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ABSTRACT

The dimensions of attractors are estimated from phase space trajectories of observed weather and climate
variables (local surface pressure and relative sunshine duration, zonal wave amplitude; a 3'*0-record). They
provide primary information for descriptions of properties of the attractors of dynamical systems and give a
lower limit to the number of the essential variables necessary to model the dynamics. These estimates are based
on distance distributions of pairs of points on the single variable trajectory evolving in phase spaces which
embed the attractor. One observes a low fractal dimensionality between three and four for the weather attractor,
if interannual variability and seasonal changes are eliminated. The physical interpretation is based on the three
dominating scales of cyclones, cyclone families and index-cycle; the irregularity of the flow and strong dependence
on initial conditions account for the fractal value. The climate variable also reveals a low dimensionality (between
four and five) of the climate attractor. This is supported by an independent estimate based on eigenfunction
expansion of the embedded phase space trajectory. These types of analyses suggest how to extend the standard
data evaluation and model verification techniques to an analysis of the phase space behavior of observed and
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simulated dynamical systems.

1. Introduction

Standard atmospheric circulation statistics provide
physical information in terms of means, covariances
and, occasionally, space-time filtered or cross-spectral
properties of the basic meteorological field variables:
mean temperatures, eddy heat fluxes, energy conver-
sions in appropriate space-time or wavenumber-fre-
quency domains. In this sense physical bulk properties
of the underlying dynamics define weather or climate.
Another type of data analysis is the phenomenological
circulation statistic. It is closely related to the real
weather phenomena: storm tracks of tropical and ex-
tratropical cyclones, regional cyclone frequency de-
pending on their life cycle and the prevailing season,
etc. These statistics account for the individual weather
patterns and lead to the phenomenological aspects of
the dynamical system. Both types of statistics describe
two aspects of the same physical processes and con-
tribute different information to it. In this study we de-
scribe and apply a further method of analysis to eval-
uate the dynamics of the weather or climate system. It
complements the other two statistical approaches or
data analyses in the sense that mathematical properties
are deduced.

Flows observed in the atmosphere and other hydro-
dynamic systems reveal a hierarchy of structures that
range from laminar to turbulent motions. Despite the
complexity of these flows there are many attempts to
describe the behavior by nonlinear models depending
on a few variables only (e.g., Charney and DeVore,
1979). These modeling efforts seem to be guided by
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the hypothesis that the basic structures of the observed
flows depend on a finite and possibly small number of
parameters that control it, i.¢., a few degrees of freedom
or a low dimensionality of the system as it evolves in
phase space. On the other hand, there are recent anal-
yses of hydrodynamic experiments made to obtain such
dimensionality estimates from observations; there is
evidence that a relatively smaill number of degrees of
freedom characterizes observed turbulent flows. Guck-
enheimer and Buzyna (1983) analyze the transition to

geostrophic turbulence in a rotating annulus and reveal

alow dimensionality for the vacillation regime turning
into a turbulent one. Brandstiter et al. (1983) present
empirical evidence for turbulent flows (which evolve
in a low dimensional subspace of the whole phase
space) when analyzing modulated wavy vortices
(Couette-Taylor flow). Finally, Nicolis and Nicolis
(1984) used the isotope record of a deep sea core with
relatively few data points, to estimate the degrees of
freedom which govern the observed long-term climate
evolution during the past million years; they also ob-
tained a low dimensionality (between three and four)
for the climate system. The analyses of observations
are based on statistical procedures which lead to mea-
sures of dimensionality or degrees of freedom which
control the underlying dynamics (e.g., Grassberger and
Procaccia, 1983a,b). But these methods of data analysis
also provide an objective test for the quality of model
solutions because they give a quantitative measure for
its time evolution (in phase space).

In this study various time series are analyzed to es-
timate the minimum number of independent variables
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(degrees of freedom) necessary to model the time evo-
lution and the number of variables sufficient to do so.
The analysis is based on similar procedures; its meth-
odological background is described in section 2, ap-
plications are presented in section 3. Furthermore, an
independent estimate of dimensionality is introduced
(section 4) and applied to a climate record.

2. Basic concepts

The dynamics of the weather and climate system is
simulated by partial differential equations describing
the underlying physical processes. These equations can
be transformed to a set of » time dependent ordinary
differential equations, if the space variability is ex-
panded into a set of n orthogonal functions. A typical
example is the spectral truncation of the hydrodynamic

equations for the atmospheric flow (e.g., Silberman, "

1954). The resulting set of ordinary differential equa-
tions defines the time development of nexpansion coef-
ficients x;(#):

X =fi0c, Xy j=Leee,n

Thus the phase space containing the time evolution
of the underlying process is spanned by the n different
variables x;, j = 1,- - -, n of the dynamical system.
Portraits of the time evolution of the system are formed
by trajectories in this »-dimensional phase space. They
exhibit distinct patterns, called attractors which trap
trajectories after transients originating from the initial
states decreased. All initial values, whose trajectories
are captured by the attractor, define the attractor basin.
In characterizing these attractors one may follow the

common “roads to turbulence in dissipative dynamical

systems” (Eckmann, 1981). There are one or more
steady states (i.e., zero-dimensional points) which be-
long to related attractor basins; periodic orbits or limit
cycles are one-dimensional closed lines and quasi-
periodicity occurs on two-dimensional tori in phase
space. Irregular or chaotic motions can appear on
strange attractors in three and higher dimensional phase
spaces. A first example related to atmospheric processes
has been presented by Lorenz (1963). Although deter-

ministic, the dynamics of these systems reveal chaotic.

or irregular behavior, which is realized by a sensitive
dependence on initial conditions—a feature of the
weather and climate system.

