified (see, e.g., Thom 1975):

(i) The set of equilibria (fixed points) T,.(x) satisfying

f(Tsx) =0 . - : : (2.8)

is a k-dimensional surface (k: number of external parameters) in the (14 k)-dimensional
state space with one internal variable. These equilibria appear as the extrema of the poten-
tial ¥(T,) where dV/dT |, = 0.

(ii) A criterion for the internal stability of equilibria can be deduced from the linear-
ized version of the basic climate equation (2.8), obtained by a truncated Taylor series
expanded about the equilibrium f(T;;x) = 0

dT/dt = (T)+(@f/dT)|r (T~T)+ ... =—AT-T).
The eigenvalue
> 0 unstable
=4 = @fJdD)r, < O stable (29)

characterizes the tlme-dependent behaviour of the linearized climate system at the equilib-
rium T, for fixed external parameters. The inverse of the eigenvalue 7, = 1~! defines the
(e-folding) time scale according to which the state variable T approaches (leaves) the stable
(unstable) equilibrium, in the neighbourhood of which the nonlinear system behaves
locally like a linear one. The criterion (2.9) is equivalent to a sufficient condition for the
extremum of the potential ¥ to be a minimum: d?¥/dT? = —1 < 0 (attractor), or a maxi-
mum: d*V/dT? = —] > 0 (repeller).

(iii) The dynamics of time-dependent behaviour of the gradient system f(T) can be
displayed by a phase portrait. In the following analysis it shows a temperature tendency
cdT/dt in terms of the temperature-dependent difference between i incoming and outgoing
radiation, R| —R? = 0. This leads to the concept of resilience in state space, or predic-
tion of the first kind (e.g. Lorenz 1975; Griimm 1976; Holling 1973). With fixed external
parameters all initial values which depart from the equilibria (i.e. Rl —R1 =% 0) lead to a
temperature flow T'(¢) away from a repeller and towards an attractor. The sign of the
difference R} — R{ gives the direction of the flow with increasing (d7/d > 0) or decreasing
(dT/dt < 0) temperature. The magnitude of this difference gives a measure of the repelling

~or attracting forces, i.e. the angles at which R| and Rt cross the equilibria (R} = R?)
represent the characteristic time scale 1™! = 7., Eq. (2.9). As will be shown in later sections,
the system without any feedback at all has the strongest attracting power, indicated by a
short time scale but large R| —R? for T approaching T.. The weakest attracting and
repelling power is attributed to the system where the feedbacks oppose each other.

(iv) Singularities of the equilibria are defined in the state space (T,;x) by —4 =
(df/dT),T = 0. This is equivalent to a condition for which the maximum and minimum of
the potential V(T,) coincide: d*V/dT? = 0. These singularities can be projected on to the
external parameter space (x) by eliminating T, from

(@f/dT)|z. = 0 and f(T,) = 0 L (2.10)
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The combination (2.10) provides the condition for structural instability which, in the
parameter space, describes the location of sudden catastrophic jumps of the (set of) equilib-
ria. These catastrophes occur whenever external parameters are forced to cross these (pro-
jections of the) singularities, Eq. (2.10), which define, e.g., a line or surface in the parameter
plane or space. Thus, the system can absorb changes in the parameters (i.e. it keeps struc-
turally stable) unless parameter trajectories cross the hyperplane (2.10), where the equilibria
are structurally unstable. This introduces the concept of resilience of state space or the
prediction of the second kind.

' In what follows, two types of singularity of equilibria (elementary catastrophes)
appear: fold catastrophe and cusp catastrophe. The fold catastrophe emerges at a bifurca-
tion point where two branches of stable and unstable equilibria coalesce. It is determined by
the condition (2.10). The cusp catastrophe emerges at the bifurcation point where two
branches of fold catastrophe (fold-lines) coalesce; it is given by the condition:

A(T) = 0; (@fJdT)|r, = 0; (df/dT*)|r, =0 : 2.11)

Projection into the parameter space (i.e. the related parameter combination for the cusp) is
obtained by eliminating the equilibrium state variable T from Egs. (2.11). The above sub-
sections are illustrated in the sketch shown in Fig. 6 (after Brocker 1975).

