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SUMMARY

An ‘almost trivial’ climate system of geometrical dimension zero is analysed, the complexity of which
has been reduced to a minimum. It can be simply described as the globally averaged energy flux balance
between infrared emission and solar heat input, expanded by a linear albedo—temperature feedback. This
nonlinear and time-dependent climate model is formulated as a gradient system of a potential and can be
analysed without explicit time integration. It includes many of the results which are also exhibited by one-
dimensional energy balance models. Two equilibrium solutions appear. The stable one is characterized by
the interglacial, whereas the unstable equilibrium defines a lower bound for temperature (state variable)
changes which the system can absorb. Beyond a threshold of an external parameter combination (fold
catastrophe) no equilibria exist so that the system attains a ‘deep freeze’ climate situation. A —2 power law
describes the linear response of the (internally stable) system to weather fluctuations.

1. INTRODUCTION

There has recently been continuous growth in the number and complexity of models
simulating the earth’s climate. Most of these approaches towards a climate system analysis
can be classified into two categories. :

(1) A hierarchy of climate models can be established according to the dimensions of
the geometrical space occupied by the system (e.g. Schneider and Dickinson 1974). It has
been claimed that little progress will be made in understanding more complex models
unless simpler types in the hierarchy are thoroughly analysed. Therefore, many studies
concentrate on one-dimensional energy balance models of the climate system (Budyko
1969; Sellers 1969; Faegre 1972; Gordon and Davies 1974; North 1975; Frederiksen 1976;
Chyleh and Coakley 1975; Ghil 1976; etc.).

(2) The other classification is based on the methodology of analysis by which the time-
related behaviour of the climate model is investigated (Lorenz 1975). Predictions of the
first kind describe the behaviour of the internal climate variables at fixed boundary con-
ditions (external parameters). Predictions of the second kind characterize the changes of
the climate system due to the influence of external parameters.

The purpose of this paper is two-fold: A climate system of geometrical dimension zero
is described (section 2) belonging to the ‘geometrical hierarchy’. This climate system is
analysed with respect to its structural behaviour (sections 3 and 4) and its stochastic response
to short-period internal fluctuations (sections 5 and 6).

2. CLIMATE SYSTEM OF GEOMETRICAL DIMENSION ZERO

The global energy balance is determined by a conservation law which, if integrated
over the total mass (per unit area) of the climate system, yields

¢.dT|dt = R} —R} . . . @2.1)

The storage term (left) is balanced by the net radiation (right) which consists of the net
incoming solar radiation R} and the net outgoing longwave emission Rf.
461
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The internal (or state) variable, T, of the global climate system is interpreted as the
average temperature of an ocean on a spherical planet which is subject to radiative heating.
This allows the storage term to be simplified by a constant thermal inertia ¢ > 0 described
by a mixed ocean layer of fixed depth /# and area coverage a = 70-8%,:

c = p,cha . . . . (2.2)
The net incoming solar radiation

R| = tul(1—a,) . : . (2.3)

is modified by an external model parameter ¢ > 0 to allow for variability in the solar
constant, /. The planetary albedo «, incorporates an albedo-temperature feedback similar
to Budyko (1969) and Sellers (1969)

o, =a—bT . . . . 2.4

The external parameters a,b > 0 define a linear feedback between ice and albedo
variability and temperature 7. In contrast to Sellers’s one-dimensional model a nonlinear
feedback cutoff (x, = const. beyond a prescribed temperature threshold) cannot implicitly
be incorporated in the globally integrated model unless a two-compartment system is
constructed. However, if the linear relation (2-4) leads to complex temperature values, or if
the temperature of the systems tends to (minus) infinity, a limiting value for the planetary
albedo has to be introduced to cut the feedback off and to keep the system stable. As will be
shown in section 3, only one upper bound for the albedo «, = 0-75 has to be defined.

