MAy 1988

KLAUS FRAEDRICH

1001

El Niiio/Southern Oscillation Predictability

K1LAUS FRAEDRICH
Bureau of Meteorology Research Centre, Melbourne, Australia

(Manuscript received 18 March 1987, in final form 28 October 1987)

ABSTRACT

Predictability time scales are estimated from annual time series of the E1 Nifio/Southern Oscillation (ENSO).
They are defined by the rate of divergence of initially close independent pieces of trajectories in phase space.
Fitted stochastic processes and the nonlinear deterministic analysis of the empirical time series lead to e-folding
predictability time scales up to 1.5 years (or one year of error doubling time) indicating that at least a skillful
nowcasting of ENSO may be possible. Due to sparse data these estimates provide only weak bounds.

1. Introduction

The occurrence of El Nifio/Southern Oscillation
(ENSO) episodes is highly irregular with time intervals
between one and seven years. Therefore, it is not sur-
prising that a similarity with a special class of simple
dynamical systems has been suggested, which are de-
terministic and show chaotic behavior with sensitive
dependence on initial conditions. Accordingly, the time
evolution in phase space is assumed to evolve on a
strange attractor of relatively low dimensionality (e.g.,
Vallis 1986; Fraedrich 1987b); related limits of pre-
dictability depend on the growth rate of amplifying
instabilities separating initially close states. This rep-
resents the purely dynamical approach towards pre-
dicting ENSO. For example, Cane et al. (1986) claim
from their numerical modeling results (of a coupled
tropical ocean-atmosphere system) “that El Nifio is
generally predictable one or two years ahead.” On the
other side of the spectrum of ENSO prediction schemes
lie the purely statistical forecasting techniques (e.g.,
based on parsimonious multivariate time lagged
regressions), from which ‘“sea surface temperature
(SST) anomalies during 1982~83 in the equatorial Pa-
cific could have been predicted 4-5 months in ad-
vance” (Barnett 1984). But whether these prediction
time scales coincide with limits of ENSO predictability
remains open. Estimates on the natural ENSO pre-
dictability, however, should be available when setting
up strategies for ENSO prediction model building.

One way towards ENSO prediction is to forecast the
time evolution of its spatial patterns once the first signs
of an event start to appear (which is in the early months
of a calendar year). For example, in major ENSO
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events, the sequence of associated oceanic and atmo-
spheric anomalies evolve similarly in time. Equatorial
Pacific sea surface temperature anomalies increasing

‘early in the calendar year, peak in December/January

and vanish about April. Atmospheric anomaly fields
show similar phase, locking to the annual cycle.

The other way is to predict the occurrence of an
ENSO event before any obvious signals appear; this
will be discussed in the following. Therefore, any strong
influence of the annual cycle needs to be eliminated,
because it apears to dominate monthly ENSO time
signals (rainfall, pressure, sea surface temperatures)
when subjected to a nonlinear analysis. Thus ENSO
time series are analyzed based on appropriate annual
means from April to March.

In section 2 the definition of predictability and its
meteorological and physical background are outlined,
as are the methods of how to estimate it from a single
variable time series. In section 3 the methodology is
applied to a hierarchy of stochastic models of discrete
and continuous states (fitted to the ENSO time series)
to provide a suitable standard of comparison for the
nonlinear deterministic analysis of the annual ENSO
signal (section 4). Conclusions discuss the limitations
of the analysis.

2. Estimating ENSO predictability: Basic concepts and
data

Predictability of a dynamical system like ENSO is
closely related to the problem of its stability during the
time evolution. For example, consider the difference
between two states of a deterministic process. If this
difference is small initially and remains small in the
future, the process is stable and predictable. Conversely,
if the initially small difference exceeds a threshold value
the process is unstable and eventually becomes unpre-
dictable. Thus, a relevant measure of predictability of
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a system is the rate at which initially small errors grow.
To measure the predictability two routes are followed
(Lorenz 1984).

a. Basic concepts

In the traditional approach to estimate the predict-
ability of a dynamical system one evaluates the distance
between two initially only slightly different states by
solving the nonlinear equations twice with different
sets of initial conditions:

do:

7; =ﬁ(xi9' ° ',-xn)- (2'1)
The x; are n suitably normalized variables spanning
the n-dimensional phase space.

Alternatively, error growth rates in a dynamical sys-
tem can also be determined by the set of i (= 1,+ -« -,
n) linear differential equations of small deviations, dx.
The coefficients A(i, j) = df;/dx; at x(t) are elements of
the Jacobian matrix of (2.1) and vary with the time
evolution (Lorenz 1965):

d5xi_ z .,
I 2 A(i, j)ox;.

J=1
The eigenvectors of A(i, j) provide a local coordinate
system, which describes the semi-axes of an infinites-
imally small error sphere expanding into an ellipsoid.
After suitable time averaging the associated positive
characteristic exponents (i.e., Lyapunov exponents),
Ai(xo, 6xp) > 0, can be used to define the predictability
(for details see Lorenz 1985, and also e.g. Ghil and
Childress 1987) as the average rate of divergence of an
infinitesimally small phase space volume (i.e., only the
diverging axes, A; > 0, contribute):
K= Z )\,‘.

P

2.2)

(2.3)

Applying this approach to observations, one should
note that (for smooth continuous evolution, Pesin
1977) this average growth rate (2.3) is equivalent to
the average production of information per unit time
(Kolmogoroff entropy). As the information production
can also be defined in probabilistic terms, it can, at
least in principle, be estimated from data. For practical
purposes the order-2 entropy K, suffices as an estimator
(see Grassberger and Procaccia 1983, 1984 for more
details):

K> K,

——tm ol 3 o] 24)

o imet

for m = oo, 7 = 0; the sum 2 pX(iy, . . ., im—) is the
probability that a pair of pieces of time trajectories in
the state space (of dimension #n), x(z;), x(¢;), falls into
the same sequence of boxies (i, . . . , i,»—;) of the space-
time (/, 7) partitioning with (/, 7) = 0, while the system
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evolves from ¢;, t;to t; + (m — )7, ; + (m — 1)7. This
is equivalent to the probability that two independent
pieces of trajectories of length or duration m remain
less than a distance / apart.