3. TRIVIAL CLIMATE SYSTEM AND FEEDBACK CALIBRATION

The trivial zero-dimensional climate system without feedback is obtained from Egs.
(2.1), (2.3) and (2.5): ' : .

dT/dt = (1/c){ —asaaT44_—%;uIO(1 —o,)} . . (3.1)
The equilibrium solution f(T,) = 0 of Eq. (3.1) leads to the simple fourth-order polynomial
'Te4 - (%‘[110/8“0’)(1 - ap) =0 . . . (3‘2)

which depends on three external parameters x = (o, &, #) reduced to one combination.
There exists only one physically realistic root of Eq. (3.2),

T, = +{Gulo/ea0)(1— ap)}%’ . . . (3.3

which is internally stable because
—A = (df]dT)|;, = —(8,0/c)4T> < 0 . . (3.9

Thus for all initial values T > 0, and at fixed external parameters, the temperature approaches
the stable equilibrium (attractor) T, Eq. (3.3). The singularity at T, = 0 is unrealistic, and
trivial, because a fold catastrophe occurs at (3ulo/e,0)(1—a) = 0, i.e. there are no real
solutions for a negative argument in Eq. (3.3). There will be no further consideration of this
singularity.

A reference situation (subscript ;") is defined by the external parameter combination
xo = {00 = 0:284, &40 = 0-62, po = 1}. Using the trivial climate system (3.3) these values
Jead to the globally averaged ‘present day’ equilibrium temperature T., = 288:6 K. The
planetary albedo «,, = 0-284 is taken from Raschke et al. (1973); this gives an effective
emissivity &, = 0-62. A thermal inertia for the zero-dimensional climate systems (2.2) is
derived for a well-mixed ocean layer of depth £ = 30m covering & = 70-87; of the earth’s
surface: ¢, = 10%kgK ~'s 2.
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portrait at reference conditions. (For detailed description see Fig. 3 and text.)
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For present day albedo and emissivity the equilibrium solution (3.3) of the trivial
climate system is presented (Fig. 2), varying with the relative intensity, u, of solar radiation.
The phase portrait (Fig. 2) displays the attractor (stable equilibrium) for the reference
condition in terms of the incoming, R|, and temperature-dependent outgoing radiation,
R?, so that the temperature flow (i.e. the tendency dT/dt 2 0) is determined by the radia-
tion imbalance R|— R1]. The characteristic time scale according to which the linearized
version of the trivial climate system approaches the reference situation T, is
Teo = Ag ! = 1-4yr. From Egs. (3.3) and (3.4) it is obvious that the system (3.1) can absorb
changes of the state variable where all initial conditions T > 0 have trajectories to the
attracting stable equilibrium T, (resilience of the first kind); additionally, the system can
absorb changes of the external parameters as long as 1ulo(1 —o,)/e,0 > 0 without struc-
tural instability occurring (resilience of the second kind). This behaviour can be simply
interpreted by the potential, ¥, of Eq. (3.2), the only minimum of which is the equilibrium
(3.3), attracting all temperature flows.

The reference situation allows a calibration of the two temperature feedback mechan-
isms which are discussed in the following sections. To deduce the reference magnitudes of
the ice-albedo feedback parameters a,, and b,,, Eq. (2.4), two requirements have to be
satisfied: at present day conditions the slope and the value of the quadratic and linear
ice-albedo feedback have to correspond:

“pO = azo_bone%) . B B (3.5a)
(p/dT)|pe = —bio = —2b3eTe . .  (3.5b)

With a,, = 0-284, b, = 0-006 K~! at T,, = 288-:6K (see, e.g., Lian and Cess 1977) one
obtains a,o = 12, bye = 0-1 x 107*K 2,

The reference magnitudes of the parameters &, and x, for the greenhouse effect can
also be derived, if two requirements are fulfilled satisfying the ‘present day’, T,o, situation:
the total atmospheric emittance, €,o, and the contribution, &., of CO,, Eq. (2.6), to it:

€a0 = Ecot+KoTH : . . (3.62)
=013 . . , . (3.6b)

where the present CO, content (315 ppm) has been introduced to yield &o. With g, = 0-38
one obtains k, = 30x 107K ~2. A simple rearrangement, dealing with the external
parameters for the emissivities, appears useful: g,o = (&—&)o = (e, —&)o—KoTH =
€.c0—KoT %, SO that g, = 0-87.