The net outgoing longwave radiation Rf is prescribed by a Stefan-Boltzmann law

Rl = eoT* . . v . (2.5

The effective emissivity ¢ = g(1 —¢g,) can be interpreted such that it includes the surface
emissivity e, and transmissivity (1 —e¢,) of the overlying atmosphere; counter-radiation from
the atmosphere is parameterized in terms of the surface temperature 7.

Equations (2.1) to (2.5) lead to a nonlinear differential equation for temperature 7" of
the climate system:

dT/dt = f(T;a,b,c,e,un)
= (1/c){—eoT*+3ulobT +iul(1-a)} . . (2.6)

The external parameters x = (a,b,¢,¢,u) determine the behaviour of this simple climate

system which has geometrical dimension zero and is characterized by only one internal

climate state variable, T. In the following sections the behaviour of f(T) is analysed, where

it can be helpful to interpret f(T) as a gradient system of the potential V(T) with dV/dT =
)

—AT).
3. EQUILIBRIA, INTERNAL AND STRUCTURAL STABILITY
The equilibrium (steady state) solutions of Eq. (2.6),
AT)=0 . . . . (3.1)

reduce the climate system to a bi-quadratic polynomial representing a fold line emerging
from a particular section of a ‘swallow tail’ catastrophy (see, e.g., Thom 1975; Woodcock
and Poston 1974):

—(c/eaXdT/dt) = T —pT,+q =0 . . (3.2)

where p = (July/ed)b > 0, and ¢ = —(Zul,/ec)(1—a) > 0.
It appears that the equilibrium solutions are not influenced by the five external para-
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meters x = (a,b,c,&,u) independent of each other but by two combinations of them (p,q)
which do not involve ¢. Considering only the physically realistic roots of Eq. (3.2) one
obtains
TF(x) = A£(@Gp/A 47 . - : (3.3)
where A = (3¢)¥cosh{}In(B+(B*—1)*} and B> = (3¢) °Gp)*.
The equilibrium solutions (3.3) describe a surface in ( .»D,q) space consisting of two
branches T," and T, coalescing at the bifurcation line T (Fig. 1). The bifurcation is
sufficiently determined for 2p/d —A4? = 0 (or T, = A), which is fulfilled only if B> = 1.

These two conditions lead to the following system of equations describing a hypersurface
in (T.,p,q) space, which is discussed in some detail later:

0=~ Te3 +71fp
1 = (39~ °Gp*
An example of the equilibrium solutions is presented for the following external para-

meter combination which will also serve as the reference situation (subscript o) in the
following sections:

x, = [a, = 2:8; b, = 0:009K™!; ¢, = 0:69; p, = 1]

(3.4)

or equivalently [p, = 78-2x 10°K3; ¢, = 156-4 x 108K*]. These values are chosen to yield
the globally averaged ‘present day’ (reference) temperature: T,, = 288:6 K. They are also
in agreement with other one-dimensional energy balance models (e.g. Ghil 1976) and
zonally averaged observations (Cess 1976).

The steady-state solutions (3.3) depend on the external parameter values. Most com-
monly discussed are temperature variations T,(u) due to changes in the relative intensity, 4,
of solar radiation. With all other parameters fixed and prescribed by ‘present day’ conditions,
one obtains the results shown in Fig. 1. Simultaneously, the results can be interpreted to
depend on changes of the emissivity ¢ " if 4 = 1, due to the external parameter combination
in p and g. The two equilibrium solutions T,"(u), T, () represent two climatic states where
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Figure 1. Equilibrium solution T.(#) of the zero-dimensional climate system depending only on changes
in relative intensity of solar radiation.
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the upper branch may be identified as the interglacial - the lower branch will be interpreted

later. The bifurcation T (1) = 266-67K at u = 097 is attained for a solar constant I,
diminished by 39,. Beyond this value the ‘deep freeze’ climate of the limiting planetary
albedo «, = 0-75 appears as the only (and trivial) equilibrium solution of Eq. (2.6) for b = 0,
a = o, However, far-reaching conclusions drawn from this almost trivial or qualitative
model must be interpreted with care, especially as a, = 0-75 has been chosen arbitrarily.