When analyzing observations one is generally con-
fined to a single observable, x(f). Therefore suitable
substitute phase spaces need to be found. A substitute
phase space can be spanned by a sufficiently large
number of (say m) time-lag coordinates x,,,(¢;) = [x(t:),
x(t;+ 7),- « «, x(t; + (m — 1)7)] of this single observable
(Packard et al. 1980; Takens 1981). For smooth (but
not fractal) dynamics it has been shown that in this
new phase space the basic geometrical properties-of the
system are retained: the dimension (say D») of the at-
tractor (i.e., a subset of the phase space on which the
dynamics of the system evolves after the transients have
decayed) and the divergence (say Kj) of nearby pieces
of trajectories on it (e.g., see Eckmann and Ruelle
1985). Provided the dimension of this new substitute
phase space is sufficiently large to embed the attractor,
the predictability of the system may be estimated from
a pointwise cumulative number distribution C,,(/) of
all pairs of independent pieces of the time series which
are less than a distance / apart from one another
(Grassberger and Procaccia 1983, 1984):

Cn(h) = 1% 20(l-rim) for N->co, [=>0
(2.5a)

where 0 is the Heavyside-function with 8(a) = 0 or 1
if a> or <0. The total number of points N (or pieces
of the time series) and the distance between two of
them is given by the Euclidean norm,

ra(m) = | xm(t) — xm(t))| (2.5b)

t;and ¢; denote the beginnings of different (i.e. indepen-
dent) pieces of the time series. Note that |#; — ¢; | larger
than the autocorrelation time of the time series x(?)
guarantees the trajectory pieces to be independent. The
choice of the time lag 7 as the autocorrelation time
leads to linearly independent coordinates spanning the
substitute (embedding) phase space. This number dis-
tribution function C,,,(/) estimates an ensemble average
over all points (in the substitute phase space of time
lagged coordinates) which are less than the distance 7
< lapart. Thus C,,, (/) describes the mean relative num-
ber of pairs of points found in a phase space volume
element (or ball) of radius /; every individual point
represents a piece of the time trajectory. With increas-
ing distance threshold / (or size of the ball) the number
of pairs of points grows. Furthermore, C,,(/) changes
when increasing the duration or length of the trajectory
pieces (i.e. when increasing the embedding dimension
m). For a sufficiently large number N of points in phase
space the distribution function C,,(/) allows to estimate
the dimension of an attractor (D,) and the divergence
(K3) of nearby pieces of trajectories evolving on it
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(Grassberger and Procaccia 1983; for applications to
observed weather and climate variables see Fraedrich
1986, 1987a; Nicolis and Nicolis 1984); i.e. C,,({) scales
form = o0, —> 0 as

Cn(l) ~ IP2 exp(-m7K>). (2.6a)

Estimates of the cumulative distribution function are
presented in a InC,,(/) versus In/ diagram for increasing
embedding dimensions m, i.e. for pieces of trajectories
lasting one, two, . . . , m years. From these diagrams
one can now evaluate, at least in principle, the dimen-
sion of attractors, D,, and the predictability, 1/K>:

- InC(H)
In/

1
D, , Ko~ - InC,,/Crs1.  (2.6b)

b. El Nifio/Southern Oscillation time series

In the following sections, the alternative method of
estimating predictability is applied to two ENSO time
series, which reliably cover a period of hundred years
or more. The time series of annual El Nifio intensities
(Quinn et al. 1978, updated by Rasmusson 1984) may
be related to the oceanographic aspects of the process;
it consists of the five discrete categories of no, very
weak, weak, moderate, and strong events to which the
numbers zero to four are attached. The annual South-
ern Oscillation index, SOI, is deduced from station
pressure anomalies and defined by a continuous vari-
able signal; it appears to characterize the meteorological
side of the phenomenon (Wright 1975, and updated,
personal communication). Note, however, that the El
Nifio/Southern Oscillation is a global phenomenon of
short term climate fluctuations and its temporal signal
can be identified in various meteorological and ocean-
ographic fields. Wright (1984) analyzed a number of
such signals (indices) taken from the core regions of
both meteorological and oceanographic ficlds and
found that they are almost equivalent on an annual
(April to March) basis.

The predictability analysis of the ENSO time series
consists of two steps. First, a hierarchy of discrete and
continuous state stochastic processes is fitted to the
datasets and the predictability of these models is eval-
uated (section 3), applying the concept described above.
Besides demonstrating the methodology, the analysis
of stochastic processes provides the appropriate stan-
dards of comparison for the nonlinear deterministic
analysis of both the discrete and continuous state time
series, which comprises the second step and is presented
in section 4.

3. Stochastic models of El Nifio and the Southern Os-
cillation

Two classes of stochastic models can be distin-
guished. They are either discrete or continuous state
models depending on the processes to be analyzed.

The hierarchy of discrete state models evolves from
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a binary process (a biased coin toss) which, in the con-
text of ENSO, can be related to the idea that two com-
plementary states, El Nifio and La Nifia, describe the
El Nifio/Southern Oscillation phenomenon (Philander
1985): “During El Nifio years the area of high sea sur-
face temperature increases, while the atmospheric con-
vection zones of the tropical Pacific expand and merge
so that there is a tendency toward spatially homoge-
neous conditions. La Nifia is associated with low sur-
face temperatures near the equator, with atmospheric
convergence zones that are isolated from each other,
and with spatial scales smaller than those of El Nifio.”
Quinn et al.’s (1978) annual El Niiio intensities provide
the data to calibrate such a binary process; La Nifia is
defined by the zero intensity while the other state, El
Niilo, is associated with either one of the remaining
intensity values. This binary state (coin tossing) system
is extended in two directions: k discrete states are in-
troduced to distinguish more intensity levels and a
memory is included after estimating the Markov prop-
erties of the process.

The class of discrete state stochastic processes needs
to be complemented by a hierarchy of continuous state
models, because the Southern Oscillation is a contin-
uous phenomenon. It ranges from years (April to
March) of major ENSO events through years with small
anomalies to years of major anomalies of opposite sign
(anti-ENSO). Thus, Gaussian processes of increasing
order (or memory) are introduced and fitted to the
continuous Southern Oscillation index (Wright 1975;
for more details on various Southern Oscillation signals
see Wright 1985).