4. 1CE-ALBEDO FEEDBACK

The climate system with linear ice-albedo feedback has already been extensively
analysed (Fraedrich 1978). Therefore, the quadratic feedback (2.4) is introduced into the
basic climate system (3.1) and will briefly be discussed in this section:

dT/dt = (1/c){ —ea0T*+%ulob, T* +4ul(1—a,)} . 4.1)

The equilibria f(T,) = 0 of Eq. (4.1) can be deduced from the biquadratic polynomial
T —mT?+n =0 . . . (4.2a)
where m = (4ulofe,0)bs; n = —(hplofe,0)(1—az) . - (4.2b)

The equilibria depend on the four external parameters x = (az,b;, &, 1), Which can be
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Figure 3. Climate system with ice-albedo feedback : (a) The equilibria represent-a cross-section through the

state space, depending only on the intensity of solar radiation. (b).A phase portrait shows the temperature

tendency in terms of the incoming, R}, and outgoing, R%, radiation at present day conditions. (c) The
bifurcation diagram shows the singularities of the equilibria projected onto the parameter plane.

reduced to the two combinations (m,7) not involving c. The physically realistic roots of
Egs. (4.2) are

TE = mxGm?-nf, . . . @4
which describe a surface in (7,;m, n) space. The two branches T,” and T, coalesce at the

bifurcation line ;";, = T, = T,, where m*/4 = n (Fig. 3(a)). These equilibria, (4.3), are
shown for changing solar radiation, p, with all other external parameters kept at their
reference values derived in section 3.

The internal stability (instability) of the equilibria (4.3) is defined by the negative
(positive) eigenvalue

< 0 stable

=4 = (dfjdT)|r, = —(eu0/cNTE—3m)AT, _ o bl

(4.4)
Thus, the upper (lower) branch T, (T,) represents the set of stable (unstable) equilibrium
solutions. For fixed external parameters (e.g. the reference condition) the phase portrait
(Fig. 3(b)) shows the temperature tendency d7/dt in terms of the radiation balance R} — R1
for given initial temperature values. Thus, the unstable equilibrium T, defines the repeller
as a lower bound for initial values from which the temperature flow tends towards the
stable solution T,,* (attractor); there is no such upper bound, because all initial values
T >'T..;5 have trajectories towards T.}. For initial values T < T,  the temperature flow
tends towards minus infinity (‘deep freeze’) unless the albedo-temperature feedback is cut
off and, e.g., replaced by a constant albedo. The geometrical interpretation by a potential
is obvious, because its minimum (maximum) is equivalent to the stable (unstable) equilib-
rium of the gradient system (4.1). The stable equilibrium may be identified with interglacial
conditions, separated from the ‘deep-freeze’ by the unstable equilibrium. At ‘present day’
conditions, the characteristic time scale of the ice-albedo feedback system yields
To = Ag ' = 2:4yr.

The singularities (i.e. sudden changes) of the equilibria (due to parameter variations
only) reveal a bifurcation line in the state space (T;m,n) where the stable and unstable
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equilibria sets coalesce. The related projection on to the parameter plane (m,n) can be
simply derived by combining Eqs. (4.2) and (4.4) for 1 = 0, eliminating T, (see section 2).
This leads to the condition of structural instability which depends on external parameters
only, i.e. a fold catastrophe:

dm*—n =0, or (Julo/e.0)FbI{~(1—a;)"} = 1 : (4.5)

The related bifurcation temperatures ;‘e can be determined from Egs. (4.4) with 1 = 0. For
(m/2)* > n, two equilibria exist, the internal stability of which has been discussed, Egs.
(4.4). At the bifurcation line, or fold catastrophe, (m/2)? = n, the local maximum and mini-
mum of the potential ¥ of the gradient system f(T.) coincide. For (mf2)* < n, however,
these local extrema vanish, i.e. due to the imaginary root in Eq. (4.3) there are no equilibria.
Thus, all initial values have a temperature flow leading to the ‘deep freeze’ situation. The
direction of flow is due to the negative sign of the term with the highest power in 7, Eq.
(4.1); (see Fig. 3(a)).

With a continuously decreasing ice-albedo feedback (b, — 0, m — 0) the system (4.1)
attains a structure similar to that of the trivial*climate system. This can be visualized (see

Fig. 3), because the bifurcation temperature 7, = \/(m/2) vanishes simultaneously with
decreasing solar radiation (Egs. (4.4), 4 = 0; Eq. (4.5), n — 0).

An example illustrates the structural behaviour of the climate system. If the relative
intensity of solar radiation, , is assumed to change, and all other parameters are kept fixed
at ‘present day’ conditions, the equilibria appear as a cross-section through (T, ; m, n) space
(Fig. 3(a)). The related variations of solar radiation intensity, projected on to the parameter
space, are shown in Fig. 3(c), where they meet the fold line, Eq. (4.5), in the parameter
plane at

= {40 -a)(=b)}(1/b)euo H) . S CX)
The related equilibrium temperature at this bifurcation point is
*
T, = {4(1 = ay)/(=by)}*; . . . 4.7)

*

i.e. for ‘present day’ conditions (section 3) the u bifurcation lies at 7, = 180K where ﬁ =
0-63. Beyond the bifurcation y < ;t there is no real equilibrium so that for any initial value
the temperature of the system drops to a ‘deep freeze’ situation, unless the ice-albedo
feedback is cut off at some realistic temperature or albedo threshold. Bifurcation points for
other external parameters can also be deduced from Egs. (4.2) and (4.5). Some of them are
indicated in Fig. 3(c), where the remaining external parameters are in each case fixed at
‘present day’ conditions.