The internal stability of the equilibrium solution T, characterizes the time-dependent
behaviour of the system due to variations of the internal variable T for fixed external
parameters. A criterion of internal stability (instability) can be deduced from the linearized
version of the basic climate equation (2.6) which is obtained by a truncated Taylor series
expanded about the equilibrium f(7,) = 0:

dT/dt = (T,)+df[dT | (T—T,)
= —NT-T) . . : : 3.5)

Internal stability (instability) is defined by the negative (positive) real part of the
eigenvalue, — 4 (see also Eq. (3.4)):
1 = dfjdTly, = (deojeX(~T2+1p) S g o0

> 0 unstable (3.6)

Fig. 2 presents a graph of Eq. (3.6) showing the internal stability condition projected on the
(T,,p) plane for a representative parameter interval. The ‘present day’ condition (indicated
by a heavy dot) appears as the internally stable solution determined by the reference
parameters x,. : » -

The inverse of the eigenvalue 7, = 4~ ! defines the (e-folding) time scale according to
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Figure 2. Internal stability diagram. The symbols refer to the structural analysis: variation of a: | ; and

b: —; minimum distance [3; bifurcation ©; linear instability 3",_. = T, (—); reference condition: stable @,
unstable X. The equilibrium solution T.(u) has been added.
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which the linearized climate system approaches (leaves) the stable (unstable) equilibrium, i.e.
where the nonlinear system behaves locally like a linear one. For an ocean of mixed layer
depth 50m (Eq. (2.2)) one obtains a typical present-day (x = x,) time scale 7, ~ 7yr.
Comparing conditions (3.6) with (3.3) it follows that the upper branch T," represents the
only stable equilibrium, i.e. the sink which the time-dependent solutions of an initial-value
problem approach; whereas the unstable equilibrium solution T,  will never appear as a
solution of time-dependent numerical calculations (Sellers 1969; Gal-Chen and Schneider
1976; etc.).

Discussing the nonlinear stability of the time-dependent climate system (2.6) it appears
that the unstable equilibrium solution T,~ (lower branch in Fig. 1) represents a lower bound
for initial values from which temperature trajectories start leading towards the stable
equilibrium T,". Forinitial values T < T,” the time-dependent temperature flow tends towards
minus infinity unless the albedo-temperature feedback (Eq. (2.4)) is cut off and replaced by a
constant albedo (o, = 0-75; Fig. 1). This ensures a lower bound of the temperature (‘deep
freeze’). For a fixed external parameter constellation the ‘stable basin’ of the climate system
is represented by T'>T,”, where all initial values have trajectories towards the stable
equilibrium T,". This can directly be visualized because the climate equation (2.6) appears
as a gradient system (i.e. the gradient of a potential; see, e.g., Hirsch and Smale 1974), the
equilibrium (f = 0) of which defines the necessary condition for the extrema of the potential;
and the sign of the first derivative (i.e. the eigenvalue — 1) sufficiently defines these extrema
as a local minimum (stable equilibrium) neighbouring a maximum (unstable equilibrium).
Beyond both extrema the potential tends towards (plus and minus) infinity. Thus, for fixed
parameters there occurs no temperature oscillation of the climate system but a temperature
flow which orthogonally crosses the level surface of the potential. This flow is directed
towards the only stable equilibrium (interglacial), or towards the ‘deep freeze’ situation if
the initial values (T < T,”) lie beyond the unstable equilibrium T, (i.e. the local maximum
of the potential). ,

A condition for the existence of any equilibrium (fixed point) at all may be called the
problem of external stability because it depends on the external parameter combination. If
there are no equilibria, the temperature of the system drops to minus infinity for any initial
condition. Therefore, the upper bound for the planetary albedo (x, = 0-75) has to be
introduced to ensure the lower bound for the temperature (‘deep freeze’). This guarantees
continuity with the initial-value problem for temperatures below the internally unstable
equilibrium T, (see Fig. 1). The transition between the parameter region with fixed points
(equilibria) to the one without is given by the ‘structural instability’, more specifically, by a
fold catastrophy. This criterion for a bifurcation can be simply derived by a combination of
the internal stability condition ((3.6) for A = 0) and the equilibrium climate equation (3.2)
eliminating the internal variable T, (see also Eq. (3.4)):

