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ABSTRACT

Irregular small-scale motions, which are introduced into a one-dimensional entraining jet lead to
a random cloud with additive stochastic forcing. These clouds are characterized by probability
distributions of the thermodynamic cloud properties. Applying a first-passage analysis.
probability distributions for maximum cloud top heights can be deduced. In the disturbed
tropical atmosphere, random clouds reveal a bimodal probability distribution of cloud top
heights, which is essentially due to the mid-tropospheric minimum of the moist static energy.
They represent deep and shatlow convection. If separated. each scale may be approximated by a
log-normal distribution. Some aspects of the competition between these two cloud scales are

evaluated.

1. Introduction

In the tropical atmosphere. diagnostic studies
and data analyses of large-scale variables suggest a
bimodal distribution of clouds in disturbed weather
systems (e.g.. Ogura and Cho. 1973: Yanai et al..
1973): i.e. there are deep and shallow cumuli. but
there is a gap for clouds terminating in the
mid-troposphere (McBride. 1981).

Theoretical investigations on this problem seem
to be confined to the parameterization of con-
vection; Ooyama (1971) represents a cloud en-
semble by an unspecified dispatcher (or cloud
spectrum distribution) function which Arakawa
and Schubert (1974) couple with the large-scale
motion by the cloud :work function. This approach
connects the cloud statistics with large-scale vari-
ables, whereas Fraedrich (1977) prescribes the
structure (but not the parameters) of cloud
distributions as independent of the large scale. A
few studies treat the non-linear interaction between
individuals of a cloud ensemble: non-precipitation
clouds are simulated by Beniston and Sommeria
(1981) showing reasonably good agreement with

parameterization schemes: van Delden and
Oerlemans (1982) investigaté cloud grouping with
a hydrodynamic model. In contrast to these studies.
a stochastic approach is described by Cho (1978).
who leaves the random clouds independent of one
another, to yield a Poisson distribution.

In the following. a different approach of sto-
chastic cloud modelling is suggested to obtain a
simple explanation for the bimodal cloud dis-
tribution in the tropics without prescribing two
distinct cloud radii. The entrainment equation,
which describes the deterministic part of the cloud
process, is extended by stochastic forcing to
parameterize smaller scale motions (Section 2)
which had been removed in formulating the purely
deterministic entrainment equation. Probability
distributions of thermodynamic cloud properties
and of cloud top heights are evaluated for an
ensemble of random clouds (Section 3). An
example (Section 4) describes a bimodal cloud top
height distribution as it occurs in the equatorial
trough zone. Finally, a sensitivity analysis (Section
5) gives some information on the competition of
deep and shallow clouds.
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2. A one-dimensional cloud and its

stochastic perturbation

The one-dimensional cloud is described by a
cylindrical entraining jet of constant cross-sec-
tional area. The basic equations are the mass and
energy balance

cpw
4 V.py=0, 2.1)
¢z
ch

w—+p-Vh=0, (2.2)
‘z

where the moist static energy 4 = ¢, T+gz+Lgis
a conserved quantity (see list of symbols). Com-
bination yields

Epwh

+ V-pvhi = 0. (2.3)

z
Averaging over a vertically constant cloud area

“A" one obtains for the mass balance (2.1)

gy ——
+ V.pyr =0,

(2.4a)

Z
where pw = 41 I, pw df denotes the area-aver-
aged vertical cloud mass flux, which is often
approximated by a top hat profile. The area
averaged horizontal divergence (2.4) may be
transformed by the flux pc normal to the boundary
L of the cloud (Gaussian theorem)

1 1 L
V. v:—f V- vdf:——§0 dl =~ ép.
p A P it 4 y P

(2.4b)
where " ~" denotes the boundary average.

Area averaging of the moist static energy
balance (2.3) leads to a similar equation. which
may analogously be transfromed by the Gaussian
theorem:

dpwh
dz

LNZ-O
+ — =0.
ACp

(2.5)
Both the vertical and lateral cloud flux pwk and cph
can be decomposed into a mean and an eddy term:

pwh = pwh + (pw) I,
c7)71/ = E’,b}7+ W (2.6)

Average and deviation are related to cloud area 4
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(“—" and “’ ") and lateral boundary L (“~” and
‘.*--).