Stochastic processes provide the appropriate stan-
dards of comparison for the performance of determin- .
istic forecast. models. Analogously, the predictability
analyses of the fitted stochastic processes provide the
standard of reference for the nonlinear deterministic
analysis of the El Nifio intensities and the Southern
Oscillation index (section 4).

- a. El Nifio and La Nifia as a binary process

Consider the El Nifio/Southern Oscillation as a single
variable binary (two state) time series, x(¢), of an annual
time step (or sampling time 7 = 1 year). It consists only
of El Nifio (x = 1) and La Niiia (x = 0) events dis-
carding intensities. If they are taken from Quinn et al.
(1978, updated by Rasmusson 1984) using 140 years
from 1844--1983, the following probabilities can be at-
tached:

prob{x(?) = 1 or El Nifio} = p; ~ 0.41
prob{x(f) = 0 or La Nifia} = p, =1- pi ~ 0.59.
3.1)

They are defined by the mean (or climate) of the binary
time series: py = 1 — po = {x(#)) ~ 0.41. Its variance
B. = {(x = p1)*y = p — pi* = pipo ~ 0.24 is identical
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with the half-Brier score of a probabilistic forecast of
El Nifio based only on climatology prediction (i.e. using
D1 = 1 — pg for each year).

A sequence of m successive binary events defines a
piece of the single variable time series commencing at
t = t; and proceeding (m - 1) time steps of length 7:

Xm (i) = [x(@), x(&; + 1)+« +, x(t; + (m — D))
(3.2)

Such a piece of trajectory represents a state or a point,
Xn(t;) in the m-dimensional phase space spanned by
time-lagged coordinates. A pair of two such pieces of
trajectories, xn,(f;) and x,,(¢;), which are initially only
an infinitesimally small distance |dx| apart from-one
another, tend to separate with each time step 7 (from
m to m + 1). Loss of predictability is defined by the
exponential (or doubling) rate of the distances between
initially close pieces of trajectories (or states in phase
space) increasing with time. In physical systems this
separation of initially close pieces of trajectories de-
pends on the growth of perturbations amplified by un-
stable modes. In a stochastic process this is provided
by an information source generating numbers or sym-
bols at discrete time steps. Defining the distance by the
Euclidean norm one obtains for its square

m—1
[Xxm(@) = Xm(8) |12 = 2 [x(4 + v7) — x5 + y7)P

¥=0
3.3)

For binary time series, x(t), each of the m squared
distance components (related to each time lag coor-
dinate) is also a binary variable, i.e. Ax%(i, j) = (x(¢;
+y1)—x(@G;+y7)?=0orlfory=0,1,-+- m— 1.

Assume the trajectory, x(¢), is generated by the same
random source (namely a Bernoulli trial with biased
coinflips, i.e., El Nifio with p; = 0.41, La Nifia with p,
= (.59). Then every squared distance component,
Ax%3i, j) = 0 or 1, in (3.3) is also a binary random
variable which is independent of the yth coordinate to
which it belongs. The associated probabilities of their
occurrence result from the conditional probabilities of
stochastically independent events which are mutually
exclusive (e.g., Feller 1950):

prob(Ax? = 0)
= prob{x(t; + y7) = 0|x(t; + vr) = 0}
+ prob{x(t; + y7) = 1|x(¢; + y7) = 1}
=pi* +pl=q~ 05162
prob(Ax? = 1)
= p;ob{x(t,- + 1) = 0|x(4; + y7) = 1}
+ prob{x(t; + ¥7) = 1|x(t; + v7) = 0}
= 2popy = p ~ 0.4838. (3.4)
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Thus, all m elements of the sum (3.3) leading to the
squared distance between pairs of trajectories are given
by independent binary random numbers of another
Bernoulli experiment of biased coinflips for which p
= {Ax?) is given by (3.4). Therefore the sum of the
m-squared distance components (partial distances) is
bionomially distributed:

prob{ | xm(t:) — xm()|? = I} = (%, m, p)

- (Rpra-mr 69

where b(I?, m, p) is the binomial distribution.

The cumulative distance distribution C,,,(/) (section
2) describes the probability (or relative frequency) of
pairs of independent pieces of trajectories of the same
length m, which are less than a distance / apart:

Cm(l) = prob{ |xm(t:) — xm(t)| <1}
=S W% mp) for P=0,1,2,-++. (3.6)
12

The smallest distance possible between two pieces
of trajectories is / = 0, the largest one is / = \/ m. The
probability (or relative number) of independent pairs
of pieces of trajectories to remain unseparated (/ = 0,
i.e. identical to each other or a vanishing distance apart)
for m successive sampling points (events) can now be
deduced from (3.5) or (3.6):

Cnl=0)=Cull<1)=q"=(p + 2" (3.7

Thus, the order-2 entropy can be determined from (2.6)
using (3.7) as a measure of information gain per unit
time step (7 = 1 year):

1
K> = — = In(ps® + py?) ~ 0.66 per year. (3.82)
-

This leads to a predictability time scale, 1/K; ~ 1.5
years, characterizing an e-folding error expansion rate.
For doubling multiply with In2 ~ 0.69, which yields
a time scale of about one year. Note that K is a lower
bound of the Kolmogoroff entropy K = 77 !(po Inp,
+ p; Inp,) ~ 0.68 per year.

For an unbiased coinflip El Nifio, i.e. p, = p, = 0.5,
K = K, with predictability or error doubling time scales
of exactly one year. This predictability or error doubling
time scale, 1/K, = 7, is due to the number of only two
(and equally probable) discrete states. Increasing the
number of equally probable states would decrease the
predictability bound to zero. In appendix A the distance
distributions of the observed and (random) biased
coinflip binary time series are compared.