B* = (39)°Gp)* = Gulo/ea)db)*{-3/(1-a)}® = 1 : 3.7

For B? > 1 two equilibria exist, the internal stability of which has been discussed (Eq.
(3.6); Fig. 2). For B% < 1 there is no equilibrium, due to an imaginary root in 4, Eq. (3.3).
Figure 3 shows the graph of the structural instability (fold) line as projected on to the (p,q)
plane; it defines the bifurcation line separating the parameter regions with and without fixed
points (equilibria).

Again, this can be interpreted by the potential of the gradient system (2.6) the local
maximum and minimum of which coincide at the fold (bifurcation line) and vanish beyond it.

It appears that, once the system lies beyond the threshold values of the external para-
meter combination (B? < 1) and the internal variable (T < T,”), the outgoing radiation Rt
(to which the highest power in T is attached) dominates the system. Thus, the longwave
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Figure 3. Bifurcation diagram; for symbols see Fig. 2.

emission exceeds the albedo-temperature feedback process, which in turn reduces the net
incoming solar radiation R} by too high an albedo. This leads to a negative temperature
tendency (in Eq. (2.6)) which has artificially to be stopped by the ‘deep freeze’ situation.
Within these threshold values there is the stable climate basin with one stable equilibrium
solution as a result of the steady-state balance between the radiative energy fluxes; the
unstable equilibrium (including the bifurcation) denotes the boundary of the basin.

4, SENSITIVITY AND STRUCTURAL ANALYSIS

Some applications of this simple climate model will be discussed mainly under the
aspect of ‘all other factors being constant . . .’ (Bryson 1968), except the one external
parameter under examination (see also Flohn 1969). The other external parameters re-
maining unchanged are assumed to take the values of the ‘present day’ (reference) situation
(subscript o).

On the above premises the sensitivity of the stable equilibrium climate system is
conveniently defined as a measure of the reaction of the internal climate variable T, to
relative changes of one of the external parameters x:

B. = dT.*d(nx)|s, . . . (4.1)

Such a sensitivity parameter B, can be simply derived from Eq. (3.2) for any x =
a,b,c,e,u. It can be shown that its magnitude increases with decreasing distance of the

(stable) equilibrium T,"(x) (Eq. (3.3)) from the related bifurcation J:e(x) (Egs. (3.4) or
(3.6) 3.7).

The distance between a bifurcation and an equilibrium solution is indicated by a
trajectory of the equilibrium solution in the (7,,p,q) space caused by continuous changes
in the external parameters. Projections of these trajectories can be traced in the (7, p) or the
(p,9) plane (Figs. 2 and 3).
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The following five examples illustrate the applicability of this simple model, with
respect to a structural analysis of the ‘present day’ situation of the climate system:

() g, = const. Variability in p with g fixed describes changes which depend on the
albedo-temperature feedback parameter b only. The bifurcation (and structural change
due to the p (or b) variation is determined by Eqgs. (3.6), (3.7) or (3.4) as indicated in Figs_
2 and 3 by a horizontal arrow: i’e(Z) = 268-71K; b = 0-0089K ~* or}; = 776 x 10°K3;
respectively. This can be visualized by the intersection of the plane g, = const. in (7, p,q)
space with the hypersurface (3.4); the related projections are shown in Figs. 2 and 3. The
sensitivity of the present-day climate with respect to changes in b yields f, = ulybT,[4cA =
+1280K, i.e. a 19, change in b would produce a 12-8K change in T, unless the bifurcation
is reached. (Note that cA, as defined by Eq. (3.6), is independent of the thermal inertia c.)