The mean fluxes define the deterministic part of
the cloud process. The cloud area averaged vertical
fluxes of mass, pw, and moist static energy
(h = h.): pwh = pwh_ are balanced by the lateral
inflow of mass. ¢p, which is associated with
entrainmefrlg of environmental moist static energy
(h = h): cph = cph,. The turbulent fluxes (pwY A’
and (ép)* h* are formally defined by covariances:
they appear as additive eddy fluxes in terms of
averages over cloud area and boundary. which
vary with height z, etc.

The mean and eddy fluxes (2.6) can be intro-
duced into the energy balance (2.5) and combined
with the mass balance (2.4). This leads to a cloud
process, where both deterministic and turbulent
contributions are explicitly incorporated:

dh, 1 [dpw
dz

d —
h,—h)—— (pwy A’
dz  pw (k. dz 0

L /\_/}
= (po)* h* }. (2.7

A
i.e.. the cloud process is described by the vertical
variation of the area-averaged moist static energy
of the cloud. h=#h, which depends on the
deterministic and turbulent flux divergences. i.e., on
cloud scale and sub-cloud scale processes (see
Augstein et al., 1980).

2.1. The deterministic cloud process (entraining
jet)

Neglecting the turbulent fluxes in (2.7) leads to
the well-known entrainment equation. which
characterizes the deterministic aspects of the cloud:
i.e. there is only entrainment (4 = A,) up to cloud
top (£) and no overshoot:

e
dz - (lc c)'

(2.8)

This equation describes how environmental air A,
modifies the cloud process A (z) by entrainment

dlInpw
A= .

dz
For constant environmental conditions, #, =
const., an integral or e-folding scale height of
clouds can be evaluated, which is inversely pro-
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portional to the entrainment factor (7). The cloud
process is deterministic in the sense that lateral
convergence entrains environmental air, which
modifies the rising cloud by mixing. Additionally,
the cloud mass flux increases exponentially, if there
is no lateral detrainment.

In the following. it is assumed that the cloud
growth comes to an end at the top Z, where cloud
and environmental moist static energy are equal:

h(2) — h(£) =0.

To obtain different top heights of deterministic
clouds, one has to assume a spectrum of en-
trainment rates, which are traditionally parameter-
ized by the cloud radius: A=5b/R with
0.16 <b<0.22.

However, this essentially deterministic approach
does not describe the complete cloud process.
Turbulent motions, which occur in a cloud-average
sense, are not explicitly treated in the derivation of
the entrainment formula (2.8). Fluctuating with
height, these small-scale motions modify the verti-
cal distribution of the cloud property A, and
consequently the cloud depth Z. These fluctuations
can have various sources and consequences:
in-cloud turbulence changes the lateral conver-
gence. the entrainment (pc)¥ A* and the vertical
fluxes (pw) A’. Additionally, turbulence in the
environment may lead to variations of the profile
h,(2), which can be enhanced by an entrainment of
previously detrained cloud air into the same or
neighbouring cloud.

2.2 A stochastic cloud process (random cloud)

If turbulent fluctuations and their contributions
to the cloud fluxes (pw) A and (pc)* A* are
random, they can be explicitly incorporated into
the entrainment equation (2.8) by an additive
stochastic forcing term &(z). This defines a random
cloud which adds an extra inhomogeneous part tc
the differential equation (2.8):

dh,
dz

=Ah, = h)+ & (2.9)

Now, the cloud property A.(z) is no longer a
deterministic but a random variable of a stochastic
cloud process. Formally, the stochastic forcing ¢
may be interpreted as a parameterization of the
turbulent flux divergences, which are normalized by
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the mean vertical cloud mass flux (2.7):

1 |d — L —1

&t —(pw) I+ — (cp)* h* |.
pw | dz 4

Here it is obvious that the stochastic term should

be introduced into (2.8) as an additive and not a

multiplicative forcing.

In the following, the stochastic forcing &(z) is
assumed to be white noise, i.e., Gaussian dis-
tributed with zero mean and vertically delta-
correlated with independent values at each point

(§(2)) = 0.
(2)-&z + 2'))y = B(Z'), (2.10)

where the brackets { ) denote ensemble averaging
and §(z') is the delta function.