The attracting sets (or attractors) form invariant
manifolds of the dynamical systems, which often have
dimensions d smaller than those of the phase space d
< n. Here it should be noted that attractors with irreg-
ular behavior are not necessarily confined to integer
dimensions; fractals or noninteger dimensions (Man-
delbrot, 1977) seem to be common for many turbulent
systems which are deterministic with a strong sensitivity
on initial conditions and show features, which appear—
to a certain degree—irregular or chaotic.
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The attractor of a dynamical system is represented
by the asymptotic limits of trajectories in a phase space
spanned by those independent variables, which define
the dynamics. If information and topological (geo-
metrical) properties (such as the dimension) of attrac-
tors are to be evaluated from observations, one is gen-
erally confined to time series of a single state variable
sampled at regular time intervals Af. To deduce such
measures from observed turbulent or chaotic flows,
Packard et al. (1980) suggest a reconstruction of the
phase space picture of the attractor. This can be
achieved by transforming the dynamic process into a
new phase space of successively higher dimension until
no more information is gained by adding a further in-
dependent coordinate. The single variable time series
(or observable) represents one such coordinate; its (m
— 1) derivatives or, in the discrete case, the (m — 1)
lagged time series shifted by (m — 1) multiples of the
correlation time 7 provide further independent coor-
dinates (subsection 2a). Phase portraits of the time
evolution of the dynamical system can now be con-
structed in this new m-dimensional phase space
spanned by the single state variable and its successive
derivatives (or time shifted variables).

a. Embedding

The set of »n ordinary differential equations

-x.j=f]?(XI,"',xn); j=1"..’n (2'1)

describes the dynamics of weather and climate in an
n-dimensional phase space. The phase space is spanned
by # coordinates x;, j = 1,- - -, n which are defined by
the » independent variables of the dynamical system.
Thus the time evolution is given by a vector £(2):

£ = Da(@, - - -, xi(0), (2.2)

whose components define the position of the trajectory
in the phase space. The system (2.1) can be reduced to
a single highly nonlinear differential equation for one
of the variables x;(¢), say x(2), if all others are eliminated
by differentiation. This leads to an #th order differential
equation

x = flx, x'ye e, x07), (2.3)

which is equivalent to a set of # equations describing
the time evolution, x(f), plus its n — 1 derivatives x(7),
X', ..., x" D)

x(0) = [x(), X'@®),- - -, xX" ). (2.42)

The initial value problem (i.e., Cauchy boundary con-
ditions) posed by the single state variable x(f) and its
n — 1 successive derivatives starts the time evolution
(2.3) or (2.4a) which appears in the same n-dimensional
phase space of n coordinates [i.e., the time series plus
its (n — 1) derivatives]. This is represented by the vector
components (2.4a) which define the position of the tra-
jectory of the time evolution. Adding further derivatives
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[e.g., x™(1)] to the vector (2.4a) is superfluous, because
it does not produce more independent information.

Now, if a manifold within the original #-dimensional
phase space x;,. . . ,x,(2.1), (2.2) is considered (say,
an attractor or any other geometrical object of dimen-
sion d < n) it can be described in the new phase space
x, x', x", .. .spanned by the single variable and its de-
rivatives (2.3), (2.4). It should be noted that the di-
mensionality of the new phase space may be smaller
than that of the original phase space. This is an embed-
ding which is based on a sound mathematical back-
ground; the Whitney embedding theorem (Takens,
1981; Whitney, 1936; Hirsch, 1976) which 1s valid for
almost all smooth dynamical systems. The theorem
implies that d-dimensional manifolds (described by the
dynamical system (2.1) and evolving in the #-dimen-
sional phase space with coordinates x;, j = 1,+ - -, n)
can be embedded into an (m = 2d + 1)-dimensional
space {e.g., spanned by the variable x(f) and its second
successive derivatives which define the embedded dy-
namics). The theorem, which requires an embedding
dimension m = 2d + 1, places the analysis (of dimen-
sionality of attractors by embedding) on the safe side;
to evaluate dimensions of attractors of physical systems
it suffices to guarantee embedding dimensions m suf-
ficiently larger than those of the attractors, which are
generally of lesser dimensionality than that of the orig-
inal phase spaces (d < m, n). Here it should be noted
that the theorem of Takens (1981) has not yet been
proved in such generality that it includes general at-
tractors with fractal dimensionality (because these are
no manifolds). But it seems plausible that a general
version of the theorem of Takens may be formulated,
however, requiring an embedding dimension in grow-
ing with d? rather than 24 + 1 (personal communi-
cation, 1985).

Thus, for deriving the dimension of attractors from
single state variables it is sufficient to embed them into
an m-dimensional space spanned by the time series
and its m — 1 derivatives:

x(0) = [x(0),- - -, ")), (2.4b)

i.e., it is not necessary to know the original phase space
(or independent state variables) and its dimension 1 as
long as m is chosen large enough. Instead of the con-
tinuous variable x(¢) and its derivatives, x"~(z), a dis-
crete time series x(¢) and its shifts by (s — 1) time lags
{(m — 1) may be considered to identify structures in
the time evolution of the single state variable (Ruelle,
1981)

x(0) = {x(@), x(t + 7),+ + +, x[t + (m — 1)1}}. (2.4c)

This is particularly useful, if the dynamical variables
are observables which, in most cases, are discrete. Here
it should be noted that in analogy with the continuous
case the time shifted coordinates should be linearly
independent (i.e., differentiation is a linear operator).
For observables this can be achieved by choosing the
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macrotime scale (or autocorrelation time) 7 as a lower
limit of the basic time step. This is plausible because
vanishing autocorrelations guarantee uncorrelated
(statistically independent) data; they are also linearly
independent (whereas the reverse does not hold) be-
cause a vanishing dot-product (i.e., the autocorrelation)
defines orthogonality.