5. GREENHOUSE EFFECT

If the greenhouse effect of the longwave atmospheric counter-radiation parameterized
by Eq. (2.6) is incorporated into the basic climate system (3.1), and there is no ice-albedo
feedback, one obtains

dT/dt) = (1/c){koT® —e,.6T* +1ul,(1 —o,)}, . . (5.1)
where &,, = &—&.. The equilibria f(T,) = 0 of Eq. (5.1) satisfy the sixth-order polynomial
Te6 - (""‘sc/’c)l]-:a4 + (%ﬂIO/Ka)(]- - “p) = 09 . . (523*)

which can be transformed to the following normalized form of a cubic equation:

Vi—uy+v=0; y= —g.3k+T2 . . (5.2b)
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where u =3 3k)?> >0, v= —2(s:s¢/.31c)3 +(ulofxo)(1—0y) . (5.2¢)

The equilibria depend on the five external parameters x = (a,, &, &, K, it), which reduce to
two combinations (u, v). The roots of Eq. (5.2) lead to the following (positive!) equilibrium
temperatures which represent a surface in the (7, ; u, v) state space:

= +{e../3c+2(|ju|/3)F4}* . : : (5-3)

For u > 0 and (v/2)® < (u/3)? there exist three solutions of Eq. (5.3) with 4 = cos(p/3);
—cos{(n+p)/3}; —cos{(x—p)/3}, where p = arc cos{—(v/2)(u/3) %}, the last of which is
imaginary. For u > 0 but (v/2)*> > (#/3)® one solution appears with A = cosh(p/3),
where p = Arcosh{—(v/2)(#/3)"%}; but for R| > 0 it produces imaginary values. The
remaining two real solutions represent a surface in the (7,; u, v) space. They are shown in
Fig. 4 (equilibria) for changing solar radiation intensity, where all other external parameters
are fixed and defined by the reference situation (section 3). The internal stability of the
equilibria (5.3) is given by

—) = < O stable

> 0 unstable G4

1, = (k0/e){T? —4(e.c/)} 6T

so that the upper branch, T," (Fig. 4(a)), represents unstable solutions (repeller). For all
external parameters fixed at the reference condition, the phase portrait (Fig. 4(b)) shows the
temperature tendency d7/dz. It is correlated with the radiation balance R} —Rf, Eq. (2.1),
and thus depends on the (initial) temperature values. The unstable equilibrium, T,
appears as a repeller corresponding to an upper bound for initial values from which the
temperature flow tends towards the stable solution T, (attractor). For initial values beyond
~ the repeller, T > T.", the temperature flow tends towards plus infinity (‘desert heat’)* unless
the greenhouse effect is cut off and, e.g., replaced by a constant atmospheric emittance &,.
For ‘present day’ conditions the characteristic time scale of the greenhouse feedback
system yields 7., = A5 ' = 1-8yr.

The resilience of the state space (prediction of the second kind) determines the reaction
of the system to changes of the external parameters. It can be discussed in terms of the
singularities (A = 0) of the equilibria in the (T,;u,v) state space. If projected on to the
parameter plane (u,v), these singularities appear as fold catastrophes which can be deter-
mined from Egs. (5.2b) and (5.4), 4 = 0:

(Gu)’ = (30)’, or (Gulofeco)(1—0p) = $(2e,e/3%)* . (5.5)
The related bifurcation temperature is given by Egs. (5.4), 4 = 0, i.e. T = (2¢,./3k)*. For
parameters satisfying (v/2)*> < (4/3)%, two real equilibria can be determined, one of which is
the attractor. The third solution is imaginary (T.> < 0) and will be excluded from the
discussion..

An appropriate picture in the parameter plane is presented in Fig. 4(c): (v/2)* < (u/3)*
appears as the area spanned between the fold lines; outside the fold lines, for (v/2)? > (u/3)3
only one (or no) equilibrium temperature appears, provided there is one (or no) real
temperature value.