Although these assumptions are rather restric-
tive, they are expected to describe the situation
satisfactorily as they do in Brownian motion and
stochastic climate models (Hasselmann, 1976;
Nicolis and Nicolis, 1981). Due to their local
character, these random fluctuations rapidly lose
their memory of the state which prevailed when
they occurred, i.e., they are independent of each
other. To obtain different cloud top heights
(h, = h,), it is no longer necessary to prescribe a
spectrum of entrainment rates, but to use a
representative A-value instead, which characterizes
the preferred mode of large-scale convective in-
stability. Now, it is the explicit introduction of
random forces. which leads to a distribution of
maximum cloud top heights (Section 3).

For practical purposes, the intensity B of the
stochastic (white noise) fluctuations must be
evaluated. If the d-function is replaced by a rapidly
decreasing exponential autocovariance

(d2) &z + 2')) = g% exp — 1Z'I/R, (2.10a)

one obtains the e-folding reduction at the corre-
lation height or length R, which defines the vertical
scale of stochastic fluctuations. To guarantee their
stochastic nature in relation to the cloud process,
the length scale R should be significantly smaller
than the vertical depth or scale height (A~') of the
clouds, i.e. R < A~! ~ 5R. This is the case if one
assumes the cloud radius (which is about five times
smaller than the cloud depth) as a characteristic
correlation length.

Relating the variance o, of the Efluctuations to
the variance ¢® of moist static energy h, gives

Tellus 37A (1985), 2
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o}, = o¥/R. Integration of eq. (2.10) and (2.10a)
provides a measure of the intensity B, which
characterizes the variance of white noise A-fluc-
tuations per height:

20?
B~—01!.:

R
A first estimate of the standard deviation ¢ is the
moist static energy difference between cloud and
environment (~5—10J g='); the radius of thermals
ranges from 0.1 to 10 km. Although this o-estimate
may vary with height, the forcing variance B will be
treated as a constant parameter in the following
discussions.

Without explicitly solving the complete cloud
process  (2.9), probability  densities p=
plhy, hey, z, zy) can be determined. They describe
transitions from the state h, at z, (backward
variables) to a state k. at a greater height z
(forward variables). The Fokker-Planck or Kol-
mogoroff forward equation (e.g. Arnold, 1973; van
Kampen, 1981; Gardiner, 1983)
ap 1% *

B
— +—{Mh,~h)pt———=|—=p| =0 (2.11
F‘z+8hc {Ah, — ho)-p) ahg(zp) (2.11)

(2.10b)

determines how the transition probability density p
of the cloud moist static energy evolves with height
depending on drift and diffusion (second and third
terms). The backward variables (A, z,) serve as
boundary conditions. Here it should be noted that
the transition probabilities p are identical with
common probabilities, because, due to white noise
forcing, we are dealing with a Markov process in a
continuous state space, i.e. with continuous realiz-
ations. Assuming constant or Gaussian distri-
buted boundary values and white noise fluctu-
ations, the scalar linear stochastic differential
equation of type (2.9) represents a Gauss—Markov
process; the related  probability  density
plhe, hyy, 2, 24) for the cloud static energy 4, is
defined by the density of a normal distribution (see,
e.g. Arnold, 1973):
1 (h,— m)?

V2K P T TR

The mean or expectation m is defined by the
ensemble average of the solution of eq. (2.9);
considering (2.10) yields

m={hy =hgexp (~Az —z)b + I3, A (z")

plhg, hyy, 2, 24) = (2.12)

x exp {A(z' — z)} dz’, (2.12a)
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which is identical with the solution of the sto-
chastically unperturbed entrainment equation (2.8).
The variance is defined by the ensemble average of
the squared deviations from the mean. which are

- due to the stochastic fluctuations. After some

algebra (see e.g. Balescu, 1975) one obtains
B
K ={(h,—~ m)* :ﬁ (1 —exp {(=2A(z — Zo)})~

(2.12b)
The solution (2.12) satisfies the Fokker-Planck
equation (2.11).

3. The height distribution of clouds—a
first passage problem

The first passage problem is defined by the
probability distribution of a height Z, where the
random variable A.(z) of the process attains a
prescribed value A for the first time after starting
from h,. In this sense, the cloud depth or top height
Zis a first passage height of the cloud process A (z)
to its top state A, = h(z = 7) = h,(z = %) from the
cloud base state h,=h(z=0). A formal set
defining the first passage height z of a random
cloud A(z) yields

z=0: h(z =0)=hg,
0<z<? h(z) < h(z) < oo,
z=7 h(z=2)=h, = hJz = ?). (3.1)

The cloud top state k(%) = A, can be in-
terpreted as one of the absorbing barriers of the
cloud process A.(z), beyond which cloud growth is
not allowed to continue (Section 2). The other
absorbing barrier is A, = co. The probability that
the cloud process remains in h, < h, < oo after
rising to height z is
prob (23 2) = P(hy. A 2) = j:‘ plhegs e, 2) dh,.