If attractors of observed or simulated dynamical sys-
tems and their topological properties are investigated,
it is sufficient to consider a single state variable, x(¢),
and its time trajectory in a phase space spanned by the
time shifted coordinates (2.4). In the following sections
we are concerned with estimates of the dimensions of
weather and climate attractors using only a single ob-
servable and embedding it in a phase space of time
shifted coordinates. The methods of deducing the di-
mension are discussed in the following subsections. The
estimates are based on general considerations of the
dimensionality (Grassberger and Procaccia, 1983a,b;
Ben-Mizrachi et al., 1984) and empirical orthogonal
functions,

b. Dimension

An intuitive approach toward a general definition
of dimension may be gained, if one considers a simple
geometrical object. A cube of the dimension 4 and the
volume V' is filled by a number N(L) of smaller boxes
with the sidelength L. Then the total volume yields

V=3 L= ML)L% (2.5)

N(L)

1., the number of boxes, N(L), needed to fill the vol-
ume grows with decreasing sidelength according to
N(L) = VL4 the dimension d can now be eliminated
from L = V/N(L): \

d = InN(L)/(InLo/L) + (InV/Vy)/(InL/Le), (2.6)

where unit scales Vy, Ly are introduced for conve-
nience. Taking the limit of decreasing sidelength of the
boxes, L — 0, the last term vanishes. This leads to the
more general definition of dimension (or capacity):

d = lim [InN(/}/(InLy/L)]. 2.7)
L—0

It is called a Hausdorff or fractal dimension (e.g. Man-
delbrot, 1977), because it allows noninteger values to
characterize geometrical objects (e.g., strange attractors
in phase space). Thus the definition of dimension is
generalized, if one considers a volume of dimension d
filled by a number of volume elements of the sidelength
L; this number N(L) grows exponentially (d) with de-
creasing sidelength. One may now reformulate (2.7):

N(L) = (L/Loy? for L—0. (2.8)

The exponent d (Hausdorfl dimension or capacity)
determines a growth rate, which describes how the
number of boxes ML) needed to cover the attractor
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‘set increases with decreasing sidelength L. This result
may be used to determine the dimension d by plotting
InN against InLy/L. Such a box counting algorithm,
however, appears to be impractical for calculating the
dimensionality of strange attractors, because it con-
verges too slowly (Greenside et al., 1982). Therefore
another method has been suggested to estimate a lower
bound for the dimension (Grassberger and Procaccia,
1983) which 1is discussed in the following.

Instead of counting volume elements or boxes one
* may count pairs of points x(#;), x(¢) on a geometrical
object which are a distance r;; apart:

tij = Ix(ti) - X(Zj)l. (29)

The number N(/) of such pairs, whose distance is
smaller than the prescribed threshold, r;; </, is formally
determined by

N
N = % o~

fj=1

r,'j), (2 10)

where @ is the Heaviside-function with 6(a) = 0 or 1,
if a > 0 or <0; N is the total number of points. This
leads to a cumulative distribution function, which is
normalized by the total of N? pairs: '

(1/N)NQD).

It describes how the number of pairs grows with in-
creasing distance threshold /. For N — oo, the growth
rate changing with the dimension d is determined by
the cumulative distribution function
C() = lim N()/N? ~ %, (2.11)
N—oo .
For example, consider data points homogeneously dis-
tributed on a line (on a surface or in a volume); then
the number of all points that are up to-a distance /
apart grows linearly (quadratic or cubic) with increasing
I; i.e. proportional to I (/2 or I°).

Now the dimension of a geometrical object, say an
attractor in phase space, can be determined by the cu-
mulative frequency distribution C(/) of distances of
pairs of points which are situated on the time trajectory
of the dynamical system; the slope of the distribution,
i.e., InC()) versus Inl/l;, leads to the dimension

= InC())/(Inl/L). (2.12)

The exponent (or correlation exponent) defined by
(2.11) is closely related to the exponent (or capacity)
given by (2.7), but never greater. In most cases analyzed
(Grassberger and Procaccia, 1983a) this inequality is
rather tight. Furthermore, one should notice that these
definitions of dimension are asymptotic measures.

¢. Scaling: Dimension of attractors

The dimension of attractors of a dynamical system
(after decay of the transients) can be estimated if the
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results of the foregoing two subsections are combined.
This leads to the following procedure:

First, one starts from the time series x(f) as it evolves
in the m = 1 dimensional phase space, and estimates
the related dimension d(m = 1) of the time evolution
from the distribution function C(J) ~ /¢ (2.11):

Ch ~ 14 (m=1

This is represented by points distributed on a line (i.e.,
in a one-dimensional phase space m = 1). Next the
dimensionality d(m) of the phase portrait or time evo-
lution is deduced from the distribution C(/) in succes-
sively higher dimensional phase spaces; i.e., proceeding
from a two-dimensional display

Com) ~ 14>

from x(¥). -

from x(f), x(¢) or x'(t), x(t + 7) to the m-dimensional
phase space

Co(h) ~ 1™ from
x(1), x(0), .
x(, x@+7),...,

, x" D or

X[t + (m—1)r] (2.13)

until the introduction of a further phase space coor-
dinate x(¢ + mr) or x"¢) stops to increase the di-
mension d(m) of the attractor, on which the dynamics
evolves: d, = d(m) = d(m+ 1) = - « - ie. the estimates
of the Grassberger and Procaccia (1983a) algorithm
are asymptotic. Thus specifying the (low) dimen-
sionality of an attractor, d,,, depends on the condition
that the sequence of d’s departs rapidly from d = m
to distinguish the dynamics from random signals. (See
random trajectories, this section.) Now the d-dimen-
sional attractor of the original dynamical system (whose
independent variables or dimension need not neces-
sarily be known) is embedded in the m-dimensional
phase space of derivatives (or time shifted coordinates)
of the single state variable. The limiting or saturation
value d_, defines the dimension of the attractor, on
which the dynamics evolves. A noninteger value d,,
indicates chaotic behavior; the underlying dynamics is
deterministic and shows a sensitive dependence on the
initial conditions.