The external parameter regions (v/2)? 2 (u/3)* are separated by the structural insta-
bility condition (Eq. (5.5), Fig. 4(c)), across which small external parameter variations lead
to a structure change of the equilibria in the state space. For any parameter combination
beyond the bifurcation lines, initial temperature values 7 > 0 tend towards infinity,
whereas for (v/2)? < (u/3) there is always one attractor, but also one (real) repeller.
Whether the temperature increases or decreases depends on the situation of the initial value
with respect to the repeller (unstable equilibrium). Here, it is the ‘desert heat’ state (plus
infinity) which will always be approached until the feedback is cut off.

* ‘poiling heat’ may be as illustrative.
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Physically, the stable equilibrium (attractor T,”) can be identified with interglacial
climate. It is separated from the ‘desert heat’ by the repeller T.,* if only variations of the
internal variable at fixed external parameters are considered (prediction of the first kind,
resilience in state space). If resilience of state space is discussed, i.e. if variations of external
parameters are considered, the stable interglacial climate conditions or the attractor is
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Figure 4. Climate system with greenhouse effect: (a) equilibria (cross-section through state space); (b)
phase portrait at reference conditions; (c) bifurcation diagram on parameter plane. (For detailed description
see Fig. 3.)

abandoned when v/2 > (u/3)* or uly(1 — p)/41co- > 1(2e,./3k)3, so that ‘desert heat’ condi-
tions are attained.

The geometrical interpretation of the attractor and repeller by the potential is obvious
and has already been given in section 2; the same holds for the local maximum and minimum
of the potential coinciding at the fold catastrophe. For a continuously decreasing green-
house feedback (i.e. ¥ — 0) the system (5.1) attains the structure of the tr1v1a1 climate
system (3.1). This can be visualized from Fig. 4 (equilibria) by T — o0 with u — 00 Oor
Kk — 0. This behaviour is analogous to the continuously reduced ice-albedo feedback
(section 4, b — 0).

An example illustrates the structural behaviour of this climate system. From Egs.
(5.4), at 4 = 0, and Eq. (5.2a) two conclusions can be directly drawn. At vanishing net
incoming radiation (R} = 0; i.e. p = 0 or «, = 1) two equilibria appear: T,” = 0 and
T.,' = (e,/x)?, from which two equilibrium branches emerge with increasing solar radiation,
For all other parameters fixed at ‘present day’ conditions these equilibria, T,(u), appear as a
cross-section through the state space (Fig. 4(a)). They meet at the bifurcation point

= +(2¢,./3k)?, . . . (5.6)

where :l = 2-5 (Eq. (5.5)) and 7*1. = 438K. Projected into an appropriate parameter space,
the corresponding variations of solar radiation intensity are shown in Fig. 4(c), where they
cross the fold lines at the bifurcation points. Bifurcation points for other external para-
meters can also be deduced from Egs. (5.2) and (5.5). Some of them are indicated in Fig.
4(c).

Comparing the ice-albedo and greenhouse feedback mechanisms, a completely oppo-
site structural behaviour appears, which is clearly exhibited by the geometry of the graphs
(Figs. 3(a) and 4(a)). For fixed external parameters, resilience of the first kind shows that a -
stable equilibrium attracts the flow of the internal variable as it starts from initial values of a
basin limited by an unstable equilibrium. For a positive greenhouse or negative ice-albedo
feedback there exists only an upper or a lower bound (i.e. the repeller, unstable equilibrium)
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for the basin, beyond which the ‘desert heat’ or ‘deep freeze’ climate state is approached.
This behaviour is forced by temperature variations solely within the system (e.g. due to
internal fluctuations, if the repeller lies close enough to the attractor), without any external
parameter change at all.

The structural behaviour (resilience of the second kind) shows that fold-lines separate
the parameter plane into two areas: one with, and the other without, any stable equilibrium
at all. At the bifurcation line itself the stable and unstable equilibria coalesce. Beyond the
fold-catastrophe there is no real equilibrium. Thus, for the greenhouse or ice-albedo feed-
back there appears an upper or lower limit for the external parameter u, beyond which the
‘desert heat’ or ‘deep freeze’ state is approached. These are catastrophes triggered by
changes of the external parameters only.

In the following section the two feedback mechanisms are combined.

6. ICE-ALBEDO AND GREENHOUSE FEEDBACKS

Combination of the (quadratic) ice-albedo and greenhouse feedback mechanisms
parameterized by Eqgs. (2.4) and (2.6) leads to the following climate system:

dT/dt = (1/c){xoT® —e, .6 T*+3ulob, T* +3ulo(1—ay)} . (6.1)
The equilibria satisfy the sixth-order polynomial f(T.) = 0:
TS — T ek + TGl o/xa)by +(Gulo/ko)1~az) = O, - (6.22)
which can be transformed to the following normalized cubic equation (see section 5):
| Y-pytq=0; y=—e3k+T2 . . (62b)
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Figure 5. Climate system with combined ice-albedo and greenhouse feedbacks: (a) equilibria (cross-section
through state space); (b) phase portrait at reference conditions; (c) bifurcation diagram on parameter plane.

