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Zusammenfassung: El Nifio Iterationen

Eine empirische (quadratische) Iteration dient der Beschreibung von jdhrlich beobachteten El Nino Inten-
sitdten, wobei die thermische Trigheit des Ozeans als externer Parameter variiert wird. Dieses Konzept

der Klima-Interation (und nicht die diskrete Version einer kontinuierlichen Entwicklung) wird am Beispiel
des E1 Nino dargestelit: Die Iteration zeigt einen Attraktionsbereich sowie darin eingebettet (invariante)
Intervalle, aus denen das System nicht entkommen kann. Die zeitliche Entwicklung zeigt die bekannten
Merkmale der Periodenverdopplung bei Anderung des externen Parameters. Stochastische Stérungen ver-
wischen die Struktur der Iteration; mit zunehmender Intensitit erweitern sie den Parameterbereich, der
durch irreguldre Entwicklung gekennzeichnet ist. Allerdings bleiben der Attraktionsbereich und die inva-
rianten Intervalle beinahe unverdndert.

Abstract:

An empirical (quadratic) temperature iteration is deduced from observed annual El Nifio/Southern Oscil-
lation intensities with the thermal inertia or ocean surface layer depth representing the external or bifur-
cation parameter. This leads to the concept of an interative (and not the discrete version of a continuous)
climate system, the dynamics of which is analysed: (i) The structural analysis of the system emphasizes a
basin of attraction and embedded intervals, from which the time evolution of the system cannot escape.
(ii) Further details of the time evolution reveal the known features of period doubling. (iii) Stochastic for-
cing diffuses the iterations and enhances the parameter domain of irregularity with increasing noise level;
but the main stability properties with the attractor basin and invariant interval remain almost unchanged.

Résumé: Itérations sur El Nino

Une itération empirique (quadratique) décrit les intensités annuelles du phénomeéne E1Nifio en prenant
comme parameétre externe de bifurcation I'inertie thermique des océans. Ceci conduit au concept d’un
systéme itératif de climat (et non & une version discréte d’un continuum) dont on analyse la dynamique:

(i) I'analyse structurelle du systéme montre Pexistence d’une cuvette d’attraction et d’intervalles enchéssés

ol reste confinée I'évolution temporelle du systeme, (i) des détails plus fins de ’évolution temporelle révelent
la caractéristique connue du doublement de période, (iii) une contrainte stochastique modifie la structure de
Pitération et élargit le domaine paramétrique d’irrégularité avec accroissement du bruit mais les propriétés
essentielles de stabilité associées & la cuvette de I'attracteur et a lintervalle invariant restent presque in-
changées.
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1 Introduction

Simple climate systems represent the maximum truncation of the governing set of climate
equations. These systems are generally reduced to a single state variable, but they keep a low-order
nonlinearity. A typical example is the geometrically zero-dimensional climate model derived from the
global energy balance; its state variable is the globally averaged temperature (e.g. FRAEDRICH, 1978,
1979). The time evolution of simple climate systems is commonly described by trajectories in the
phase space, which are continuous in time and supposed to provide a smooth picture of reality; alt-
hough catastrophes may occur if external parameters are changed, the time trajectories remain smooth
and do not show chaotic behaviour. A more realistic time evolution of these simple systems is obtained
by introducing random forces. They originate on a significantly smaller time scale and are essentially
independent. This leads to a probabilistic chaos of the system due to forces, which are not explicity
resolved by the model (e.g. SUTERA, 1981; BENZI et al., 1981). Deterministic chaos may occur in non-
linear low order models describing the time evolution of at least three continuous state variables. One
such example has recently been suggested by VALLIS (1986) for the El Nino/Southern Oscillation.