The nearest integer above the saturation slope pro-
vides the minimum number of independent variables
necessary to model the dynamics on the attractor; a
reasonable upper bound for the number of variables
sufficient to model the dynamics of the attractor is the
number of embedding dimension » whose saturation
is achieved at d.(m). Thus the distinction between the
number of variables necessary to model the dynamics
and the number of variables sufficient to do so should
be made: 1) Certainly it is impossible to model the
dynamics of an attractor with fewer vanables than its
dimension. Thus one needs at least as many variables
as the next integer above its fractal dimension. 2) It
holds the analogy with a d,, = 2 dimensional surface
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which cannot generally be embedded in an m = 2 di-
mensional Euclidean space—usually m = 3 (or even
4) dimensions—are required. For a dynamical system
(together with its attractor) the theorem of Takens
(1981) provides the embedding and the Grassberger-
Procaccia (1983) algorithm succeeds at the embedding
dimension m, where saturation is achieved. Thus, this
embedding dimension m resulting from empirical runs,
is a good upper bound for the number of variables
sufficient to model the dynamics of the attractor.
One may notice that with increasing embedding di-
mension m the limiting value d,, might be slowly ap-
proached and not abruptly leaving the diagonal d(m)
= m at d,,. This would be due to the fact that the

transformation to the single state variable (and its de-

rivatives or time shifts) does not necessarily represent
the minimum state variables, which describe the at-
tractor sufficiently; these may be others. Two further
aspects need to be discussed: random trajectories and
noisy attractors.

1) RANDOM TRAJECTORIES

Consider a random time series or points which are
homogeneously distributed in phase space. They reveal
a dimensionality d(m) which grows with each new di-
mension or coordinate added to the phase space x(f),
x'(t), ...or x(t), x(t + 7), ..., because random data
are independent. Therefore, the dimension of (such a
random) time series reveals an ‘““attractor” whose 4 di-
mension grows proportional to the number m of the
embedding coordinates: m = d(m) or m + [ = d(m
+ ). A random data set of finite length (number of
observations) and produced by a random number gen-
erator is not expected to follow the proportionality, d
= m, but merely the inequality, d < m. Thus in a (d
— m)-diagram the “‘random attractor” dimension d(m)
would stay close to the diagonal only if the time series
is sufficiently long to fill the m-dimensional embedding
space. Shorter random time series would enhance the
inequality 4 < m (i.e., deviate from the diagonal d = m)
at smaller embedding dimensions m (see e.g., Fig. 4a,
b, ¢) but without reaching a saturation value d_, for
increasing m.

However, nonrandom time series with deterministic
dynamics represent structures and reach a limiting di-
mension d,,. This dimension may be noninteger (i.e.,
fractal) which is characteristic for irregular or chaotic
deterministic processes.

2) NOISY ATTRACTORS

For experimental situations or observations in na-
ture, it is unavoidable that noise destroys parts of an
attractor, in particular, if it is fractal. Embedding the
attractor in an m-dimensional space, the noisy trajec-
tory will be space filling (i.e., d =~ m) on a length scale
smaller (but not larger) than the noise strength; i.e.,
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not unlike a random time series; the distribution func-
tion yields

Col) ~ 1™ for < lpgise

with increasing embedding dimension m. Whereas for
length scales larger than the noise level, the distribution
function scales

Col) ~ 19 for 1> lhgise

with increasing embedding dimension m. The appro-
priate algorithm proposed by Ben-Mizrachi et al.
(1984) can be described as follows: One reconstructs
embedding spaces of increasing dimension m with plots
InC(/) versus Inl/ly. Above the length scales character-
izing the noise the curves should be linear with a slope
equal to d; all curves should break at the same length
scale [ below which a slope proportional to m (embed-
ding dimension) should appear. The position of the
break / = [ ;s supplies information on the noise level
of the system. Furthermore, the dimension of the de-
terministic part of the noisy attractor can be evaluated
for scales beyond notse level.

3. Application to weather and climate variables

The method of estimating the dimension of attrac-
tors is applied to time series of various variables rep-
resenting the weather and the climate system. The re-
sults should be considered with the following back-
ground information: 1) The time series must be
sufficiently long to guarantee convergence of the cu-
mulative distribution function C({), in particular if the
dimensionality of the attractors is large; 2) the selected
weather or climate variables need not necessarily be
the best representative of the dynamical system, be-
cause noise (or other scales) may affect one variable
more than the other.

Daily values of surface pressure and relative sunshine
duration are selected as time series representing the
local weather at a single station (Berlin~Dahlem). The
500 mb geopotential amplitude of zonal wavenumber
5 along 50°N supplements the analysis with a large-
scale variable of the weather dynamics. A random time
series is attached to each weather and climate variable.
It is calibrated by the observed time series to have the
same length N, mean and variance but representing
Gaussian noise (produced by a random number gen-
erator), These random time series are subjected to the
same embedding procedure as the observed variable.
However, time shifts 7 are not changed but fixed at the
sampling time 7 = At (see also section 2¢, random
trajectories). The method of analysis follows the same
procedure for all variables, which is shown in some
detail for the daily surface pressure; the other variables
are treated analogously.
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Daily surface pressure records (0600 GMT at Berlin)
are analyzed: 1) a complete 15-year period (N = 5475
data points) up to an embedding dimension m = 20,
2) seasonal data sets of 14 winter and 15 summer sea-
sons; each season lasts 120 days commencing on 1 No-
vember and 1 May, respectively; 3) random processes
related to the data sets.