1) FINITE NUMBER OF STATES

Increasing the number of states with probabilities
pi, where i = 2, leads to a polynomial distribution re-
placing the binomial one in (3.5) and (3.6). Corre-
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spondingly C,,,( = Q) = (Z p2)"in (3.7) and the order-

2 entropy vields

1 k—1
K;=-=In 3 p?.
T =0

(3.8b)

Thus, increasing the number i =0, 1,- - -, k— 1tok
equally probable states, p; = 1/k, would decrease the
predictability to 1/K> = 7/In k.

As an example we take the bimodally distributed
five state El Nifio intensity time series from Quinn et
al. (1978, updated by Rasmusson 1984), which has
been adopted to model chaotic ENSO dynamics (Frae-
drich 1987b). The k = 5 intensity states and their cli-
mate probabilities (estimated from 1844 to 1983) are
no El Nifio (pg ~ 0.59), very weak (p; ~ 0.05), weak
(p2 ~ 0.09), moderate (p; ~ 0.14), and strong El Nifio
(ps ~ 0.13). This leads to a predictability time scale
of 1/K, ~ 1.08 years (3.8b) or about 0.75 years error
doubling time. Not unexpectedly, this is considerably
less than the binary time series estimates (due to their
reduced number of states), but—due to bimodality—
larger than the predictability time scale of k = 5 equally
probable states, which yields 1/K, = 7/lnk ~ 0.62 years
or 0.43 years error doubling time.

2) MARKOV CHAIN MODEL

The biased coinflip El Nifio/La Nifia may be used
as a reference stochastic prediction scheme against
which higher order schemes should be tested. It may
be interpreted as a zero-order two-state Markov chain
whose transition probabilities, py; = prob{x(t + 7)
= l|x(t) = k} with x = 0 or 1, are identical with the
climate probabilities py and p;. The climate state oc-
cupation probabilities for El Nifio (x = 1) or La Nifia
(x = 0) events are shown in Table 1 leading to the zero-
order Markov chain, with a hindcast half-Brier score
B, ~ 0.24 (see above):

DPoo = Do = po ~ 0.59 £ 0.11

Dor = pn=p1 ~ 041 +0.13. (3.9

For more detailed probabilistic predictions the El
Nifio events may be modeled as a higher (e.g. first order)
Markov chain whose transition probabilities from state
k to state [ form a transition matrix py,. Forecasts map
a stochastic initial state vector g, to a future probability
vector a; = a,pu, which tends to the climate state prob-
abilities a; = (po, p1, . . -) after successive mappings.
Accordingly the transition matrix py, tends to the cli-
mate state (equilibrium) transition matrix (for m —>
oo0) with identical column elements defined by the cli-
mate state occupation probability (po, py, .. .).

With the (e.g. maximum likelihood) estimates of the
transition probabilities p,; (Table 1) (a) the Markov
property of the time series needs to be tested (to justify
the model application) and (b) the order of the Markov
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process needs to be defined. Thus the transition matrix
of climate or zero-order probability predictions is
compared with those of successively higher-order
models. It appears that the first-order Markov chain is
significantly different from the zero-order or equilib-
rium matrix (and not from the second order one) only
on a 90% level; i.e. at a 95% significance level the null
hypothesis cannot be rejected that first, zero and second
order chains are indistinguishable (see Anderson and
Goodman 1957; Lowry and Guthrie 1968). Thus, the
first-order Markov process seems to be the highest order
which can be fitted to the binary El Nifio time series
taken from Quinn et al. (1978). Still, there is strong
similarity between the outcome of a first- and zero-
order process which is also reflected by the observed
and fitted distributions of the residence, recurrence,
and first passage times of the El Nifio/La Nifia binary
events (Fig. 1, for definitions see appendix B). Fur-
thermore, the first-order Markov hindcast half-Brier
score By = {38(1 — por)* + 18(1 — pu)* + 4215
+ 38p%,}/138 ~ 0.23 deduced from Table 1 shows
only a negligibly small improvement over the climate
prediction (B, ~ 0.24). Therefore it is not surprising
to obtain a predictability time scale for El Nifio/La
Niiia events produced by a (first-order) Markov source
(e.g., Farmer 1982), which is of similar magnitude as
the climate or unfair coinflip process:

1
K, =-— - {po In(pfo + p§1) + py In(plo + P%l)}- (3.10)

Introducing the estimated transition probabilities (Ta-
ble 1) we obtain an e-folding predictability time scale
of 1/K, ~ 1.6 years. The corresponding doubling times
are only slightly more than year; the similarity with
the magnitude of the sampling time is not surprising
due to the weaker Markov and stronger random nature
of the binary dataset. Note that Markov chain models
have recently received growing attention in both short
term weather prediction and large scale dynamics/ex-
tended range forecasting (e.g., Mo and Ghil 1987, de
Swart and Grasman 1987, etc.).

b. E! Nifio/Southern Oscillation as a continuous pro-
cess

Now consider the Southern Oscillation measured by
a continuous single variable time series, x(¢), of annual
sampling time (7 = 1 year). As an example we use 100
years (1884-1983) of Wright’s (1975, and updated)
Southern Oscillation index (SOI) defining a year ap-
propriately from April to March. This index is almost
Gaussian distributed with estimated mean ~ 1.5, vari-
ance ~ 48.9, skewness ~ (.38, and kurtosis ~ 3.1;
the following frequencies are observed in the eight SOI
classes of 5 integer units decreasing from 25 to —14;
1, 2, 10, 15, 27; 28, 10, 7. Thus, a suitable stochastic
representation of this continuous annual time series
appears to be the (stationary) Gaussian process. In
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TABLE 1. Estimated conditional frequencies and transition prob-
abilities (£x95% confidence limits) for present (f) and preceding (¢
— 1) El Nifio/La Niiia states; bottom: equilibrium (climate) state
occupation probabilities.

t

t-1 LaNifia EINifio S  LaNifia  El Nifio
LaNifa 44 38 82 54+.15 46+.16
El Nifio 38 18 56 68+.15 .32+.22
Climate 82 56 138 59+.11 .41+.13

analogy to the binary time series (§3a; produced by a
zero- and first-order Markov source), we analyze a zero-
and first-order autoregressive (AR) process (e.g., Cox
and Miller 1965), which is normalized to zero mean
(x = 0) and unit variance o> = 1:

. x(t) = Ax(ti-y) + z() = °z°: Nz(i—n) (3.11)

n=0

where z(i) is uncorrelated and Gaussian distributed
white noise of zero mean, z = 0, and variance ¢,
= (1 — Mg, For A = 0 one obtains white noise, 0
< A < 1 defines red noise as a first-order AR-process;
for A = 1 (3.11) defines a random walk, which is non-
stationary, because a,2 = 0,2 2 A\*" = ¢,2/(1 — A\*) tends
to infinity for n — co.