(3.2)
Thus, the probability density of the first passage

height, i.e. absorption has not yet occurred (it

occurs at z = 2), follows directly:
a

g(zlhg b)) = — = Pl b, 2). (3.3)
z

Thus, g(zlh,,, h.) is a probability density (with
respect to height) of the random cloud process 4(z)
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occupying all states h(?) < A, < oo smaller than
or equal to the cloud top state, A, = A (z). after
starting from /.

The first passage height distribution can now be
derived from (2.12) using (3.3) and the standard
definitions (e.g. Johnson and Kotz, 1970) of the
Gaussian error integral ¢ (cumulative normal
distribution function) and its derivative ¢':

o o
glzlhy, h) = “TJ Plheg. he. 2) dh,
OZ J g,

¢

9 h,—m
e

g ho—m\ & [h.—m 34)
h \/1? "oz \/1? . <
Straight algebra yields

g 1 h,—m
gl B =R P Tk

y (B~ mYK—(h,—m)K'/2 . (3.5)

K

m and K are mean and covariance defined by
(2.12), and m’, K’ are their z-derivates. The moist
static energy A, (and 4) at cloud top is prescribed
by the environmental profile £.(z) (see Section 2).
For h = const.. the first passage height (3.5) is
identical to the first passage problem of a Langevin
equation (Wang and Uhlenbeck, 1945, eq. (82)).

The cloud top height distribution g(z1A. 4.) is a
measure of the relative frequencies of cloud depths
in a cloud ensemble. It depends on the moist static
energy of the environment A,(z). on the intensity B
of the stochastic forcing and on the entrainment
rate A. In Sections 4 and 5. cloud top height
distributions are evaluated for tropical and other
atmospheric environments.

4. Bimodal distribution of cloud
heights in the tropics

top

The moist static energy profile h,(z) in the
tropics, particularly in the area of the equatorial
trough zone, exhibits a significant minimum in the
mid-troposphere (see Riehl, 1979, Fig. 2.23).

K. FRAEDRICH

Above cloud base (here at z = 0). this profile may
be approximated by a quadratic polynomial

h(D)=thp+ 2+ hp 2?8+ ... 4.1

The coefficients are defined by the cloud base
energy h.(z=0)=h,, by the position of the
minimum  z,. where dh,/dz=h, +2h,z=0
and by the magnitude of the minimum A, =
Neg + Rey Ziin + ey Zin- The mean of the sto-
chastically perturbed cloud, m, which is identical
with the deterministic profile (2.8), can be deduced
from (2.12a) in combination with (4.1):

el

A

m=h(z2) + (hy — heg) €Xp (—A2) —

2he,
FE

x (1 —exp(—4z)) +

X (—Az + (1 —exp (—42)) . 4.2)

h is the cloud moist static energy (h.(z = 0) = h)
at cloud base. Introducing (4.1), (4.2) and (2.12b)
into (3.5) leads to the cloud top or first passage

height distribution density g(zlh,,. A.=h,) of a

cloud ensemble, which represents realizations of

individual random clouds.

This statistic is evaluated for a tropical atmos-
phere under disturbed conditions using the fol-
lowing data and parameters. The moist static
energy profile (4.1) is defined by = 340J g7' at
cloud base (z =0) and &,,,,,, =330J g"'atz;, =5
km. All cloud elements start from cloud base with
ho =350 J g7'. The cloud radius R=1 km is
specified for disturbed weather, which leads to
estimates of the entrainment rate, A = 0.2 km~! and
of the intensity of the stochastic fluctuations,
B =100 J? g72 km~' (see Section 2). With these
conditions, the stochastic cloud model produces a
bimodal distribution g(zih . &) of cloud top
heights.