1) EMBEDDING

To visualize the embedding procedure the single
station pressure time series p(f) is graphically displayed
using values of a randomly chosen winter season (Wi
1978/79). The phase space is spanned by m = 3 co-
ordinates (Fig. 1).- The horizontal axis describes the
time series x(¢) = p(¢); the vertical axis represents the
time series shifted by 7, x(¢ + 7) = p(¢t + 1) and the
axis sloping into the plotting plane denotes twice the
time shifts x(t + 27) = p(t + 27). Here it should be
noted that only for this display a pressure sampling
time of 3 hours (and not of 1 day) is used. For time
shifts 7 =3 hours the pressure time evolution in the
three-dimensional phase space p(¢), p(¢t + 1), p(¢ + 27)
stays closely along the main diagonal indicating per-
sistence from p(f) to p(t + 3h) and to p(t + 6A) (Fig.
fa). For r = 1 day the persistence still prevails but the
domain where the trajectory evolves broadens (Fig. 1b).
For time shifts corresponding to the decorrelation time
7 = 3 days (macro- or integral-time scale) the trajectory
.becomes space filling (Fig. 1¢). This is valid also for
time shifts 7 > 3 days; it guarantees data independence.
For 7 > 3 days the always existing noise in weather
systems dominates the deterministic dynamics. There-
fore, for practical purposes the most appropriate r
needs to be selected by comparing results of increasingly
larger time scales. A
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2) DIMENSION (CUMULATIVE FREQUENCY DISTRI-
BUTION)

The cumulative frequency distribution functions C(/)
of distances of daily pressure values evolving in the m-
dimensional embedding spaces are shown for the basic
time scale v = 3 days, which corresponds to the de-
correlation time of synoptic disturbances. Analyses of
other time shifts are not shown but used for scaling the
attractor dimension. The distribution functions (2.11)
are presented in log-coordinates to determine the slope
(2.12). The cumulative number of pressure distances
r;; < | grows with increasing threshold distance /. When
[ reaches its upper limit, the distribution functions
converge to unity, which holds for ail distance distri-
butions. The related embedding dimensions m are ob-
tained from the C(/)-graphs in Figs. 2 and 3 (and oth-
ers). They correspond to the maximum time shifts (or
multiple of the time scale 7), by which the independent
single variable phase space coordinates are defined.
Cumulative distribution functions are evaluated for
increasingly higher dimensional phase spaces (i.e., for
increasing m) to obtain a sufficient embedding of the
attractor in the new phase space of time shifted coor-
dinates. Distribution functions are derived for the
complete 15-year record, seasonal data sets of daily
pressure values, and the related random series. With
increasing embedding dimension m one notices an in-
creasing slope of the distribution functions for ali ran-
dom series as shown in Fig. 4. The same can be ob-
served for the complete 15-year record but not for the
summer or winter data sets. The related dimension of
the weather attractor can now be deduced by scaling
of the distribution functions.

3) SCALING

The scaling of the distribution function C()) ~ ¢
(i.e., the dimensionality of the attractor) is defined by

4.0

s,
A4
© /
4o . A A8
160 %
40 40,

T T Tt ~20.0

—-8.
~g°~° T T T T T -200

-200 -8.0 40 180 280 40.0 ~200 30 40

3-HOURLY SURFACE PRESSURE DURING W1 1978/78
(TAU ~ 3 HOURS); UNITS: + 1000MB

3~HOURLY SURFACE PRESSURE DURING W1 1978/7¢
(TAU = 1 DAY); UNITS: + 1000MB

-200 ~80 490 16.0 28.0 40.0

3—HOURLY SURFACE PRESSURE DURING WI 1978/79
(TAU = 3 DAYS); UNITS: + 1000MB

Fi6. 1. Time trajectory of three—hourly surface pressure evolving in a three-dimensional phase space of timc—lagged pressure coordinates
(units: 1000 mb). Horizontal axis: p(r); vertical axis: p(t + 7); axis into plotting plane: p(r + 27). From left to right: (a) = = 3 hours, (b)

r=1day,(¢)7 = 3‘days.
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FIG. 2. Cumulative distribution function of distances of the 15-
year daily pressure trajectory evolving in m-dimensional phase spaces
(m = 1 to 20) of time lagged (+ = 3 days) coordinates of the same
variable. Top: observed time series; bottom: related random series
of same length, mean and variance.

its slope d in the logC versus log/ diagram (Figs. 2 and
3). With increasing embedding dimension m the slopes
d(m) of the related C,,(!) tend toward a limiting or sat-
uration value, d,,, unless the underlying dynamics is
a random process. This saturation value defines the
dimension of the attractor and a lower limit for the
number of independent variables to simulate the dy-
namics on it. The dimensions d(m) up to a possible
saturation dimension 4., are deduced for various data
scts of the same variable using different time scales 7,
which are embedded in m-dimensional phase spaces.
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The results are compared with the random time series.
How the tendency towards saturation proceeds with
increasing embedding is shown in a (d, m)-graph pre-
sented in Fig. 4a—c. Some results should be noted.

4) RESULTS AND INTERPRETATION

e The dimension of the attractor of the random time
series increases with each further coordinate added to
the phase space, i.e., with increasing embedding di-
mension m. For large m, however, the scaling follows
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FIG. 3. Cumulative distribution function of distances of seasonal
daily pressure trajectories. From top to bottom: (a) 14 winter seasons,
(b) 15 summer seasons, (c) 15 randomized seasonal time series.
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m = d(m) and not the diagonal, m = d(m), as required.
This may be due to the random number generator and/
or to the finiteness of the random time series (see sec-
tion 2¢, random trajectories). This empirical random
scaling is appended to all dimensionality analyses (sig-
nature c) to compare it with the attractor dimensions
d(m) derived from the observed data sets (Fig. 4a~c).

o The scaling of the 15-year time series of daily sur-
face pressure increases with increasing embedding di-
mension. Even at embedding dimension m = 15 to
20, there is no indication that the attractor is sufficiently
embedded and has reached its limiting dimension (Fig.
4a). This is not surprising, because the time series in-
cludes weather phenomena in winter and summer, the
long-range processes from season to season and the
interannual variability. A dynamical system, which in-
cludes all these aspects, depends on a large number of
independent variabies (degrees of freedom) and the in-
herent noise.