Now the distance between independent pairs of
points (embedded in a m-dimensional phase space) can
be deduced, considering the single variable SOI to be
represented by zero (A = 0), first (0 < A < 1) or higher
order AR-process with time step 7 = ¢; — ;—;:

m—1

| Xn(t) = Xm()|? = 2 (6 + y7) = x(t; + y7))°

¥=0

m—1

= Y lzi+yr)—z(j+yr) + N @i +y7— 1)
¥=0

—z(j+yr—1)+ -2 (3.12)

Since a linear combination y = az, + bz, of Gaussian
random variables z, and z; is Gaussian distributed with
mean y = az, + bz, and variance ¢, = a’s,? + b?0,?,
the sum of the squared distance components (of the
normalized variable x) is x>-distributed with m degrees
of freedom:

Cm(x) = prOb{ 'xm(zi) - xm(tj)|2 < XZ} = P(lem)
(3.13)
> = 2¢,”x? when comparing (3.13) with (2.6). The
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Abramowitz and Stegun (1965, Eq. 26.4.1) notation
has been used for the chi-square probability function,
P(X?|m). Note that this distribution is unaffected by
the (zero or first) order of the AR-process; only the
Gaussian distribution of the random variables matters.
This is obvious when applying the rules of the linear
combination of Gaussian variables to (3.12) and re-
alizing 0,2 = 0.2 2 A" = ¢,2/(1 — \?) for normalizing
the distance components.

The order-2 entropy and pointwise dimension of the
Gaussian process can now be deduced as lower bounds
for the Kolmogoroff entropy and the information di-
mension:

1 P(X%|m)
= m+y ™
_dInPOC|m) _ 3
D, = 7 Inx = for I=x—-0. (3.149)

These results can be derived using the I’'Hospital rule
for both K, and D, and applying the Leibniz rule only
to D, with a substitution of InX = u, say. The known
fact appears that the dimension of a random process
scales with the embedding dimension (D, ~ m) and
that the degree of chaos, K>, is infinite (or its predict-
ability vanishes 1/K; ~ 0). Note that the finite pre-
dictability of the binary El Nifio/La Nifia time series
[(3.8) with pp = p; = 0.5] was due to the number of
only two discrete states to be predicted. An increasing
number of equally probable states leads to zero pre-
dictability [§3a(1)] as it is also obtained by the contin-
uous random process (3.14); i.e. there is no predict-
ability of a random continuous state time series beyond
the sampling or averaging time (7 = | year) for which
the signal is representative. In appendix A the distance
distributions obtained from an observed time series of
the Southern Oscillation index are compared with a
related Gaussian random process.

4. Nonlinear deterministic analysis of El Nifio and the
Southern Oscillation

A nonlinear deterministic analysis is applied to the
two time series of the El Nifio/Southern Oscillation
process to complement the stochastic analysis. Quinn
et al. (1978; updated by Rasmusson 1984) define in-
tensities of annual El Nifio events (very weak, weak,
strong, very strong) for the year of their onset. Numbers
from O for no El Nifio (or La Nifia) to 4 for strong El
Nifio quantify the intensities and generate a measurable
time series on which a distance (2.5) can be defined.
Only the 140 years from 1844 to 1983 are used, when

FIG. 1. Distributions of period lengths, recurrence and first passage times based on 140 years (1844
1983) of El Nifio/La Nifia binary observations (Quinn et al. 1978; updated by Rasmusson 1984):
empirical distributions (columns), distributions of the fitted first order Markov chain (X), distributions
of the zero order (or climate) Markov chain (O). For details see appendix B.
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pressure observations become available to define the
strength of the ENSO episodes.

Wright’s (1975, personal communication) updated
annual Southern Oscillation index covers the year from
April to March. It depends on weighted surface pressure
observed at eight representative stations (Capetown,
Bombay, Djakarta, Darwin, Adelaide, Apia, Honolulu,
Santiago). Only the last hundred years (1884-1983)
will be used.

These variables (El Nifio intensity and Southern Os-

cillation index) represent two different time series which-

will be analyzed as outlined in section 2. Note that
only one single variable of a dynamical system, which
is embedded in a sufficiently high dimensional phase
space spanned by time lagged coordinates, allows a de-
scription-of the basic geometrical properties of the time
evolution (occurring on an attractor): the dimen-
sionality of the attractor and the mean rate of diver-
gence of initially close pieces of trajectories evolving
on it. Note also that time series that are too short do
not allow us to draw conclusions which go beyond es-
timates of very weak lower bounds to the Kolmogoroff
entropy (and dimensionality) of the dynamics of the
ENSO process evolving on an attractor, in particular
if the attractors of the hydrodyamic flows have dimen-
sion > 5 (Swinney and Gollub 1986; see also Grass-
berger 1986; Nicolis and Nicolis 1987).

The cumulative distance distributions of the South-
ern Oscillation index trajectory pieces are shown in a
InC,, (/) versus In/ plot for embedding dimensions up
to m = 20 using a delay time of 7 = 3 years, (Fig. 2).
One observes (also for 7 = | and 2 years, which are
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not shown) that for small distances / their slopes tend
to increase with increasing embedding dimension
(which holds for In/ < 3.5). This indicates the random-
ness of the time series (as tested in appendix A for
small embedding dimensions and for 7 = 1 year as an
example). The related dimensionality D, ~ m of the
attractor and the K,-entropies reveal a small predict-
ability time scale (e.g. at m = 20: D, ~ 20 and 1/K,
~ 1-2 years). Note that for random processes (e.g.
white noise) the attractor dimension increases with the
embedding dimension D, ~ m (§3b). However, there
is a distance /-range (In/ > 3.5) where InC,,(/) versus
In/ graphs reveal a knee with smaller slopes (dimension)
D, ~ 4-5 and larger predictability time scales 1/K,
> 15 years.