(i) A density maximum or mode occurs in upper
levels near the termination of the purely
deterministic cloud process, where the moist
static energy of the entraining jet (2.8) and of
the environment meet (Figs. la, b). This peak
characterizes a relative frequency maximum
for deep clouds. For relatively small entrain-
ment rates, deep convection is left almost
unaffected by the mid-tropospheric h,-
minimum.

(i) The first peak above cloud base is situated in
lower layers. It defines the other density
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CLOUD AND ENVIRONMENT A-SENSITIVITY (B=100J2 g"2kmi")

B-SENSITIVITY (1:0.2 km'')
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Fig. 1. (a) Moist static energy of clouds with varying entrainment rates in a tropical environment 4, (above cloud
base). Probability densities of first passage or cloud top heights depending on (b) the entrainment rate (4-sensitivity)
and (c) on the intensity of the stochastic fluctuations (B-sensitivity).

maximum or mode and represents shallow
clouds, which owe their existence to the
stochastic forcing.

The strong mid-tropospheric A ,-minimum in the
tropics separates shallow from deep clouds: i.e.. the
bimodal feature of the model occurs only in a
tropical atmosphere and under disturbed weather
conditions, when the cloud ensemble allows deep
clouds with small entrainment rates to exist. Both
modes unite in lower layers, if the entrainment rates
become larger (Fig. 1b) or the stochastic forcing
grows (Fig. lc). Here it should be noted that the
shallow random clouds, which are associated with
small entrainment rates (i.e. A~ 0.02 km™'; Fig.
Ib) are mainly due to the turbulent stochastic
forcing: this produces the rapid erosion of clouds
and thus their shallowness, although they have the
(deterministic) tendency to grow to greater depths.

The cloud scale separation in the tropics demon-
strates the cooperation of stochastic and deter-
ministic features. Both mechanisms combined
describe an individual cloud as a random process
(Section 2). The distribution of all realizations of
individual random clouds reveals two distinct cloud
scales coexisting in the statistics of tropical clouds.
It should be noted that it is the application of the
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first passage height distribution. which unfolds the
cloud scale separation from the ensemble of
random clouds. The existence of shallow clouds in
our model is guaranteed by the stochastic forcing
B. which, by definition (Section 2), is well separ-
ated from the scale of the deterministic cloud
process: without stochastic forcing. shallow clouds
would not occur. If the entrainment rate 4, which
represents the deterministic impact on the cloud.
becomes sufficiently small. deep convection evolves
and separates from shallow clouds (Fig. 1). Details
follow in Section 5.

For representative tropical clouds (4= 0.2 km~",
B =100 J* g=2 km™'), the cumulative distribution
function of cloud top heights (first passage heights)
is plotted on log-normal probability paper. Thus,
our results can be compared with empirical studies,
which claim the log-normality of various cloud
properties (e.g. Lopez, 1977), ie. the normal
distribution of the logarithms of cloud top heights.
From Fig. 2. it is obvious that the complete
distribution cannot be approximated by a log-
normal one. But two separate regions may be
distinguished approaching log-normality: deep con-
vection (with tops z > 7 or 8 km above cloud base)
and shallow convection with tops from above cloud
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Fig. 2. Accumulated frequency distribution of cloud top
heights (first passage heights) above cloud base plotted
on log-probability paper. Observations are taken from
the Venezuelan International Meteorological and Hydro-
logical Experiment (VIMHEX, 1969; Cruz, 1973).

base to the mid-troposphere (0 <z <7 or 8 km).
Qualitatively, this is in good agreement with
observations of maximum top heights of deep
clouds over tropical continents (Cruz, 1973). As
these observations are based on radar, the de-
viation in the region of shallow or non-preci-
pitating clouds is not surprising.

5. Sensitivity analysis: deep versus shal-
low clouds

The entrainment factor 4, the intensity of
stochastic forcing B and the profile of the en-
vironmental moist static energy 4, affect the cloud
top height distribution of a cloud ensemble.

Environmental A -profiles with simple structure
(h, = const. or linearly increasing with height, i.e.
h,, and/or A, =0 in (4.1) and (4.2)) reveal only a
single maximum or mode of the first passage height
distribution (Fig. 3). This mode is generated by
essentially the same stochastic mechanisms as
those by which shallow clouds occur in a tropical
atmosphere (Section 4). This peak may be ex-
plained qualitatively: with increasing cloud depth.
the effect of the stochastic noise accumulates with
the height of each individual cloud element. The
probability density distribution p of the moist static
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energy A.(z) flattens and spreads accordingly. If an
individual random cloud is not too far removed
from the environmental 4 -profile, it attains its
cloud top states A, = h, easily. Thus, a density peak
should be expected between z=0 and z - cc,
because clouds start almost unperturbed from
cloud base, g(z = 0) = 0, and the first passage
height distribution diminishes again for increasing
depth, g(z = w0) = 0.