e For analyzing weather processes one should not
consider the highly nonlinear longtime memory be-

tween seasons and years. Instead, the pressure record -

should be reduced to seasonal samples of 14 winters
and 15 summers; each season lasts 120 days com-
mencing on 1 November and 1 May, respectively.
Thus, distribution functions are individually evaluated
for each season and then composited to discard the
long-range processes and interannual variability.
‘Scaling the weather attractor described by the tra-
‘jectories of the seasonal time series leads to different
results: Increasing the embedding space from dimen-
sion m = | to 15 and larger, the log-slope d of the
distribution function C(/) ~ /¢ increases until a satu-
- ration value d,, is attained. This value may now be
interpreted as the dimension of the local weather at-
tractor. There are different values for summer and

winter with larger attractor dimension in summer. For
correlation times r = 3 days, linear independence of
the data sets is satisfied and one observes an attractor
dimension d,, ~ 3.2 for winter seasons (d, =~ 3.9 for
summer seasons). The observed fractal dimensionality
indicates the deterministic chaos of the weather system
with its supposed sensitivity on initial conditions. The
result of this analysis that summers and winters sepa-
rately provide small dimensions but the annual data
do not, seems to be valid if there are two distinct re-
gimes of flow for the two seasons rather than just one
regime for which a value of a parameter (e.g., the lat-
itudinal temperature gradient) is changing between
seasons.

Finally, a physical interpretation may be suggested
for the observed low-dimensionality of the weather at-
tractor: Weather fluctuations are realized as cyclones
(short period disturbances), ensembles of which (cy-
clone families) are attached to the troughs of slowly
traveling major waves. These two distinct types of syn-
optic disturbances arrange themselves in an index cycle
of enhanced and reduced synoptic activity. These three
processes are realized by three distinct but broad spec-
tral peaks in local time series (Fraedrich et al., 1979),
hemispheric wavenumber-frequency analyses (Frae-
drich and Béttger, 1978) and, of course, phenomeno-
logical observations. It is suggested that the number of
three weather phenomena of independent periodicity
coincides with the integer part of the estimated fractal
dimensionality; i.e., the integer part of the saturation
dimension d,, seems to define the number of funda-
mental periods in the process. (See, also, section 3d on
the climate variable.)

o The next integer above the fractal saturation di-
mension (d,, < 4) provides the minimum number of
independent variables necessary to model the dynam-
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ics. The saturation is achieved at m < 10 which is a
good (estimate of the) upper bound for the number of
variables sufficient to model the dynamics of the at-
tractor. These results should not suggest that the
weather (in Germany) may be modeled on the pressure
reading of one station (Berlin), but that one projection
of the attractor (obtained by applying the Grassberger—
Procaccia (1983) algorithm to this record) happens to
reveal a small dimension. Similar contributions from
projections obtained by evaluating records at other
distant stations are expected, which then would add
up to the true dimension of the attractor.

b. Sunshine duration

Daily sunshine hours (from Campbell-Stokes sun-
shine recorders) are normalized by the astronomically
possible sunshine duration and using an estimated cor-
rection for the horizontal extinction of 1.5 degrees for
both sunrise and sunset. This leads to a new time series
of the relative sunshine duration per day, 8 < 6(f) < 1
which is analyzed in this subsection. Its complement
1 — 8 is an approximation to the daytime average of
areal cloud cover. The 30-year period is evaluated as
a whole and separated for 29 winter and 30 summer
seasons. The embedding procedure of the single station
sunshine time series 8(¢) is graphically displayed (Fig.
5) using observed values of the randomly chosen year
1958. Again, the phase space is spanned by three co-
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0.2
0.0 ! 0.0

0.0 0.2 0.4 0.6 0.8 1.0

RELATIVE SUNSHINE DURATION DURING
1958 (TAU = 1 DAY)

FIG. 5. Time trajectory of daily relative sunshine duration 8 evolving
in a three-dimensional phase space of time lagged sunshine series.
Horizontal axis: 6(¢); vertical axis: B(t + 1 day); axis into plotting
plane: 8(¢ + 2 days).
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ordinates: the horizontal axis describes the time series
x(t) = 0(t), the vertical axis represents the time series
shifted by 7: x(t + 7) = 6(z + 7); and the axis sloping
into the plotting plane denotes twice the time shift, x(z
+ 27) = 6(¢ + 27). For r = 1 day (corresponding to the
sampling time) the time evolution of sunshine duration
is space filling. The cumulative distribution functions
C()) of sunshine distances in the m-dimensional
(embedding) space are not shown, but the results of
scaling (C(/) ~ 19 the attractor dimension (Fig. 6).
They are comparable with the pressure record:

* The dimension of the randomized time series in-
creases with increasing embedding dimension »z; for
large m, however, the scaling follows m = d(m) and
not the diagonal, d(m) = m, as required.

¢ The scaling of the attractor of the complete time

_ series of 30 consecutive sunshine-years shows similarity

with its related randomized data set; with increasing 7
(i.e., growing data independence) this similarity rises
(Fig. 6a).

* Scaling the weather attractor by seasonal time se-
ries leads to different results (Fig. 6b, c). Increasing the
embedding space from dimension mm = | to 15 and
larger, the log-slope d of the distribution function C(J)
~ [?increases until a saturation value d,, is attained.
Again this value may now be interpreted as the di-
mension of the local weather attractor. There are dif-
ferent values for summer and winter with larger at-
tractor dimensions in summer. For correlation times
T = 3 days, linear independence of the data sets is
satisfied. However, one may notice the unusually bad—
yet unexplained—properties d(m) for + = 3 days in
winter (Fig. 6b). One observes an attractor dimension
d,, =~ 3.1 for winter seasons (d,, ~ 4.3 for summer
seasons). The observed fractal dimensionality indicates
the deterministic chaos of the weather system with its
supposed sensitivity on initial conditions. The next
larger integer above saturation dimension (n > d) pro-
vides the minimum number of variables necessary to
model the behavior of the dynamical system on the
attractor with four key variables in winter and five in
summer; an estimate of the upper bound for the num-
ber of variables sufficient to model the dynamics would
be m < 10. Still, the caveat added to the results and
interpretation of the surface pressure analysis (section
3a) applies also to the local sunshine duration.

