722

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 44, No. 4

Estimating Weather and Climate Predictability on Attractors

KLAUS FRAEDRICH*
Bureau of Meteorology Research Centre, Melbourne, Australia

(Manuscript received 14 April 1986, in final form 8 September 1986)

ABSTRACT

Predictability is deduced from phase space trajectories of weather and climate variables which evolve on
attractors (local surface pressure and a & '®0-record). Predictability can be defined by the divergence of initially
close pieces of trajectories and estimated by the cumulative distance distributions of expanding pairs of points

. on the single variable trajectory. The e-folding expansion rates characterize predictability time scales. As a first
estimate one obtains a predictability time scale of about two weeks for the weather variable and 10-15 thousand

years for the climate variable.

1. Introduction

Flows observed in the atmosphere and other hydro-
dynamic systems reveal a hierarchy of structures rang-
ing from laminar to turbulent motion. Due to the
complexity of these flows, they show a sensitive de-
pendence on the initial conditions. Thus, any predic-
tions of weather or climate are accompanied by a
growth of errors, which ultimately leads to limits of
the predictability. Model flows of various complexity
are the most common tools for the study of atmo-
spheric predictability (first introduced by Thompson,
1957). They reveal aimost the same quality of predic-
tion (in terms of error doubling times, e.g. Shukla,
1985). Therefore, it may be conjectured that the un-
derlying mathematical structures of the time evolution
(which occurs on attractors in phase space) have similar
properties. One such property is the dimensionality of
attractors, i.e., the number of parameters necessary to
control the time evolution in phase space. Some ob-
servations suggest a low fractal dimensionality, which—
only in a qualitative sense~—accounts for the irregular
or chaotic behavior of flows. Another property is the
rate of divergence of initiaily close pieces of trajectories
evolving on attractors, which will be discussed in this

-study. It provides a quantitative measure of predict- -

ability (i.e., the degree of chaos) and therefore seems
to be useful in meteorology. Applying statistical pro-
cedures (Grassberger and Procaccia, 1984) we extend
the dimensionality analysis (Fraedrich, 1986) to esti-
mates of predictability on attractors using observed
weather and climate variables (thereby relaxing the
persistence condition, which also included dependént
pieces of trajectories). The methodological background
is described in section 2, applications are presented in
section 3.
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2. Basic concepts

Consider the difference between two states of a de-
terministic process at a given time. If this difference is
small initially and remains small in the future, the de-
terministic process is stable. Vice versa, if an initially
small difference exceeds a threshold value, the process
is unstable. Thus, the predictability of dynamic systems
is closely related to the problem of stability of the time
evolution; a relevant measure of the predictability is
the rate at which initially small errors grow. Now con-
sider the time evolution of the weather or climate sys-
tem. It can be simulated by partial differential equations
describing the underlying physical processes. These
equations may conveniently be transformed to a set of
n ordinary differential equations

dixi=ﬁ(xl9"'xn)’ i=l’."9n (2'1)
t

with 7 suitably normalized variables x;. Thus, the phase
space containing the time evolution is spanned by the
n different variables x;, i = 1,- - -, n. A weather state
at an initial time is realized by a vector xy = (x(%),
x2(t0), * * +, Xx(fo)) in phase space. Another realization
Xo + 6x may be defined by an initially small vector or-
deviation from the basic state xg:

0x = (8x1,0x3,° + », 0xy). (2.2)

" The difference between the two realizations (or states)

can be measured by the distance (Euclidean norm) D:
D(t) = (6x - 6x)'/? 2.3)

which evolves as time progresses. Now two routes to
predictability experiments can be defined (Lorenz,
1984):

The traditional approach is to solve the nonlinear
equations (2.1) twice with slightly different sets of initial
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conditions. Then D(f) can be evaluated for a sequence
of time steps. Beyond the time limit of predictability,
D(¥) would oscillate about a value not greater than the
difference between two randomly selected states of the
system. If D(f) stays below this threshold, one can ex-
pect predictability for a longer time range.

Another method (Lorenz, 1965) is to evaluate the
growth rates of errors 6x in the system, which is gov-
erned by the set of linear differential equations

n
%5&: ZA,'J'BXJ', i= 1,‘ LRI (X (24)
Jj=1
The coefficients 4, ; are the elements of the Jacobian
matrix of f = (f},- + +, f,) defined by the partial deriv-
ative of (2.1):

_aﬁ(xly. ° .a-xn)

A= 2.
d ox; 2:3)

X = Xg

They are determined at the basic states x = x, changing
with each time step; therefore the elements 4;; are, in
general, time dependent coefficients, which vary with
the time evolution x(z) of (2.1).