A qualitatively different approach towards climate modelling is the iterated climate system or climate
iteration, which simulates a subset of the evolution of all climate variables in the phase space. This
approach may be interpreted as a parameterization reducing a comprehensive climate system, which
evolves continuously in a higher dimensional phase space, to a discrete climate iteration with one state
variable only. For example, such a subset is a series of the lowest monthly mean temperatures of con-
secutive winter seasons; i.e. the complete set of climate variables is confined to a local temperature
extremum of the natural annual cycle and the time evolution is reduced to a sequence of points. Ano-
ther example, which is adopted in this paper, is the El Nino/Southern Oscillation phenomenon. If the
annual intensities are calibrated with representative ocean temperatures and with the thermal inertia of
an ocean surface layer, one can obtain a quadratic temperature iteration (Section 2). VALLIS’ (1986)
El Nino model and the El Nino iteration to be discussed have one qualitative feature in common: Suc-
cessive maxima of one of the three variables in his model, which is closely related to the LORENZ model
(1963, Figure 4), reveal an iteration with a single extremum.

In several ways a quadratic iteration is a general one, because locally every nonlinear map is quadratic.
Therefore it is not surprising that this equation has a long tradition (i) to study “the problem of de-
ducing the climate from the governing equations” (LORENZ, 1964), (ii) to show analogies with fluids
passing from one regime of flow to another and (iii) to evaluate chaotic behaviour in nonlinear systems
(MAY, 1976), which leads to fundamental laws (GROSSMANN and THOMAE, 1977; FEIGENBAUM, 1978)
and to one scenario of turbulence (e.g. OTT, 1981; ECKMANN, 1981). Applied to the zero-dimensional
climate iteration (Sections 3 and 4) the main goal is to evaluate its structural behaviour changing with
the bifurcation parameter of the system.

2 An example: lterations with El Nitio intensities

A climate signal on time scales of months to years is the El Nino/Southern Oscillation pheno-
menon of the tropical ocean-atmosphere system. It is associated with sea surface temperature anomalies,
which may exceed 4 degrees Celsius over large areas of the tropical Pacific, dislocations of rainfall in the
tropics, circulation anomalies extending far into the middle and higher latitudes, etc. (e.g. RASMUSSON
and CARPENTER, 1982). Intensities of these events can be traced back into the 18th century; since
1861 it was possible to quantify El Nino events annually by four distinct classes of strong, moderate,
weak and very weak intensities I (QUINN et al., 1978, updated by RASMUSSON, 1984, Table 1). During
the last 120 years from 1864 to 1883 one observes a (almost u-shaped) frequency distribution with 70
years of no events (0 <I< 1), 6 very weak (1 <I<2), 8 weak (2 <I< 3) and 35 years of moderate to
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strong events combined (3 <I<4); here a continuous scale is associated with the intensities to make the
transformation to a temperature scale tractable. The intensity record, Iy, can be displayed in a plane
spanned by annual intensities, I, and those of the following year, It+;. This defines a phase portrait

of the El Nino phenomenon, the dynamics of which is described by iterations in the (I, I;+1)-space.
Such iterations can be visualized on appropriate cross-sections through a phase space, representing the
continuous time evolution of the tropical climate system. Each iteration denotes an intersection of the
continuous trajectory with this cross-section and the (t+1)st intersection is related to its predecessor,
the t-th intersection. In this sense iterations describe discrete dynamics, which have nothing to do with
the discretization process of the continuous time evolution equations; it is the discrete dynamics, which
will be discussed in the following.

The 120 intensity values classify years, which are and are not effected by El Nino events. They are
sampled in the (It+1, It)-plane (Fig. 1, left) and approximated by a continuous graph defined by a
truncated power series:

Lep =Mo + My + D)L+ M IF + .. @.1)

Only for a first qualitative discussion parameter values are chosen to be My =4, M; + 1==4 and M, =1,
(Figure 1, right). They do not represent the best fit to the observations, but stress the bimodality of the
system (see e.g. NICHOLLS, 1979, Figure 4).