The results of the sunshine analysis lead to some
additions to interpretation of the pressure record: Each
weather variable has a different sensitivity on influences
of other scales and noise. This is reflected by the sum-
mer sunshine duration with convection playing a non-
negligible role, which seems to be reduced in the daily
pressure record with less dimensionality in summer.
But, the low dimensionality of the weather attractor is
supported by both daily pressure and sunshine dura-
tion. Furthermore, its fractal values reflect the deter-
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ministic chaos (or strong dependence on initial con- frequency domain reveal three peaks of the zonal tran-

ditions) characterizing the weather dynamics. sient eddy variance. They refer to progressive long and
short waves, which are realized by cyclones and cyclone
¢. Zonal wave amplitude families (see section 3a), and quasi-stationary ultralong

Dail litudes of the 500-mb tential waves, which consist of barotropic westward and baro-
aily amplitudes of the SUY-mb geopotential waves  inic eagtward components (related to the index cycle
along 50°N define large-scale hemispheric weather ¢enpanced and reduced activity). Furthermore, in-
variables. The results of d1mens1ona!1ty analyses are tensity maxima of both local and zonal spectra vary
shown for wavenumber 5 (Fig. 7) which are based on ¢ nciderably from season to season (e.g., Hartmann,
a ten-year period; similar conclusions are also deduced 1974; Fraedrich and Béttger, 1978). This may account
from the amplitudes of other waves. They support ?he for the required fourth independent variable, but keep-
- general results drawn from the local weather time series: ing the weather attractor dimension fractal between

The complete time series, including interannual vari- e and four with its associated deterministic chaos.
ability, does not provide a low saturation dimension

(Fig. 7a). But the seasonal data sets support the low

dimensionality of the weather attractor (with d, =~ 3 d. A climate variable: Oxygen isotope record

in winter and d_, = 3.6 in summer). Again, the non-

linear interaction of three independent synoptic or The analysis of a climate attractor is based on a de-
weather scales is suggested for the low dimensionality tailed oxygen isotope record of planktonic species
of the weather attractor. Spectra in the wavenumber- (Sarnthein et al., 1984). It is gained from a 10.7 m long
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gravity core (Meteor 13519) in the eastern equatorial
Atlantic near 5°N and 20°W. There are 182 4'30 values
available which cover an age of 775 000 years bp. They
refer to sampling slices of 3 to 7 cm depth correspond-
ing to 2000-4000 years of sedimentation.

Embedding the time evolution (5'QO-series) into a
three-dimensional phase space of time (depth) shifted
coordinates, one observes a notable space filling of the
trajectory which is associated with a certain degree of
persistence (along the diagonal; Fig. 8a). Furthermore,
there is a limiting dimensionality, if the distance dis-
tribution function, C(J) of the §'®0-values is compared
with the related randomized time series within increas-
ingly higher dimensional embedding spaces (Fig. 8b,
c). This is quantified by scaling the distribution function
C() =~ [ (Fig. 8d); i.e., the climate attractor tends to-
ward a saturation dimension d,, ~ 4.4. The fractal
dimensionality characterizes the chaotic dynamics of
the otherwise deterministic climate system (and its
supposed sensitivity on initial conditions). Thus the
minimum number of variables necessary to simulate
the climate dynamics on the attractor can be reduced
to five key variables. This is not in disagreement with
other results (d, = 3.1, Nicolis and Nicolis, 1984),
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which reveal a smaller but also fractal saturation di-
mension of the climate attractor.

Some comments on the interpretation of the results
seem to be in order: First, the climate series of deep
sea cores consists only of a limited amount of data
from which the statistics is determined. But the con-
clusion of a low dimensionality of the climate attractor
seems to be justified, because the scaling analysis of
the related randomized series shows no saturation and
its distribution deviates significantly from the observed
one (Kolmogoroff-Smirnov test with 99% significance
for all embedding dimensions m). Second, not unlike
the weather time series (section 3a, b, ¢) one observes
three to five spectral variance density peaks in deep
sea cores, which are commonly related to the influence
of the earth’s orbital parameters (e.g., Kukla et al., 1981;
Herterich and Sarnthein, 1984) with the obliquity
(41 000 yr; henceforth 41 kyr), precession cycles (19
and 23 kyr), and the eccentricity (410 and 100 kyr).
Thus the dimension of the climate attractor can be
related to the deterministic dynamics of at least three
to five key variables described by a fractal attractor or
to the nonlinear response of a system modulated by
independent frequencies.
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4. An independent estimate of the climate attractor di-
mensionality by empirical orthogonal functions

An independent estimate of dimensionality is ap-
plied to the time series of climate data (section 3d).
The trajectory (evolving in the phase space-of m in-
dependent time lagged coordinates of the same vari-
able) is transformed into a phase space of m eigenvec-
tors (empirical orthogonal functions or EOF’s). The
related time dependent amplitudes or coefficients de-
fine the new trajectory.

a. Empirical orthogonal functions

Empirical orthogonal functions are eigenvectors of
the symmetric (mxm)-covariance matrix

¢y = {x[t + @y Ixle + (D),

i,j=0, -, m—1 @.1)

whose elements c;; are auto-covariances of the single
state variable time series x(f) and its (i or j) shifts by
fixed time lags 7 (2.4c). Here the variable x(¢) has been
reduced by its mean; the ensemble averaging { ), is
taken over the length of the time series. The resulting
m eigenvectors Z; are m-tuples

Zk : {Zk()’ Zkl7 cr e, Zk(m-l)] WIth
k=0,-+,m—1 4.2)

each of which consists of m components Zj, with
l=0,--+, m— 1. The eigenvectors span an m-di-
mensional space of independent orthogonal coordi-
nates for the time trajectories; they replace the m-di-
mensional phase space of the time shifted coordinates
(2.4c) embedding the attractor. The related time de-
pendent amplitudes\

aO(t); cees am-l(t)

are multipliers of the eigenvectors Z; = [Zi,- - -,
Zim-1y} such that the original time series, its first time
shift, etc., can be generated again

m—1 m—1
x(®) = 2 a)Zos; x(t—7)= 20 a()Zy; etc.
=0 =0

Now, it 1s not the transformation process of the time
evolution into the eigenvector space (4.2) (spanned by
Zos . . . » Zm-1 instead of time shifted coordinates x(?),