(ii) p, = const. Variability in g with p fixed describes changes which are caused by the
other albedo-temperature feedback parameter a. The related bifurcation and the sensitivity
parameter are fe(é) = 269-39K, a = 281, (or q. = 158 x 108K*%), B, = —paly/dch =
—1380K (Figs. 2, 3; vertical arrow). The large sensitivities §,, f, clearly indicate the proxi-
mity of the reference situation to structural instability.

(iii) g,/p, = const. This ratio defines the gradient of a straight line in the (p,q) plane
connecting the origin (p = 0, g = 0) with the ‘present day’ parameter combination (p,,q,).
This gradient is identical to the ratio —(1—g,)/b, = 200K; the related straight line is
defined by u (or ¢~?) variations with a,, b, unchanged. In (T,, D,q) space the intersection

of the plane p,,/q,, = constant with the hypersurface yields T = 266-67K, u = 0-97 (for

g, = 0-69), or g =071 (for u = p, = 1). These are the same results as presented in section
3 for an equilibrium temperature depending on the solar radiation T,(u), but they are seen
from a different point of view. The sensitivity of the ‘present day’ climate with respect to
u (or ) variations is , = —f, = +s0T,}/cA = 393K.

vy T} = ’.l:e. In this case the external climate parameters are changed such that the
surface temperature T,> becomes structurally unstable (i.e. a bifurcation point). Introducing

Te’; = T, = 288-6K into Egs. (3.4) or (3.6), (3.7) one obtains the bifurcation parameters

p =95 55 x 10°K3, g = 20639 x 10°K which lie outside the parameter interval selected for
the instability diagrams (Figs. 2, 3). The albedo-temperature feedback parameters have to
be changed to a= 3-38, b = 0011K? assuming emissivity ¢ = ¢, and solar radiation
U = u,, fixed. This is equivalent to an increase of b, or p, by 22%, and of (1 —a,) or g, by 32%,,
i.e. quite large variations on a global scale. It is obvious that the ‘present day’ equilibrium
temperature T, cannot become structurally unstable unless both a and b are simultaneously
changed. '

Investigating the Budyko type of climate model with linearized longwave emission Rf,
however, the stability analysis is confined to the condition (3.5) of linear (internal) stability
at fixed T, = T.}. In this case the system becomes unstable (—4 < 0) if > 0-011K™*;
but g remains unconsidered. It is this instability value which is discussed by Lemke (1977)
and Held and Suarez (1974) using Budyko’s one-dimensional energy balance model, and
which can well be compared with the results from the zero-dimensional model. The above
considerations find direct application in sections 5 and 6, where the linearized model version
is investigated.

(v) Minimum parameter variation. The final goal is to find the external parameter

combination ( ;;,c})mi,, of a bifurcation which is closest to the ‘present day’ climate, where all
parameters are allowed to change. The condition to be fulfilled is

{(P min™" P 0)2 + (q min— élo)2 * = minimum . . (4°2)
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In combination with the equations describing the hypersurface (3.4) and applying
variational principles, one obtains a fifth-order polynomial:

%es_%%e3_%qoh_%po =0 y : : (43)

The roots of Eq. (4.3) can be calculated by an appropriate numerical algorithm. There
appear only two real solutions which determine the bifurcation at minimum and maximum
(p,q) distance from the given reference situation (p,,q,). The requested parameter combina-
tion of minimum distance yields 7, = 268:67K with p,;, = 77-56 x 10°K3, ¢, =
156-29 x 108K* (see Figs. 2, 3; open square). This can be achieved by simultaneously

changing a, b such that (Z]/;))min = 201-5K; i.e. only slight external changes are needed to
bring the present situation toward the structural instability.

These five examples demonstrate how a structural analysis can be applied to the zero-
dimensional climate system. As stated before, this model is merely qualitative as are all
other simple climate models which also show the well-known sensitivity to small changes in
external parameters. Additionally, the zero-dimensional system reflects all the most impor-
tant results of one-dimensional climate models (Sellers 1969; Gal-Chen and Schneider 1976;
Ghil 1976, etc.), namely their structural behaviour; the mathematical background to
achieve these results is elementary and the agreement is not only qualitative.