Graphical predictions: The discrete dynamics of this system can be traced by a graphical staircase con-
struction in the plane spanned by the I+;-ordinate and I;-abscissa. In this plane the function (2.1)
It+1 = £(Iy) is plotted together with the diagonal It+; = I;. A graphical iteration (Fig. 1, right) demands
the following steps, which start from an initial value I;= on the I;-axis: (i) One moves vertically to

the graph I+ = £(Iy); (i) One goes horizontally from this point to the diagonal I;41 = I; (i.e. It4q is
trasformed back to the I;-axis) and proceeds by repeating the steps (i) and (ii).
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Figure 1 Intensities of the El Nifo/Southern Oscillation phenomenon (data from QUINN et al. 1978); left: number
distribution of ordered pairs (I(t), I(t + 1)) of 120 intensity values of successive years; right: one-dimensional function
approximating the ordered intensity pairs as an analytical climate iteration. A graphical iteration illustrates a sequence
of six years starting from a “no’” event situation.
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Fixed points occur where the graph of the polynomial function (2.1) intersects the diagonal I+ =
Ii=1;ie.

Mo +M; T+M,;T=0 2.2)

There are two of them at the intensities I; = 1 and T, =4, which belong to the “no” and “moderate to
strong” category. These positions appear physically reasonable; their stability properties will be dis-
cussed in more detail in Section 3.

A solution: An analytical solution of the iteration (2.1) is known for the particular set of coefficients
(ULAM and von NEUMANN, 1947):

I, =2(1+cos2t1 ) (2.3)

where ¢ depends on the initial value I; at t=0. Any two trajectories starting close to each other separate
at an exponential rate showing the strong sensitivity of the system on initial conditions; i.e. the fixed
points of “no” and “strong” El Nino years,Tl and T, are unstable. In particular a rational ¢ leads to

an infinite number of periodic orbits. Furthermore, most points of the iterations (2.3) visit every region
of the intensity interval, 0 <I< 4, with almost equal probability; but the boundaries are most often
frequented. This is known as chaotic behaviour within the intensity interval, which occurs in purest form
whenever an extremum of a quadratic function is mapped onto an unstable fixed point (GUMOWSKI and
MIRA, 1980); i.e. starting from the extremum I = 2 one enters the fix point T, =4 after two iterations
(see Figure 1, right).

However, pure chaos is not the dominant feature of the interannual variability of the tropical climate
system as suggested by this selection of parameters. Observed spectra, in particular of the sea surface
temperature, exhibit a major peak at the period of about 3 to 3.5 years (RASMUSSON and CARPENTER,
1982) with other periods also existing. But periodicity and noisy periodicity are common features of
this type of discrete dynamical model. They appear, if the parameters are changed.

A physical iteration: If the empirical coefficients M, to M, vary by the same factor, the fixed points
(2.2) remain unchanged. The dynamics, however, is modified considerably, because the extremum does
no longer iterate to unstable fixed points. Such a further evaluation of the discrete model dynamics is
reasonable, if the intensity can be interpreted as a thermal energy anomaly ¢ T, where the thermal
inertia, ¢, corresponds to an ocean surface layer of depth h (in meters)

c~0.04h 24

in Joule K~! m~2 or 10® kg K~! s™2. Now, assume a representative layer depth (e.g. h ~100 m) for a
calibration of (2.1), which should correspond to the water mass affected by El Nino; and let the related
temperature anomalies T (in degrees Kelvin) cover the internal 0 <T < 10K (instead of 0 <I<4),
which is suggested by the observed temperature rise from 21° Celsius (July 81) to about 30 °C (April 83)
in 15m depth at 0°, 110 °W (HALPERN et al., 1983). Then one obtains the climate iteration

CTt+1_CTt=m0 +my Tt+m2 T:"‘ (253)

where mg = 40 Joule m~2, m; =—20 Joule K™* m™2, m, = 1.6 Joule K™ m™? and ¢ = 4 Joule K™
m~2. The thermal inertia, ¢, or ocean layer depth, h, enters as a physical property into all empirically
deduced parameters, M;, of the iteration (2.1); but in the following, ¢ or h serve as the basic feedback
parameters of the system only as defined by (2.5). This does not confine the results, because small
changes of any parameter lead to similar modifications of the time evolution of the system and its
statistic.
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Futhermore we consider only terms up to the quadratic power, although the contribution of higher
order terms allows a better fit to the observations (Figure 1, left). Since locally every nonlinear system
is quadratic, the higher orders may be neglected. They, however, can be reintroduced as random forces
(discussed in Section 4). The resulting quadratic iteration of first order (i.e. from t to t+1) describes a
time evolution of a discrete climate system, which is not to be mistaken with a discretization of a
continuous time evolution equation:

It“"l = Tt + C_‘1 (mo + ml. Tt + my T? )‘+ Et = f(Tt.)"l' Et ) (25b)

where the bifurcation parameter ¢ corresponds to the related layer depth 0.04 h (h in meters). The
stochastic fluctuations, Eq, are added to explicitly represent random noise and errors. They may be due
to the parameterizations involved in deducing the climate iteration, higher order terms, or external
forcing. Discussions on their influence are postponed to Section 4.

Most of the characteristic features of the climate iteration (2.5) can be shown in one figure (Figure 2,
COLLET and ECKMANN, 1981). For the selected my-parameters 1000 iterations are plotted after the
initial 200 transients at each bifurcation parameter h (ocean layer depth) increasing from h = 100m
depths by 0.05 m steps. The 1000 iterations can be interpreted as a frequency distribution at each
layer depth; darker areas represent higher probability (densities) of the system to be found in the re-
lated temperature state. One observes that the climate system iterates within (periodic) temperature
intervals or on periodic points, both of which bifurcate at certain h-values (indicated on the abscissa,
Figure 2). From h(g) = 100 m to h = h.., the single noisy or chaotic temperature interval bifurcates
into a cascade of intervals with a period doubling sequence (see Section 4). At a critical value, h.., an
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inverse cascade of pairwise merging periodic points evolves (from an infinite period to period one),
until a single steady state solution, T, = 2.5 K, which occurs at h; =150 m, is reached.

Although the iterations exhibit a detailed structure, only features relevant to climate modelling will
be discussed in the following sections: the limited range of allowed temperature values (Section 3),
the probability of finding the system in certain temperature states and the effect of stochastic forcing
(Section 4).

3 Predictions of first kind: interval of attraction and invariant intervals

The predictions of first kind describe the iterations of the climate variable T at fixed external
parameters or boundary conditions and depend on the choice of the initial value Ti=q. These iterations
can be visualized as described in Section 2 (Figure 1, right).

Fixed points (equilibria, stationary states) of the iterations are given by the conditions Ty = Ty4q = T.
These points are identical with the intersections of the function Ty+1 = f(T¢) with the diagonal Ty =
T¢. There are two of them and their locus in the (T m)-space is

T1,2="2—1'(m1 % (m} —4 mo my)!/?) (€B))
my
Their value is independent of the thermal inertia ¢ or ocean layer depth h (bifurcation parameter). For -
the model constants my derived from the observed intensity iteration, one obtains T; = 10K and T, =
2.5 K characterizing the strong El Nino and “no-event” situation, respectively. Stability of these fixed
points to small perturbations Ty = T + Ay is discovered by Taylor series expansion, which describes the
slope of Ty+1 = f(T¢) at the intersection with the diagonal Ty+1 = Ty. For small A; one obtains Ty4+q =
T+ A1 =f(T+A)=f(T)+f (T) A +...= T +£'(T)A¢ +.... This gives the stability conditions

At+]

Ay

=f'(M)=1+c! (m; +2m, T) 3.2)
=1-c (2(m} - 4m, my)Y?)

with f' (T) = df/dt |_.If | £’ (T) I> 1, successive iterations starting near T move further away from it;
i.e. T is unstable. If ff' (T) I< 1, the iterations converge and T is stable. Applied to the climate iteration
this means that the fixed point T, = 10 K (related to the negative sign of the square root) is unstable,
because ¢ > 0. The fixed point “no event” (i.e. T, = 2.5 K) is stable for 2 < 12/c < 0; this equivalent for
an ocean layer depth up to 150 m;i.e. for 150 m <h < oo, whence | f' (T) | < 1. Further discussions on
the stability of the fixed point T, = 2.5 K follow in Section 4.