., x[t + (m — 7)), which is of relevance for esti-
mating the dimension 4 of attractors, but the limited
number of eigenvectors (or orthogonal coordinates) d
< m necessary to describe the time evolution of the
system x(¢) (2.4c) with sufficient accuracy. This can be
achieved by comparing the variances (or eigenvalue A)
which each eigenvector contributes to the total variance
integrated over the phase space (i.e., sum-of all eigen-
values): .

o> A > --->)\m_{.
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Although EOFs are of statistical nature they are the
optimum set of basis functions for a given truncation
(d < m), i.e., no other basis set can explain more of
the variance averaged over the m-dimensional phase
space. The eigenvalues define the variance which the
eigenvectors contribute to the time evolution. Their
distribution and the related confidence limits lead to
a rule of thumb (North et al., 1982; Hsiung and Newell,
1983), to select a relevant subset of d (<m) eigenvectors
which describes the dynamics of the time.series with
sufficient accuracy. This subset consists of d consecutive
eigenvectors which provide another estimate of the at-
tractor dimension. The remaining variance contribu-
tion is taken as noise and may be interpreted as adding
to the fractal dimensionality of the attractor.

The climate record (Meteor core 4'30) evolving in
an m-15 dimensional phase space of shifted coordinates
leads to the same number of EOF’s. The related eigen-
values (and their variance contributions) are presented
in Fig. 9. The relevant subset of consecutive eigenvec-
tors, which lead to dimension of the climate attractor,
is evaluated in the following.
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for m = 15 modes. They are related to the embedding phase space
spanned by m = 15 coordinates of the time lagged variable 6'*0 of
the Meteor core, The right axis denotes the percentage of phase space
variance explained by each eigenvector. |
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b. Confidence limits

A 95% confidence interval 6\ can be placed to each
eigenvalue

5\ ~ 2AV2/N (4.3)

with sample size N. It describes the intersample vari-
ability of each EOF. Thus, if the confidence interval
oA of a particular eigenvalue A is comparable or larger
than the spacing between A and one of its neighbors,
then the confidence interval 6\ of the EOF associated
with A is comparable with the (size of) neighboring
EOF. Thus groups of two or more EOFs can be defined
whose eigenvectors are indistinguishable from one an-
other in terms of their confidence intervals and con-
tributions to the total variance; this is based on the
following: if a set of two or more EOFs has the same
eigenvalue, any linear combination of the members is
also an EQF with the same eigenvalue. This ambiguity
in choosing the proper eigenvector or a linear combi-
nation may characterize noise effects if the largest
modes with smallest variance contributions are con-
sidered. This holds for the modes 5 to 15 (in Fig. 9).

For smaller mode numbers (and larger variance
contributions) the ambiguity indicates that (as it ap-
pears in Fig. 9) the first pair of EOFs derived from the
record, is likely to be mixed by sampling errors.

However, the first four eigenfunctions all have con-
fidence intervals smaller than the spacing to the fol-
lowing modes; i.e., the subset or group of the first four
eigenvectors defines the signal of the time series, which
is separated from the noise represented by the remain-
ing eigenvectors. Thus the dimensionality estimate of
the climate attractor (as deduced from the eigenvector
analysis) leads to four independent variables; the in-
trinsic noise effects demand at least one further variable
to obtain the fractal value of the saturation dimension
d,, ~ 4.4 (deduced in section 3d).

5. Conclusions and outlook

Based on single variable time series the dimensions
of weather and climate attractors are evaluated to ob-
tain a lower bound on the number of essential variables
needed to model the dynamics. Furthermore, an upper
bound for the number of variables sufficient to model
the dynamics of the attractor can also be estimated.
The procedure is based on the cumulative distribution
of the distances of all data points (time trajectories) as
they occur in phase spaces. They are spanned by an
increasing number of independent coordinates to ob-
tain a sufficient embedding of the attractor of the dy-
namical system; the coordinates are defined by the sin-
gle variable time series and its time lags. Various

. weather variables (local pressure, relative sunshine du-
ration and zonal wave amplitudes) are analyzed and
compared with random data sets. For all variables one
observes a low dimensionality (between three and four)
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of the weather attractor, if interannual variability and
seasonal variations are excluded by using seasonal data
sets. The observed fractal dimensionality accounts for
a chaotic dynamical system and its strong dependence
on initial conditions. A qualitative physical interpre-
tation of the deduced low and fractal dimensionality
is suggested.

A climate variable (the §'30-record of the Meteor
core 13519 in the tropical Atlantic) reveals a dimen-
sionality of 4.4 for the climate attractor, suggesting that
a minimum of five independent variables is necessary
to model its dynamics. Finally, an independent method
to estimate the dimensionality of attractors is suggested
and applied to the climate record. It is based on a
transformation of the phase space trajectories into a
space of empirical orthogonal functions (eigenvectors).
A subset of eigenvectors, which may be separated by
noisy contributions by prescribed confidence limits, is
sufficient to describe the time evolution in phase space.
The related number of these relevant eigenvectors sup-
ports the dimensionality analysis of the climate record
based on the cumulative distance distribution func-
tions.

These methods may serve as a further test of the
performance of the dynamics of weather and climate
models to support the phenomenological and physical
or standard circulation statistics used so far. The new
aspect introduced to model verification would be an
analysis of its behavior in phase space. Finally, it should
be noted that the dimensionality of the attractors of
dynamical systems is only the first level of knowledge
to describe its properties. The second level may be the
evaluation of the independent variables.
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