(For detailed description see Fig. 3 and text.)
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where the definition of y is the same as in Eq. (5.2b), and

p = ew/36)° —(ulo/Ko)b, ‘s
0 = —2es/3K)*+ (6 3K) Al ofk0)bs + (Gl ofi0)(1 — a3) (6.2¢)

The equilibria depend on the six external parameters x = (a,, b,, &, &, k, i), which can be
reduced to two combinations (p,q), defining a parameter plane. The positive roots of Eqs.
(6.2) yield the following equilibrium temperatures, producing a continuous surface in the
state space (T.;p,9): :

T, = +{eo/3x+24(|p|3)*}* . . . (6.3)

For p > 0 and (g/2)* < (p/3)’ there exist three solutions with 4 = cos(p/3); —cos{(n+
p)/3}; —cos{(m—p)/3} where p = arc cos{—(g/2)(p/3)*}. For p > 0, (4/2)* > (p/3)* one
(real) solution exists: 4 = cosh(p/3) where p = Arcosh{—(g/2)(p/3) *}. For p < 0, there
is another real solution: A4 = sinh(p/3) with p = Arsinh{—(g/2)(p/3) "*}.

All these solutions combined form the equilibrium set and are discussed in the following.
In Fig. 5 the equilibria are presented for varying solar radiation intensity, u, with all other
external parameters fixed and defined by the reference situation (section 3). The internal
stability of the complete set of the equilibria is given by

A = (@fdT)|r, = (ko[O){TE = 3T esfi) + Gulolko) by} 6T, = 0 S22 (6.4)

¢ > 0 unstable

This criterion characterizes the upper and lower branches of the equilibria (Fig. 5) as
unstable solutions (repellor). All solutions of the intermediate branch appear as stable
equilibria (attractors). For all external parameters fixed at ‘present day’ conditions the
phase portrait can be constructed (Fig. 5). It is seen that initial values attracted by the
stable equilibrium, T, are bounded by the two repellors, T.* and T, . Beyond these, either
the ‘desert heat’ or the ‘deep freeze’ state will be attained unless the greenhouse or ice-
albedo feedbacks is cut off, e.g. by a constant atmospheric emittance ¢, or planetary albedo
o,
’ For present day conditions the characteristic time scale for the system to approach the
attractor T, yields 7,0 = 4g ' = 8-1yr. As this time scale is represented by the difference '
R|—RY, it can be visualized in the phase portrait (see (iii) in section 2). Comparing the
~ portraits of no feedback, and ice-albedo, greenhouse and combined feedback, we see that
this difference is largest for no feedback (fast relaxation time scale) and smallest for the
combined ice-albedo and greenhouse feedback (slow time scale) because the effects oppose
each other, preventing a fast approach towards the attractor.

The equilibria can experience sudden changes in the state space (T.; p,q) due to small
variations of the external parameters (p,q) only. As described by the condition of structural
instability, fold catastrophes occur which can most simply be derived from the normalized

equation (6.2b) and its first derivative by eliminating y:
(39)* = 3p)° . : : : (6.5)
*

The related bifurcation temperatures, 7., can be deduced from Egs. (6.4), 4 = 0, and 6.5).

The related parameter combination can be determined if (p,q) defined by Eq. (6.2b) are
introduced into Eq. (6.5). The resilience, or prediction of the second kind, leads to the
following results. If the singularities of the equilibria, as they occur in the (T,; p,q) state
space, are projected on to the parameter plane (p, g), two lines of fold catastrophes, Eq.
(6.5), appear (Fig. 5(c)). Sudden changes of the equilibria happen for parameters crossing
these fold lines. They confine an area in the parameter plane (p, g) within which three
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Figure 6. Sketch of (a) equilibria in the state space, (b) singularities of equilibria projected onto the para-
meter plane (bifurcation diagram), and (c) the potentials related to their positions in the bifurcation diagram.
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equilibria ((g/2)*> < (p/3)) in the state space (T.;p,q) exist simultaneously. One of these
equilibria is an attractor which is framed by two repellors (Fig. 5(a)) the internal stability,
Egs. (6.4), of which has been discussed above. Everywhere else in the parameter plane,
outside this area between (¢g/2)*> = (p/3)3, there is only one unique equilibrium set, which is
internally unstable and therefore a repellor. Initial values above (below) this repellor lead to
a temperature flow towards plus (minus) infinity, i.e. the ‘desert heat’ (‘deep freeze’) state.