Interval of attraction: An interval or basin of attraction is defined by the set of those initial values Ti=g,
where related T-trajectories remain in or are mapped into smaller parts of it. The boundaries of the
attracting interval may change with varying inertia ¢ or layer depth h. Accordingly the internal structure
of the time evolution may also change.

One limit of the T-interval of attraction is the unstable fixed point T, (~ 10 K), which is independent
of the thermal inertia ¢. This limit is an upper boundary, because initial values Ty=g < T, are repelled
from T, and attracted by the fixed point T; < T, ; but initial values Ti=q >T, move towards infinity.
The lower limit of the attracting interval is determined by the first backward iteration of the unstable
fixed point T, ;ie. To = £ (T,) or T, = £ (To): T

T, =Ty +c ' (mg +m, Tg +m, Tg) (3.3)
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As the climate iteration (2.5) is not invertible, there are two solutions. The first yields
T():Tl _C/mz (34)

It depends linearly on the thermal inertia ¢ or ocean layer depth h. The second one (Tz) is trivial, be-
cause it characterizes repeated iterations of exactly the unstable fixed point. Thus, also T, ist mapped
onto the unstable fixed point T, , where future iterations remain.

Smaller (larger) initial values than T, move above (below) the upper limit T, , from.where future itera-
tions are repelled towards infinity (tend towards further inside). Summarizing: Successive iterations
starting from the maximum interval of attraction cannot escape:

To <T;<T, (3.5)

Initial values below the lower temperature boundary (T, = g < To) lead to unbounded iterations, be-
cause Ty 1 /Ty > 1 (2.5). Above the upper temperature boundary (Ty = ¢ > T,) the first iteration yields
Ty=1 <T, and the same argument holds. It should be noted that the lower temperature boundary
(To = 2.5~ 0.025 h) decreases with i increasing thermal inertia or layer depth h, whereas the upper limit
remains fixed at T, ; i.e. a large inertia or layer depth h makes the climate iteration at the selected pa-
rameter values more resilient with respect to large negative temperature departures, but not to positive
ones.

Invariant intervals: The maximum interval of attraction contains a smaller interval and subintervals, to
which the time iterations tend. Furthermore, trajectories remain in these intervals once they are cap-
tured; these intervals are invariant, because they are mapped onto itself. The T-boundaries of the inva-
riant intervals can be determined from iteration of the critical or limiting point, which is the extremum
of the f(T;)-parabola, determined by df/dT = 0:

-1
T, = 2m, (c+my) (3.6)

For the selected parameter values the critical temperature T is a minimum, because df?/dt® > 0; its
magnitude varies linearly with the bifurcation parameter c, or the ocean layer depth (T, =
6.25 — 0.0125 h).

As iterations cannot drop below the critical point, its first and second lterate f(T¢) and £ (Tc) cannot
be surpassed in either direction;i.e. iterations must lie between £(1) and £ (Tc) These iterates of the
critical point define temperature limits, from which all T,-values larger than T cannot excape. The first
iterate defines the lower bound of T, which is given by

2

o1y
(T = “-:——(—-;nr/;)— G7)

The second iterate defines the upper bound,
£3) (Te) = £ (£(To)) (3.8)
This leads to the invariant interval mapped onto itself:

f(Te) > T, = f(T,) (3.9)
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Both T-intervals of attraction (3.5) and invariance (3.9) do not exist for all bifurcation parameter
values c; the time evolution of the climate iteration is constrained within certain parameter domains.
Their lower limits concur at ¢(g), h(gy where both intervals coincide; i.e. To =D (Tg)and T, = £(2)
(T ). This yields

1
o0y =3 (m] ~4mq my )} (3.10)

For the selected parameters m; and for ¢ = 0.04 h (2.4) one obtains the limit at h(g)y = 100 m. If the
bifuraction parameter ¢ or h decreases below this value, the temperature iterations, although captured
in the invariant interval, leave the basin of attraction; i.e. they are repelled and become unbounded.
This happens if the inertia of the system is sufficiently small. Vice versa, for larger (h > 100 m) inertia
or ocean layer depth the basin of attraction contains the invariant interval, towards which trajectories
tend, stable orbits and the equilibrium T, . A natural lower bound for the interval of attraction is the
infinitely large inertia or ocean depth ¢ or h — o=, where the lower (upper) T-limit of the attracting
interval rises to To = — o (remains at T,).