As this scaling regime occurs only when the embed-
ding dimension is large (m > 12) and disappears when
analyzing the time series with a delay time 7 = | and
2 years, it may well be due to sampling without physical
causes. If, however, we accept its reality, such a knee
may allow a physical interpretation (e.g., see Eckmann
and Ruelle, 1985). The attractor of the observed El
Nifio/Southern Oscillation process may consist of two
subsystems (e.g., the ocean on the one hand and the
tropical atmosphere on the other). The subsystem with
lower dimensionality and longer predictability (e.g., the
ocean or a part of the coupled atmosphere-ocean sys-
tem) is related to the larger distance scales (In/
> 3.5, in Fig. 2). In the smaller scale domain (In/
< 3.5) the complete atmosphere-ocean system con-
tributes to the observed time series in its dimensionality
and predictability. Either the larger-scale subsystem
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FIG. 2. Cumulative distribution functions C,,(/) displayed in a InC,,(I) versus In/ diagram for a sequence of embedding dimensions (m
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t;| > 5 years). (b) Southern Oscillation index
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drives the smaller scale, or, which seems to be the case
here, noise effects are so large that they dominate all
but a small fraction of the attractor. Note that the lower
dimensional subsystem (In/ > 3.5) may be characterized
by contributions from both parts of the coupled at-
mosphere and ocean system, as the dimensionality es-
timates do not give information about physical details
but simply lower bounds for the degrees of freedom
involved.

On first sight this result may appear to be comparable
with dimension estimates from Hense (1987), who
claimed a fractal dimensionality between 2.5 and 6 for
the Southern Oscillation attractor based on monthly
mean precipitation, pressure and sea surface temper-
ature time series. Because the Kj-entropies (estimated
from the graphs) reveal predictability time scales of a
couple of months only (these are deduced from the
same distance domains as the dimensionality), they
may have captured only the strong annual cycle of the
time evolution (which we wanted to avoid, see Intro-
duction) with ENSO and other signals generating ran-
dom noise on the smaller distance scales.

The cumulative distance distributions of trajectory
pieces taken from El Nifio intensities (Quinn et al.
1978) show similar behavior but without indication of
a knee. The C,,(/) graphs in the InC,,,(/) versus In/ dia-
gram (Fig. 2a) do not tend to a saturation dimension
when increasing the embedding with 7 = 1, 2, 3 years
time lag (for 7 = 1 at m = 20: D, ~ 11-12 and 1/K;
~ 1.5 to 2.5 years of e-folding error growth; for 7 = 3
years: D, ~ 11-12 at m = 20, but 1/K, ~ 5 years
which reduces with increasing m and decreasing /).
Note that due to the short length of the time series,
these dimension and K,-entropy estimates provide only
very weak lower bounds.

5. Conclusion

In summation, the results from annual ENSO time
series analyses do not yet provide a clear support of
the ideas that there is a (strange) ENSO attractor of
low dimensionality on which the time evolution shows
error doubling time scales of more than one year. On
the contrary, the time series analyses tend to support
stochastic and/or higher dimensional effects on the time
evolution of the coupled atmosphere-ocean large-scale
dynamics. Accordingly, predictability time scales show
error doubling times of the order of the sampling time.
Because the time series available are only of short
lengths, these conclusions may not be regarded as final,
in particular, when considering the limitations expe-
rienced in analyzing hydrodynamic flow with attractors
whose fractal dimensionality > 5 (Swinney and Gollub
1986); i.e. the number of independent but similar (or
analogue) infinitesimally close pieces of trajectories
appears to be too small to estimate (Quantify) features
of chaotic behavior: dimensionality and predictability
(or the degree of chaos).
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These results seem to be supported by present day
numerical modeling (Cane et al., 1986) claiming pre-
dictability of ENSO of about one to two years. Given
realistic initial conditions many features of an ENSO
event appear to be predictable within this time span.
However, predicting longer lead times, e.g., into the
following episode, let it be a La Nifia or El Nifio event,
seems to be difficult; at least this analysis (based on the
presently available datasets) suggests that predictions

“would double their initially (infinitesimally small) er-

rors in a year. Physically, this seems to make sense
because there is an annual “peak” of instability (in
April) when the coupled ocean-atmosphere system is
most unstable. However, as Philander and Lau (1986)
suggest, it may be *‘possible for the occurrence of El
Nifio at a given time to depend . . . on the occurrence
of an earlier El Nifio.” A very weak indication of this
appears in the analysis of the annual Southern Oscil-
lation index (Fig. 2, but only when embedding it into
a phase space of multiples of 7 = 3 years time lagged
coordinates). For building prediction schemes this leads
to the conclusion that predictions are possible for at
least one to two years ahead (i.e. with initially small
errors doubling within this time scale) which aliow ba-
sically nowcasting the El Nifio/Southern Oscillation
phenomenon,
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cholls for reading the manuscript, Peter Webster and
Michael Ghil for their constructive reviews which
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APPENDIX A

Test for the Grassberger-Procaccia Algorithm
Applied to Binary and Continuous State Time Series

1. Binary states

The following hypothesis suggested in section 3 needs
to be tested. The El Nifio intensity time series (based
on Quinn et al. 1978, updated by Rasmusson 1984)
with La Nifia (x(¢) = 0) and El Nifio (x(?) = 1) events
and a Bernoulli experiment of almost unbiased coin-
flips produce similar distance distributions between
pairs of points (or pieces of trajectories in time lagged
phase space). The cumulative distribution of the em-
pirical time series is calculated from (2.7) and (3.2)
with 7 = 3 yearsand |¢; — ;| > 5 years. The cumulative
distribution of the random (biased) coinflip time series
is defined by (3.6) using (3.4).