The sensitivity of the first passage height
distributions (3.5) and their modes is discussed in
some detail.

(i) It the stochastic forcing intensity B is reduced
(Figs. lc. 3¢), the deterministic part of the cloud
process, which is related to the entrainment
rate A, dominates the ensemble statistic. The
modes of the cloud depth distributions lie in the
neighbourhood of the purely deterministic
cloud top height (Figs. la, 3a, 3¢ for B = 10).
Vice versa, an increasing stochastic intensity B
reduces the deterministically dominated peak.
Particularly deep clouds associated with small
entrainment rates are reduced and. simul-
taneously, the frequency or chance of shallow
clouds rises (Figs. Lc. 3¢ for B = 1000).
The interaction or competition between deep
and shallow cloud scales can be formulated
differently. If the stochastic forcing is kept at a
level of sufficient intensity, there are always
shallow cloud top heights in the tropical (Fig.
1b) or another atmosphere (Fig. 3b). Leaving
the stochastic forcing unchanged. shallow
clouds have a greater probability of becoming
deep, when the entrainment rate decreases.

“In this sense, the chance of deep clouds rises at
the expense of shallow clouds. This is well
documented in the tropical atmosphere (Fig. 1b),
because the bimodal first passage height dis-
tribution leads to a clear interpretation of the
behaviour of the two distinct cloud scales. For
h, = const., or linearly increasing, the scale com-
petition is less evident (Fig. 3b).

(i)

6. Conclusion and outlook

Deterministic and stochastic processes are com-
bined in a simple cloud model which leads to
probability distributions of the thermodynamic
cloud properties and of the maximum cloud top
heights. The deterministic part of the cloud de-
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Fig. 3. Same as Fig. 1 except for a linearly increasing h, profile (top) and A, constant (bottom).

scribes the turbulent entrainment process in an
averaged sense, whereas the stochastic part ex-
plicitly adds the stochastic fluctuations and their
intensity, which have been averaged out from the
deterministic model. In this sense, the random
clouds produce their own statistic, which depends
on the cooperation between these two impacts.
Cloud ensembles in parameterization schemes
are commonly represented by deterministic clouds
of different size. They are characterized by a
distribution of fractional entrainment rates, which
are deduced from the large-scale forcing (or closure
condition). Their energy, moisture and momentum
impact in the large-scale field is defined by source
terms, which are produced by compensating
subsidence and various forms of detrainment. An
ensemble of random clouds is defined by a
representative entrainment rate or cloud size and its
height distribution is determined by stochastic or
turbulent forcing. The characteristic cloud size can
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be deduced from the preferred mode of large-scale
convective instability; the stochastic forcing may
be related to a large-scale wind shear. Both of these
aspects must be incorporated into a closure
condition. The impact of random clouds on the
large-scale field remains to be studied: in par-
ticular, the appropriate mass flux distribution needs
consideration due to its strong influence on the
large-scale sources.

As this model simulates statistical features of
random clouds, it may offer another approach to
the description of cloud ensembles. Of course,
comprehensive numerical experiments and obser
vations are needed for a verification of the results.
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8. List of symbols

h=c,T+gz+Lq moist static energy (sensible
heat, potential energy. latent
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Ab entrainment rate; empirical
factor: A = b/R
& B, 6(2) stochastic forcing. intensity,
v delta-function
05 0° variance of &fluctuations, of

moist static energy
(transition) probability den-
sity of h.: cumulative dis-
tribution function

plh hy.ozozy) P

m, K mean, variance

g density of first passage height
distribution

0.0 Gaussian error integral, de-
rivative

heat) suffixes and indices:

he. b moist static energy of en- —i’ average over cloud area A:
vironment, cloud deviation

VP w, Y height coordinate: density: ~:* average along lateral boun-
vertical, horizontal velocity dary L: deviation

L.A.R circumference, area. radius ~:0 cloud top: cloud base
of cloud ' ensemble-average
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