Climate modelling aspects: The existence of a basin of attraction and of embedded invariant intervals
can be reflected in what we may actually observe. The invariant interval (3.9) defines the limits of the
frequency distribution of the climate iteration; i.e. El Nino/Southern Oscillation events or intensities
should — under regular circumstances without external forcing — remain within these bounds (e.g.
Figure 1). But any external event can push the system outside these limits (e.g. by volcanic activity);
the width of the attracting interval, however, guarantees a certain resilience of the climate system and
defines the range of such external shocks being absorbed. Thus, in climate analysis one may distinguish
between the limits of a basin or interval, where the regular and undisturbed evolution takes place, (which
may hardly be observed), and the bounds of an attracting basin where shocks are absorbed to return
the system to the basin of its regular evolution.

4 Time evolution: periodicity, noisy periodicity and stochastic fluctuations

The climate iteration reveals two different modes of time evolutions: Iterations which start
within the attracting interval become periodic, if the bifurcation parameter lies in the domain h. <h
<eo, If heg)y = 100 m <h < h., iterations become chaotic with bands of noisy periodicity occuring.
For 0 <h < 100 m iterations tend to infinity.

Periodicity (he <h <0): A decreasing thermal inertia or layer depth h reveals a cascade of period
doubling bifurcations. The fixed point T, remains stable for h; <h < o, but becomes unstable at

h; =150 m (Section 3), where bifurcation into a period 2-cycle, Ty+7 = f (f(Ty)), occurs. The related
two temperature values (T,, Ty) are two stable solutions of Ty = Ti4p =f @ (T¢). These equilibria are
intersections of the diagonal (Ty+9 = Ty) with the graph Tiyp =f @ (T¢). They and their stability (slope
of tangent) may be visualized in the (Ty+3, T¢)-plane and evaluated in analogy to the period one fixed
points T, T, (Section 3).

The 2-cycle loses stability and bifurcates into a stable orbit of a period p = 2% cycle at h,, which again
becomes unstable to bifurcate at h; intoap = 23 cycle, etc. The bifurcation parameters of stable 2"-
cycles converge from h; to the limit hy, = he, with n — o0 at a well defined rate. This was first found
numerically by GROSSMANN and THOMAE (1977); FEIGENBAUM (1978, 1979) showed that the con-
vergence rate of the bifurcation parameter is jdetical for an entire class if iterations which are charac-
terized by a single maximum or minimum.

Noisy periodicity (h¢o) <h <h..): At the upper parameter limit, h(;) = 100 m, the invariant inter-
val coincides with the basin of attraction and noisy orbits (of period 1) are observed. In Section 2 the
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related analytical solution (2.3) and its properties have been discussed; e.g. the extremum T, being
mapped onto the unstable fixed point, T, , after the second iteration:

(T =T, (4.1a)

Increasing the parameter (or layer depth) from h to h,, leads to a series of reverse bifurcations of
noisy temperature intervals (or bands), which also exhibit period doubling. At h(yy the single noisy
band (2.3) splits into two nofsy intervals, whith-have one boundary in common, (T;): £ (THSTL T,
and T; <T <P (T,). They are alternatingly visited by the trajectory. The value of this bifurcation
parameter satisfies the condition that the extremum is mapped onto an unstable fixed point after the
third iteration

f3N(T) =T, (4.1b)

Again, if h is larger (smaller) than h(1), the extrema T do no longer iterate onto the unstable fixed
points (T, or T), but into separated (overlapping) temperature intervals (Figures 2 and 3). This leads
to irregular jumps between the two T-intervals, which destroy the pure period 2 chaos (THOMAE and
GROSSMANN, 1981).