For embedding dimensions m = 1, 2, 3 the proba-
bilities (not the cumulative distribution) are shown in
Table 2a, to which a chi-square goodness of fit test can
be applied. With the total number of observed distance
values N2 = (140 — 5 — 3m)(140 — 5 — 3m — 1)/2
one obtains chi-square = = N¥ENSO — RANDOM)?/
RANDOM with m degrees of freedom. From first sight
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TABLE 2. Estimated and theoretical probabilities of distance, /, between pairs of points (or pieces of trajectories embedded into m-
dimensional phase space) of (a) 140 years binary El Nifio/Southern Oscillation time series (ENSO) and a random or biased coinflip (RANDOM),
(b) 100 years continuous state Southern Qscillation index (SOI) and a Gaussian stochastic process (Gauss).

Embedding dimension

m=1 m=2 m=3
(a) Binary states
Distance Random ENSO Random ENSO Random ENSO
P=0 5162 5126 2664 2650 1376 1345
P=1 4838 4874 4996 .5028 3867 .3893
?=2 2340 2322 .3625 - .3629
P=3 1132 133
N? 8646 8256 7875
Chi-square 0.4487 0.3988 0.6918
(b) Continuous states
2 x? Gauss SOI _ Gauss SOI Gauss SOI
<1 <.01 .0806 0421 0051 .0025 .0002 .0002
1-3 .01-.03 1504 1548 .0401 .0399 0071 .0062
3-5 .03-.05 1549 1522 0753 == 0698 0252 .0297
5-7 05-.07 .1364 .1432 1024 .1041 0496 .0486
7-9 .07—.09 1162 1130 1179 1120 0766 0729
>9 >.09 3615 .3947 .6592 6717 8413 .8424
N? 4371 4278 4186
Chi-square 87.56 7.73 4.68

the similarity between the ENSO and random or biased
coinflip probabilities seems to be obvious, which is
confirmed on a 5% significance level,

2. Continuous states

The following hypothesis needs to be tested which
is related to the continuous time series of a Southern
Oscillation index (SOI, based on Wright 1975 and up-
dated). The observed SOI and a Gaussian stochastic
process of the same variance, o,2, produce similar dis-
tance distributions between pairs of points (or pieces
of trajectories in the time lagged phase space). The cu-
mulative distribution of the empirical time series Cy,(/)
is calculated from (2.5) and (3.2) with 7 = 1 year and
[t; — ¢;| > 5 years. The cumulative distribution of the
Gaussian process is defined by (3.13). The normaliza-
tion, X2 = [?/24,2, by the variance of the distance com-
ponents, 20,2 = 97.13 ~ 100, relates the empirical
Cm(!) to the chi-square (cumulative) distance distri-
bution P(x?|m) of the Gaussian process, which is ob-
tained from Abramowitz and Stegun (1965, Table 26.7)
and shown in Fig, 3. In Table 2b the probabilities of
classes of small distances are given in detail. Now a
chi-square goodness of fit test is applied to the first k
=2, 3,5 (form =1, 2, 3 embedding dimensions) classes
of small distances when C,,(!) or P(x*|m) < 15% (to
account for the limit process / — 0 in predictability
and dimensionality analysis) plus one further class to

cover the remaining distance values. With the total
number of observed distance values N* = (100 — 5
— m)(100 — 5 — m — 1)/2 one obtains chi-square
= Y N?(GAUSS — SOI?/GAUSS for k + 1 terms; i.e.
with k degrees of freedom, as the o, >-estimate has been
used for normalizing the theoretical distance distri-
bution P(x?|m). On a 5% significance level the simi-
larity between the empirical SOI and a Gaussian pro-
cess is confirmed for embedding dimensions m = 2
and 3, but not for m = 1. This is not surprising because
only integer SOI-values enter the time series which, in
particular for low embedding dimensions, effects the
assumption of a continuous state variable.

' APPENDIX B
Time Distributions

The residence time L, = n is the time for which the
process stays in one and the same state x(f) = k before
leaving for another. Its distribution is formally defined

P(Ly = n) = prob{x(t + (n + 1)7) # k|x(t + nr)
=x(t+n—-Dr)=...=x(0) = k}.

For Markov chains one obtains a geometric distribution
for the residence time of state k:

P(Li = n) = pi'(1 — pu)
with mean (1 — px)”' and variance pi(l ~ pu) >
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FIG. 3. Cumulative distribution functions P(x?|m) displayed in a
InP(x?| m) versus Inx diagram for a sequence of embedding dimen-
sions(m =1, 2, 3, 4, 5, 6, 10, 15) increasing from left to right (see
section 3b and appendix A for more details).

Thus residence times of the zero-order Markov chain
are defined by the climate probabilities p entering P
(L = n).

The first passage time T,; = m elapses between state
k and the first visit to state /, which has been avoided
attimest<t+wvr <t+ (m-— l)r:

P(Ty=m)=f3 = prob{x(t + mr)
=[lx(t+wvr)fiforl <v<m-—1;x(t)= k}.

The recurrences time Ty = m elapses between state
k and the first visit to the same state k but avoiding it
at times in between t <t 4+ vr <t 4 (m— 1)7. The
first passage probability for Markov chains can be eval-
uated successively from the transition probabilities:

( ) _ (), (m-n)
i 2 Sapi "
r=0
. 0 0 .
with f Sd) = (0 and pfd’ = 1. Mean and variance can also

be deduced in matrix form (e.g. Kemeny and Snell
1976).

One special case is the return probabnhty f for
which the mean recurrence time (T ) = pi ' is given
by the inverse of the climate state probability; i.e. it is
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identical with the mean residence time of all the re-
maining states with probability (1 — py).

Another special case arises, when the transition ma-
trix is represented by the climate (or zero order) Markov
chain. For this case one can derive f o = (1 —p)™
i.e. the distribution of the residence time of El Nmo
to La Nifia is identical with the distribution of the re-
currence time from La Nifia to La Niiia (El Niiio to
El Nifio) and the first passage time from El Nifio to La
Nifia (La Niiia to El Nifo).

REFERENCES

Abramowitz, M. and J. A. Stegun, 1965: Handbook of Mathematical
Functions. U.S. Gowt. Printing Office, 1046 pp.

Anderson, T. W., and L. A. Goodman, 1957: Statistical inference
about Markov chains. Ann. Math. Stat., 28, 89-109.