5. LINEARIZED CLIMATE SYSTEM WITH STOCHASTIC FORCING

In this section the analysis of the zero-dimensional climate system is continued without
an explicit time integration of the model. Instead, the linear version (3.5) of the climate
model (2.6) is investigated as a system which has a long-term response to a short-period and
stochastic forcing due to weather fluctuations. These processes are not included in the
(macroscale) parameterizations of the slowly changing climate system (section 2). For a
more refined description the action of these (microscale) weather fluctuations has to be
added to the climate system in terms of a stochastic forcing w (Hasselmann 1976) which
includes all the short-period dynamic, energetic, and radiative mechanisms involved. With
such a stochastic expansion Eq. (3.5) can be formulated

dy)dt = —dy+w : . . (5.1)

where y = T—T,. The negative eigenvalue (—A < 0) appears as the stabilizing feedback
parameter which characterizes the response time scale A ™! = 1, of the linearized climate
system.

Given the stable reference situation T’ , the linearized system (5.1) becomes unstable
(=4 > 0) for b > 0-011K ™! as derived by substituting T,; = 288-6K into Eq. (3.6) (see
also section 4). Eq. (5.1) resembles the well-known Langevin equation which is an example
of the so-called stochastic (or random) equations describing, e.g., the Brownian motion
problems as a one-component system. The Langevin type of climate equation (5.1) can be
solved analytically if the following assumptions are incorporated (see, e.g., Balescu 1975):

(i) The weather fluctuations w are assumed to be irregular, i.e. separated in time and
statistically independent. Consequently, the auto-covariance with respect to an ensemble
average, { ), of weather fluctuations at two times, P(t) = (w(t)w(t+17)), exists only
for time intervals of the order of the duration of the fluctuations 7,, <€ ..

(ii) A (spectral) gap in the variance (density) is assumed to separate the time scales of
weather and climate fluctuations so that the effect of the irregular weather fluctuations can

-+

®
be introduced into the responding climate system as white noise: D = %f P(7)dx.
. . . [v'0]
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This two-timing concept allows the following stochastic description by avoiding the
deterministic detour; this leads to the variance of the climate system responding to irregular
weather fluctuations:

R(t) = (D/A){l—exp(=2Az)},—A <0 . . (5.2)

which gives a smoothed picture of the stochastically forced system (5.1) with the details of
microscale processes averaged out. The stochastic forcing realized by the climate system
becomes effective after time scales 7 > 7, when the initial values are forgotten as time
progresses.

It is convenient to deduce the Fourier transform G(w) of (5.2) which can be compared
with power spectra, evaluated from observed climate temperature variances. With the
S-function expression d(w) = hm (/l/n)(/t +®?)~1, the Fourier transform G(w) of the
variance R(7) yields

G(w) = (D/D{3(w)— (2/m)(44* + 0*) ™1}
= (D[m)(A*+ w?)~? for large 7. . . (5.3)

The second expression is valid for large response times t > +A~! because exp(— 2/1|r|) <1
can be neglected in Eq. (5.2). Thus, the temperature variance spectrum of the climate model
increases with decreasing frequency according to a — 2 power law, but it flattens at lower
frequency (w < A) because of the negative feedback. This result has also been derived by
Hasselmann (1976) based on similar but more complicated considerations. At zero frequency
the maximum spectral variance density mainly depends on the stabilizing feedback para-
meter — A and, of course, on the white noise level D, to be specified in the following section.

6. STOCHASTIC ANALYSIS AND APPLICATION

A few relationships can be derived to give additional insight into the stochastically

" forced climate system with linear feedback:
(i) No feedback (4 = 0). In the case that the negative feedback vanishes (e g b
0-011K ') the variance of the internal climate variable grows linearly with increasing
response time, due to the continuous stochastic forcing, and becomes infinite. Taylor series
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Figure 4. Normalized input auto-covariance and response variance of stochastically forced climate system;
magnitudes of an application are given in section 6.
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~ application are given in section 6.

expansion of Eq. (5.2) leads to the related variance and its spectral density distribution
which are independent of A:

R(t) ~ 2D, G(w) ~ (D|m)w ™2 . . 6.1)

The same relationships hold for 7 = 0 (or w — ) (see Egs. (5.2) and (5.3)); i.e.
initially the responses are similar for the climate models with and without feedback. However,
after the time scale 7, = A~! has been exceeded, the long-term climate feedback starts to
influence the shape of the variance as indicated in Fig. 4, which also holds for the frequency
o = A if the spectral variance density distribution is considered (Fig. 5).