Increasing the bifurcation parameter ¢ or h further, the two noisy temperature intervals are split into
four at h(y) satisfying f @ (T.) = T2, the four bands split into eight etc., until they converge at ¢, or
h.,. This is the same limiting value as deduced for the period doubling bifurcations of the stable orbits
and the convergence rate follows the same law. The noisy periods k at h, are the counterparts of the
stable period k orbits, where stable fixed points of the iteration £® (T,) are separated by the unstable
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Figure 3 Schematic diagram of the structure of the climate iteration in the parameter-state space: basin of attraction
T, > T = Ty (thick lines), invariant interval £(2) (T)=2T= £(1) (T (thin lines). The numbers on the abscissa indi-
cate the bifurcations from the stable fixed point, T) = 2.5K, to orbits of period one, two, three, etc., and the bifurca-
tions of irregular orbits in temperature intervals (from right to left). Note the coincidence of the ‘‘darker trails” in
Figure 2, which indicate high probability densities, with the iterates £(K) (T,) of the extremum T.
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ones of the iteration f-1) (T¢). These unstable fixed points also separate the chaotic temperature
intervals. Furthermore, stable orbits exist for a parameter range (hy, hi.1), whereas pure chaos is found
at parameter values hy).

Stochastic fluctuations: The parameterization of the climate system and its time evolution (section 2),
which leads to the discrete iteration (2.1, 2.5) may include errors or stochastic forcing due to those
prosesses, which remain unresolved in time. Their influence in terms of random noise E4

Tt+1 = f(Tt) + Et (42)

can quite generally be assumed as an additive forcing (CRUTCHFIELD et al., 1982). Taking E; as a uni-
formly distributed random temperature with zero mean and standard deviation (or noise level), o, one
obtains the following results (Figure 2). As expected, the random fluctuations reduce the detailed fea-
tures of the iteration (2.5). The trajectories in the periodic regime (h.. <h < °) broaden into intervals
and become similar to the chaotic bands of noisy periodicity (Figure 2). The chaotic regime, h(1y <h
< he, however, does not become periodic; almost all periodic windows disappear with the exception
of period 3, which is still visible even at 0 ~0.01 K. With increasing noise level the number of resoluable
periodic orbits and chaotic intervals is diminished. An almost continuous transition across ¢ or he
develops from the randomly disturbed regimes or periodicity to the reverse bifurcations of noisy perio-
dicity. At 0 ~0.1 K, only two bands remain in the invariant interval, because the random fluctuations
destroy bifurcations and reverse bifurcations of the periodic and chaotic regimes except for their tran-
sition to the period 2 cycle. Both regimes merge at higher noise levels. The distinction between periodic
orbits and chaotic intervals is not straight foreward, if random forcing is added to the discrete climate
system. At prescribed boundary conditions (¢ or h) the additive fluctuations change the deterministic
evolution of the climate, as if it jumps to the attractors of the adjacent parameters. But this effects only
the local stability properties of the time evolution. However, one observes (Figure 2) that the global
structure of the attractor basin with the attracting and invariant intervals (Section 3) remains stable
under the influence of random fluctuations with small to moderate levels.

Climate modelling aspects: (i) The probability to find the system in preferred climate states is another
essential of iterative climate models, besides the significance of the attracting and invariant intervals
(Section 3). The location of probability density maxima can simply be evaluated, because the extre-
mum of f(T}) occurring at T, is parabolic and smooth. Due to this fact the first few iterates of a re-
latively wide range of initial values neighbouring T, do not vary strongly; i.e. the system iterates pre-
ferably onto temperature states near f(1) (T,), f(2) (T,), etc.. Thus, for example, the (one-sided) neigh-
bourhoods of the two boundaries of the basic invariant interval are most often frequented. This corres-
ponds to the observed u-shaped frequency distribution of El Nino/Southern Oscillation events (Section 2;
cumulating the observations in Figure 1).