Physically, the attractor can be interpreted as the interglacial climate separated from
the ‘desert heat’ and the ‘deep freeze’ by two repellors (one above and one below the attrac-
tor). At fixed external parameters (‘present day’ condition) variations of the internal
variable T (e.g. by weather fluctuations) can bring the system into a state of ‘deep freeze’ or
‘desert heat’ only if the variations are large enough. This describes the concept of resilience
in the state space (prediction of the first kind). On the other hand, the interglacial attractor
can also be abandoned by parameter variations, if these move beyond the catastrophic fold
lines (g/2)* = (p/3)° into (g/2)> < (p/3)*® or p < 0. Whether the climate system finally
attains ‘deep freeze’ or ‘desert heat’ depends on the initial situation of the state variable
(i.e. the initial condition) with respect to the repellors. This describes the concept of resi-
lience of state space (prediction of the second kind). The geometrical interpretation by the
~ potential becomes obvious from Fig. 6.

Two examples of -structural analysis illustrate the behaviour of the system. If the
relative intensity of solar radiation, p, is assumed to change and all other parameters are
kept fixed at ‘present day’ conditions, the equilibria appear as a cross-section through the
(T.;p,q) space (Fig. 5(a)). The related variations of solar radiation intensity projected into
the (p,q) parameter space (using Eq. (6.2b)) are shown in Fig. 5(c), where they cross the fold
lines (g/2)*> = (p/3)? at two bifurcation points for ,u

(4ilofx0)(b3/3) = H(eso/36)*[3—3(A+3)* £{(3—H(A4+3)*)* +44}%] ,
where A = 3{(1—ay)/b,}{3k/es}; . ) .. (6:6)
= (&,o/30)[1 £ [(A+3)*/8 -1 £ {(B—3(4+3)*)* +44}*T*];



164 KLAUS FRAEDRICH

i.e. for present day’ conditions (section 3) the p bifurcations lie at T * = 365K for u

1-11 and at T = 187K for i~ = 0-78. For u = [i* there are no stable equilibria so that
the system attains the ‘deep freeze’ or ‘desert heat’ state depending on the initial temperature
lying above or below the repellors. Bifurcation points for other external parameters can also
be deduced from Egs. (6.2c) and (6.5). Some of them are indicated in Fig. 5(c), where the
remaining external parameters are fixed at ‘present day’ conditions.

The other point of interest in the parameter plane (p,q) is the cusp (section 2) where the
two bifurcation lines or fold catastrophes meet. From the normalized condition (6.2b) they
meet at the origin p = ¢ = 0. Considering all the external parameters x one obtains for the
cusp (2.11):

1 = (—4pulo/ko)(1—a,)(3x/e,)® and e /3x = 3(1—a;)/[(=b,). (6.7)
The related equilibrium temperature is given by
T, = (e,/3x)* . . . . 6.8)

For example, at ‘present day’ &, and x,, the cusp temperature yields 7. = 309K.

From the analysis of this section it can be seen how the ice-albedo and greenhouse
feedbacks (sections 4, 5), after combination, keep their own structural behaviour. If the
greenhouse effect becomes too strong the upper bifurcation point, T*, moves towards
higher temperatures; if the ice-albedo feedback becomes too strong, the lower bifurcation

~ point, Te , moves towards lower temperatures. The bifurcation points may coincide (cusp),
or even vanish, if the feedbacks balance each other. Then the climate system consists of
unstable solutions only. This is just the opposite behaviour to the case of no feedback (shown
in section 3). All other.cases are intermediate, as shown by the example presented in Fig. 5.

7. SENSITIVITY AND STOCHASTIC FEEDBACK

As discussed in the earlier paper (Fraedrich 1978) the sensitivity of the climate system
can be defined by the internal climate variable responding linearly to relative changes of one
of the external parameters, x (e.g. at the conditions of the stable equilibrium):

B, = (8T,/01nx)|s, . . . (1.1)

The sensitivity parameter f is determined for two external parameters currently of interest:
the relative intensity of solar radiation, y, and the CO, content. The latter is given by

Beo, = (9T./0 Ine,)(de,/d1n CO,) = 00235 4T, /9 Ine, . (1.2)