(i) Maximum variance and spectral density. The upper bounds of the variance of
the linear feedback model are simply obtained with the condition 7 — oo, equivalently
the spectral level at zero frequency (w — 0):

R( = ) = D/A, G(w =0) = (D/mA~% . . 6.2)

These are the scaling factors used in Figs. 4 and 5.
(iii) Stochastic input. For a given climate state the global weather fluctuations are
assumed to be represented by a linear, first-order Markov process:

dwldt = —Aw . . . (6.3)

Again, the stabilizing feedback parameter —A < 0 is a measure of the characteristic
time scale of the short-term fluctuations t,, = A~* <A™, With the solutionw = w,exp(—At)
of Eq. (6.3) the auto-covariance P(r) of the Markov process and its Fourier transform,
F(w), i.e. the red noise spectrum, can be deduced:

P(t) = ADexp(—A|lz])

, 6.4
F(®) = (D/m)A w*+ A1,
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The Fourier transform (6.4) of the Markov type of weather fluctuations has the same
shape as the climate response, also representing a red variance spectrum. The most important
distinction between the spectra can be made by the time scales involved, which differ
significantly: 7, = A~' > 1,, = A ™. Therefore, the weather fluctuations behave as a white
noise input spectrum on which the Langevin-type climate model responds. The coefficient
D characterizing this white noise level can now be specified by the Markov process (red
noise) weather fluctuations:

D=1} f _+°°P(q:) dt = P(x = 0)/A = (w21, . (65

where ‘o0’ is small (large) compared with the climate time scale t, = A~! (weather time
scale 7,, = A~1). Thus, 7,, = A™! also appears as an integral correlation time scale of the
weather process, the total variance of which, { w'?), is determined by the ensemble average
of the weather fluctuations at a given climatic state.

(iv) Application. The magnitudes of the stochastic input parameters (6.5) are needed
to determine the response of the climate system. They are based on the following scaling
arguments. The total energetic variance of the stochastic weather process ¢2{ w'?) = ¢2
depends on the r.m.s. deviation of a globally averaged radiative energy flux divergence
which is assumed to be comparable to the flux divergence itself (see also Lemke 1977). The
latter is defined by that part of the incoming energy which is efficiently used by the climate
heat engine: nR| (efficiency = 0-01; e.g. Lettau 1954); the dissipative processes occur at
the short-period end of the variance spectrum. With ¢,, = nR| = 3Wm ™2 one obtains the
variance {w'?) = 10~ ?K?yr~2 where the thermal inertia of the system, Eq. (2.2), is given
by ¢ = 1-5x 108 kg K 152, representative for a well-mixed water reservoir of depth S50m
covering 70-89%, of the earth’s surface.

The integral correlation time scale of the weather fluctuations will be prescribed by the
period of vacillation (or blocking activity) because of its large, occasionally even hemi-
spheric, extent as it appears more appropriate for the globally averaged conditions con-
sidered; thus 7,, = A™! = 25d. Another possible choice is the transient eddy lifetime of
about a week. ‘ ,