(i) Furthermore, windows with periodic iterations open within the chaotic regime h(gy =100 m <h <
he. (Figure 2). The most dominant feature of this kind is the period 3 window, which is recognizable
even if stochastic forcing is added (Figure 2). These stable iterations of periodicity, n, appear in the
irregular domain, whenever the n-th iterate of the extremum returns to itself. Thus, it is the condition
fkF) (7 ) = £(K) (T,), which opens the windows in the parameter-state space. Their number incre-
ases with n, but its parameter width decreases (see CRUTCHFIELD, FARMER and HUBERMAN, 1982
and COLLET and ECKMANN, 1980 for further details). The particularly wide window of period 3 is of
more general significance in the context of nonlinear maps (““period three implies chaos™, LI and YORKE,
1975) and might also be responsible for the observed recurrence time of 3.2 years of the inset of strong,
moderate, weak and very weak El Ninos (QUINN et al., 1978). Correspondigly, OORT (1983) observes a
strong variability of the vertical mean temperatures of northern and southern hemisphere near a period
of 40 months.
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(iif) Intermittency is another feature characterizing the time evolution of the observed El Nino/Southern
Oscillation and the related quadratic iteration. El Nino episodes with almost regular recurrence times bet-
ween two and four years are documented for the recent 20 to 30 years, and before the turn of the cen-
tury; irregularly long time intervals elapse between El Ninos from the twenties to the forties. The para-
meter range opening the period 3 window for the El Nino iterations reveals a qualitatively similar time
evolution with a sequence of more quiescent events replacing strong El Nino/anti El Nino episodes.
Such time evolution can be associated with the well known 1/f-noise phenomenon and inverse tangent
bifurcations.

5 Conclusion

Smoothly varying climate systems are the common way to model the climate evolution; ite-
rative climate systems, however, simulate only (i) the intersections of a smooth trajectory with a sui-
table cross-section of the climate phase space or (ii) a sequence of local extrema of the continuous tra-
jectory. This reduces the possibility of an immediate physical interpretation, because only subsets of
the whole system and its time evolution are described. In this sense iterative climate models do not
originate from discretizing a continuous system but are a parameterization of the smooth process, which
is confined to dominant model structures.

An iterative (quadratic) climate system is deduced from observed intensities of the El Nino/Southern
Oscillation phenomenon and analysed as a prototype. The analysis stresses structures relevant to climate
modelling. They are related to the predicitons of first and second kind: the locus of the basin of attrac-
tion in the parameter-state space and the embedded invariant intervals, which irregular iterations do not
leave once captured. A sufficiently large inertia (as one of the possible bifurcation parameters) forces the
climate iteration towards a single stable fixed point by attracting initial values from a large basin — no El
Nino would occur. A reduced inertia (or shallow ocean), however, generates irregular iterations with
excursions to temperatures, which represent El Nino events. They become increasingly periodic and
noisy. This coincides with a reduction of the attraction basin and a simultaneous broadening of the
temperature interval where iterations remain after the memory of their initial value is lost. Details

of the local behaviour are a complex mathematical problem. But, as these local structures are modi-

fied by small random noise, they may be considered less significant for climate modelling. However,

the basin of attraction and the invariant interval are not effected by stochastic forcing. Therefore,
they seem to be structures relevant for climate systems analysis.
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List of symbols

I annual intensity of El Nino/Southern Oscillation events

T temperature anomaly (in Kelvin) related to intensity I

corh bifurcation parameter: thermal inertia or ocean surface layer depth

Mo, M, M, expansion coefficients of intensity iteration

my,m;, ms expansion coefficients of temperature iteration

T,, T2, To, T stable, unstable fixed point, backward iterate of T, extremum or critical point

of f(Tt)
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f(Ty), f9(Ty), £'(Ty)  climate iteration, k-th iteration, first derivative

hy, hg, he bifurcations of periodic interations, bifurcations of periodic intervals with irre-
gular orbits, limiting or critical value.

Ei, 0 additive stochastic fluctuations, level of uniformly distributed noise.

Indices:

t, t+1, t+2 time iterations
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