Barnett, T. P., 1984: Prediction of the El Nifio of 1982-83. Mon.
Wea. Rev., 112, 1403-1407.

Cane, M. A., S. E. Zebiak and S. C. Dolan, 1986: Experimental
forecasts of El Nifio. Nature, 321, 827-832.

Cox, D. R., and H. D. Miller, 1965; The Theory of Stochastic Pro-
cesses. Champman and Hall, 398 pp.

De Swart, H. E., and J. Grasman, 1987: Effect of stochastic pertur-
bations on a low-order spectral model of the atmospheric cir-
culation. Tellus, 39A, 10-24.

Eckmann, J. P., and D. Ruelle, 1985: Ergodic theory of chaos and
strange attractors. Rev. Mod. Phys., 57, 617-656.

Farmer, J. D., 1982: Information dimension and probabilistic struc-
ture of chaos. Z. Naturforsch., 37a, 1304-1325.

Feller, W., 1950: An Introduction to Probability Theory and Its Ap-
plications, Vol. 1, Wiley and Sons, 509 pp.

Fraedrich, K., 1986: Estimating the dimensions of weather and climate
attractors. J. Atmos. Sci., 45, 419-432.

——, 1987a: Estimating weather and climate predictability on at-
tractors J. Atmos. Sci., 46, 722-728.

——, 1987b: El Nifio iterations. Beitr. Phys. Atmos. 60 22-33.

Ghil, M and S. Childress, 1987: Topics in Geophysical Fluid Dy-
namics: Atmospheric Dynamics, Dynamo Theory, and Climate
Dynamics. Springer-Verlag, 1-485.

Grassberger, P., 1986: Do climatic attractors exist? Nature, 232, 609-
612.

——, and I. Procaccia, 1983: Estimation of the Kolmogoroff entropy
from a chaotic signal. Phys. Rev., A23, 2591-2593.

—,and , 1984: Dimensions and entropies of strange attractors
from a fluctuating dynamics approach. Physica, 13D, 34-54.

Hense, A., 1987: On the possible existence of a strange attractor for
the Southern Oscillation. Beitr. Phys. Atmos., 60, 34-47.

Kemeny, F. G., and F. L Snell, 1976: Finite Markov Chains. Springer-
Verlag, 210 pp.

Lorenz, E. N., 1965: A study of the predictability of a 28-variable
atmospheric model. Tellus, 27, 321-333.

Lorenz, E. N., 1984: Some aspects of atmospheric predictability.
Problems and Prospects in Longer and Medium Range Weather
Forecasting. D. M, Burridge and E. Kallen, Eds., Springer-Verlag,
1-20.

-——, 1985: The growth of errors in prediction. Turbulence and Pre-
dictability in Geophysical Fluid Dynamics and Climate Dynam-
ics, M. Ghil, R. Benzi and G. Parisi, Eds., North Holland, 243-
265.

Lowry, P. W, and D. Guthrie, 1968: Markov chains of order greater
than one. Mon. Wea. Rev., 96, 798-801.

Nicolis, C., and G. Nicolis, 1984: Is there a climatic attractor? Nature,
311, 529-532.

———, and ——, 1987: Evidence for climatic attractors. Nature, 326,
523.

Mo, K. C,, and M. Ghil, 1987: Statistics and dynamics of persistent
anomalies. J. Atmos. Sci., 44, 877-901.




“Z1Y-86€ ‘99 008 10212 AWy g (WSS joeq

-pa9j aroydsounie—~uesdo Uy UONE[[IdSQ WIYINog Ayl ‘6861 fe——
"6161-E161 ‘TIY "4y VoM UON

“UONE[[SO WIRYINOS dY) JO SIOTPUT usamiaq sdiysuoneoy 861 —
‘dd 77 ‘qomIopN ‘erfduy 1seq JO ANSIdALU) ‘NU[) YoIeasay

oUBWID "UONEIISQ WISYINOS 3} JO Xapul Uy :6L61 “d 'd ‘WyBum
‘ "SYT-EvT ‘TET

‘Da1S (SWNSAS [EOTUIRUAD SNORYD Y (OUIN [d 19861 “I "D SHEA
“18€-99€ OIMIBA ‘QUIINGIN [ PUD SWIISAS 109

-wpud(J *3UNQIN} Ul sI0)0eIE IFuens 3undne( 11861 ' SuUMeL
"BSH-8PY ‘A1 ‘$o15AYd ‘si010eme Jduens orweuip

-0IpAY JO UONEZLISIIEIRY)) 19861 ‘GNII0D “d ‘[ PUE T 'H *Auuing
"TI=§ ‘LT Snuna0Q

“UOTIOOUUO0D 10YdSOure/ueado Y I, :0UIN [ :p861 “ “H ‘uossnuusey]

911 SNNTOA

MAIATY YAHLVIAM ATHLNORN

‘8L9-€99 ‘9L /NG "SI "SIYSNOIP UBSIUOPU] PUE ‘OUIN
[d “GONEIISO WIAYINOS JY} JO SONSIE}S pue Spudl} [eILOISIE]
:8L61 ‘SuBX O "M "L "¥ PuB LOYS ‘S ") JdoZ "0 "d [ "M ‘UuIng
, ‘[PplRY ‘' SSURg
amnsuf Apnyg PouBAPY QLVN “Pd ‘198uIsa[yog ‘W 25uvy)
W) puv awuay) o uoupjnwls pup Suljjapopy pasog
Afasdyd "OWIN 19 Jo ANMqelorpald 9861 ‘0¥ D~N Pue ‘-~
"T99T-T9T
‘T¥ “10§ “Souy [ “BUIN B pue OUIN 9 6861 “H "D 'S ‘19pueliud
P11-§S (PIE Coning ywpy upissny *A103y) O1po31d
yroouss pue syusuodxa onsuoereyo aounded i/ /61 “d BA UIS3d
"QIL-Z1L ‘Sp “NIT Ay "SAYJ "SIUS WD} B WOl A110W03N)
10861 ‘meYS 'S Y pue JouLe] '( °f ‘PRYYIID d [ “I ‘N ‘PIEIE]

cl01