The time scale and the variance of the weather fluctuations prescribe the white noise
level D = 2:7x 107 2K2yr ! as the stochastic forcing of the climate system. The response
to this input also depends on the climate time scale t, = A~! = 7yr specified by the
‘present-day’ situation x, and the thermal inertia ¢ = 1-5x 108kgK ~*s~2, Eq. (3.6). Now
the scaling parameters (6.2) of Figs. 4 and 5 can be derived: the response auto-covariance
of the temperature A™'D = 0-75K?, the related maximum spectral variance density
A72D|r = 1-6 K?yr. Perhaps a change by an order of magnitude for the stochastic input D
may not be too unrealistic. These values given, the stochastic weather fluctuations lead to the
totalr.m.s. surface temperature deviation (2D4 ~1)* = 0-61 K of the globally averaged climate
system from its stable equilibrium T,; . (For an ocean layer depth 25m, (2D~ 1)* = 0-86K.)
This value may be compared with 1:1K for a stochastically forced one-dimensional energy
balance model (Lemke 1977). It should be mentioned that the variances of zonally averaged
temperatures are higher than those of globally averaged temperatures. Both variances can
be exceeded by the variance of an individual temperature record, for which Kutzbach
and Bryson (1974) obtain r.m.s. deviations ranging from 0-4 to 1-2K. The same argument
holds for the spectral variance densities. The calculated global value is small compared with
the solar radiation sensitivity f, = 393K (section 4, for ¢,/p, = const.).

Finally, it should be added that the slope of the spectrum compares well with the
variance spectra of temperature on time scales of 10 to 1000yr, as derived by Kutzbach and
Bryson (1974) from instrumental, historical, and botanical records.
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7. CONCLUSION

An almost trivial climate system has been introduced as a gradient system, and its
qualitative behaviour is studied using basic and well-known methods:

The structural analysis characterizes this climate system as one of the seven ‘elementary
catastrophes’ according to which complex natural phenomena with sudden changes can be
described mathematically (Thom 1975).

The stochastic analysis treats this climate system in terms of a Langevin equation
analogous to a classical problem of non-equilibrium statistical mechanics.

Some of the most important features obtained from these analyses are:

(i) Two equilibrium solutions appear: the internally stable one belongs to a stable
climate basin where the system is resilient; i.e. it can absorb changes. Outside the basin the
system shows catastrophic behaviour where it approaches the (somewhat artificially
introduced) ‘deep freeze’ situation. The boundary of the resilient basin is defined with
respect to: (a) changes of the internal (state) variable (global temperature) which should
not drop below the second (unstable) equilibrium solution; and (b) changes of the external
parameters, which should not be situated on and beyond the bifurcation line, at which the
equilibria coincide. The physical interpretation of this behaviour is based on longwave
emission, which dominates incoming radiation, if the temperature-albedo feedback
becomes too strong.

(i) The response of the linearized climate model exhibits a red —2 power law of the
spectral temperature variance density, which is due to continuous stochastic forcing by
short-period weather fluctuations.

(i) The qualitative and quantitative results can well be compared (and compete)
with investigations of more complex one-dimensional energy balance models, although
much information (e.g. the meridional energy distribution) disappears due to the global
averaging process. It may be concluded that such information is only of marginal importance
for the structural behaviour of simple energy balance models. The simplicity of the zero-
dimensional climate system has the advantage that its treatment and the results obtained
are transparent.
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APPENDIX
List OF syMBOLS
T;t temperature (internal variable); time
R|, R} radiative fluxes
uly; o, solar radiation, /1, solar constant; planetary albedo
o Stefan-Boltzmann constant
a, b albedo-temperature feedback coefficients
& emissivity
¢; ¢y, Py B, @ thermal inertia; specific heat, density, depth and area cover of an ocean
layer
X external parameters: a, b, c, &, |
P, g, A, B combinations of external parameters
LV climate equation: gradient system; potential
A eigenvalue (feedback parameter)
7, = A1 climatic time scale
7, = A1 weather time scale
w weather fluctuations
y=T-T, new internal variable
B, sensitivity parameter
T, @ correlation time; frequency
R; P (covariance) variance of response; Markov-process (auto-covariance)
G, F spectral variance density of response; input
{>; D weather ensemble average; white noise level
o
n

thermodynamic efficiency
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Suffixes and indices

e; o equilibrium; reference (present day) climate
c;w climate; weather processes
min minimum parameter variation

* bifurcation