At ‘present day’ conditions these sensitivities are calculated for the climate systems discussed
in the sections 3 to 6: the trivial, the ice-albedo feedback, the greenhouse effect and the
combined feedback model. The results are collected in Table 1, where the temperature
change of 0-01p is due to a one per cent change of the external parameter about the reference
state. In addition, this table summarizes some of the information characterizing the climate
systems and shows how they differ: the linear time scale t, = A7, the bifurcation tempera-

tures, I*"e(;), due to solar radiation changes, and the repellor temperatures at ‘present day’
condition. Finally, the temperature response of the linearized versions of the climate
systems (section 2) on stochastic forcing (Fraedrich 1978, sections 5 and 6 and Figs. 4 and 5)
can be determined from related Langevin-type climate equations. The white noise input, D,
into the Langevin climate equations is due to short-period weather fluctuations. These are
assumed to work on an energy flux level of one percent efficiency (3 = 0-01) which is con-
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verted from the net incoming radiation R| after a characteristic time scale of 25 days
< 1, (blocking activity). Thus, D = 2-7x 10~ 2K?yr ~%. It can be shown that the Langevin-
type climate systems attain the maximum standard deviation (2D/2)* of their temperatures
after a sufficiently long averaging time, > 7. These values are presented in Table 1. As long
as the repellor temperatures are far from the ‘present day’ equilibrium 288-6 K, weather
fluctuations (as they are parameterized here) can hardly ‘push’ the climate system out of the
(interglacial) basin. But the external parameters can be changed slightly such that the repel-
lors narrow the basin. Then, unless the stochastic forcing is diminished simultaneously, an
unstable parameter and state variable combination can more easily be approached.

Overall comparison shows that the faster reacting systems (e.g. no feedback) have
smaller responses on stochastic forcing and also a smaller sensitivity. This is due to the fact
that the linear plane tangent to the nonlinear equilibrium temperature surface of the no
feedback system is hardly sloped in the state space compared to the combined ice-albedo
plus greenhouse feedback model. These slopes increase the closer the bifurcation point, or
temperatures (e.g. for p), lie to the ‘present day’ equilibrium condition x, or temperature
T,, = 288-6K.

8. CoNCLUSION

An almost trivial climate system has been investigated in this paper and a previous one
(Fraedrich 1978) applying a gradient system approach to climate modelling. There are two
aspects, which may be called chance and necessity (stochastic and deterministic), cooperat-
ing to achieve the climate variations of this system. Correspondingly, two related concepts of
resilience (or predictions of the first and second kinds) are introduced to separate these two
viewpoints. Analysis according to one of the concepts (resilience of the second kind)
classifies the qualitative structure of the system which eventually becomes unstable at critical
external parameter combinations; such a structural analysis of gradient systems (called
elementary catastrophe theory) is also known for its possible applicability to the simulation
of complex natural phenomena. But there is presently discussion about applied catastrophe
theory (e.g., Zeeman 1976; Zahler and Sussmann 1977), which mainly refers to the (often
very intuitive) construction of models describing biological, social, etc., phenomena such
that necessarily a gradient system is obtained exhibiting one of the seven elementary
catastrophes. However, the development of systems (like this climate system) from a basic
physical law and experimentally verified parameterizations is a different type of model
construction. Furthermore, another aspect is added to the analysis by the internal dynamics
of the system and its stability at fixed external parameters. This leads to the resilience of the
first kind and appears directly from analysing simple gradient systems; i.e. at fixed external
parameters the system develops deterministically but the flow depends on the initial condi-
tions. These, however, can well be posed by chance (e.g. by internal fluctuations). The two
concepts combined lead to the complete view of this climate system, its structure and
stabilities. For systems with more complex dynamics than the gradient system, however,
there may occur cycles or strange attractors.
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APPENDIX
LiST OF SYMBOLS
T;t temperature (internal variable); time

R, R, L}, LT

radiation fluxes

uly; o solar radiation, I, being the solar constant; planetary albedo

o Stefan—Boltzmann constant

a, b albedo—-temperature feedback coefficients

45 Ecs K greenhouse effect coefficients

Ess Escs Esa surface emissivity; &, = &—¢,, &, = &—¢&,

C; Cony Prms By O thermal inertia; specific heat, density, depth, area cover of an ocean
layer

X external parameters: (a, b, &, &,, €., K, ¢, it)

m,n; u,v; p,q; p, A combinations of external parameters

LV climate equations: gradient system, potential
A eigenvalue
=A"1 climatic time scale
B sensitivity parameter
SUFFIXES AND INDICES
e, 0 equilibrium, reference (‘present day’) climate
® A\

, bifurcation, cusp