If a realization is stable (unstable), D(xo, {) remains
bounded for all time (or it grows quasi-exponentially).
The local stabilities of the weather or climate evolution
are determined by the eigenvalues, 4, ;, (or character-
istic exponents) of the Jacobian matrix which change
with time. If at least one eigenvalue L has a positive
real part, the evolution is unstable and D grows pro-
portionally to exp[L (¢ — t)]; otherwise the solution is
stable. The magnitude of the positive characteristic ex-
ponents can be used (after appropriate time averaging)
as a measure of unpredictability. They define—in a
time averaged sense—the mean rate of divergence of
initially (i.e., at each time step) close trajectories sep-
arated by an infinitesimally small vector éx. In this
sense they describe the system’s sensitive dependence
on initial conditions. Thus, the intrinsic unpredict-
ability of the atmosphere is characterized by the mag-
nitude of the positive characteristic exponents to be
deduced from observations. Failures of forecast models,
however, depend on the sensitivity of their character-
istic exponents due to model errors, which will not be
discussed here.

The following subsections introduce the concept of
characteristic exponents (§2a) and how unpredictability
of the weather and climate system can be estimated by
the growth rate of infinitesimally small errors (§2b) us-
ing observed time series.

a. The characteristic exponent as a measure of pre-
dictability

First we consider dynamics in the (n = 1)-dimen-
stonal phase space:

dx
Z =f(x). (2.6)
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Small deviations 8x from the nonlinear time evolution
(2.6) follow the related differential equation
d df
—(6x)=—=| & 2.7
dt( x) dx x 2.7)
X0
which is linearized about the state x, = x(f) at time
to. These deviations grow or shrink exponentially with
time ¢ = ty + mr, increasing by m time steps of duration
7

8x = 6xy exp(Lmr). (2.8)

The characteristic exponent (or eigenvalue) L is de-
fined by the Jacobian

L=dfldx}xy, or dIndx/dt. (2.9)

If L < 0 (or >0) the system (2.7) is stable (unstable),
D = |6x| remains small for all times (or grows expo-
nentially). Vice versa, if /(x) is unknown, too complex,
or observed time series are analyzed, the exponential
growth rate L may be derived by another prescription,
which allows a generalization of characteristic expo-
nents for nonlinear systems. Eliminating L from (2.8)
and taking the limit m — oo leads to a mean (time
averaged) exponential rate of divergence of initially
close trajectories (e.g., see Haken, 1983)

1
L(xp, 8x0) = lim — In)éx].
mr

m—»oo

(2.10)

This concept of the Lyapunov characteristic expo-
nent (for trajectories in a one-dimensional phase space)
can be generalized to the mean exponential rate of di-
vergence (of two initially close trajectories) evolving in
an n-dimensional phase space:

. 1
L(xo,8%0) = lim — In|D(?)|. 2.11)
m—~c MT
L takes one of the n values L, L,, ..., L,, which, in

general, would be the largest one. They may be formally
related to the » eigenvectors of the Jacobian matrix
af;/9x; leading to a spectrum of Lyapunov exponents
(e.g., see Eckmann and Ruelle, 1985):

Li>L,>. . (2.12)

Thus, the characteristic exponents refer to the expan-
sion or contraction of different directions in the phase
space. In general, the rate of the exponential growth of
an infinitesimal vector 6x(¢) in the n-dimensional phase
space is given by the largest of the Lyapunov charac-
teristic exponents L,; the rate of growth of an infini-
tesimal surface element is given by the rate of the two
largest characteristic exponents L; + L,; a k-volume
element grows with L, + L, +. . . + L, (e.g., Lich-
tenberg and Lieberman, 1983). For example, an »n-di-
mensional phase space volume element evolving after
(2.1) is represented by the Jacobian determinant
(detd f;/9x;). Thus, the growth rate of the phase space
volume element is the growth rate of the Jacobian de-

>L,
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terminant and given by the sum of all » eigenvalues
LP=3FL,i=1,-++,n (see Eckmann and Ruelle,
1985). For volume conservmg (i.e. conservatlve) sys-
tems L™ = 0; for dissipative systems volume is con-
tracted and L(") < 0. On the other hand, a Brownian
process yields L™ = oo, because volume expands in-
finitely by stochastic motion.

" Each positive exponent describes a direction in
which the system realizes stretching or divergence de-
correlating nearby states. Therefore, the long-term be-
havior of an initial condition x, (with any uncertainty)
cannot be predicted; this characterizes a chaotic system
with sensitive dependence on initial conditions. Each
positive Lyapunov characteristic exponent L; > 0 con-
tributes to the divergence or expansion of a phase-space
- volume element surrounding the initial state x, (i.e., a
weather or climate situation); their sum defines an ex-
ponential growth rate 4 of initially small errors (volume
elements or ellipsoids)

h(xo)= 2 L;

L0

(2.13)

and provides a quantitative measure of (un)-predict-
ability; it describes the expansion of an infinitesimal
ellipsoid to which only the diverging components (L;
> 0) of the principle axes contribute. The inverse value,
1/A, denotes a mean time scale up to which predict-

ability may be possible; it characterizes a mean time

span for e-folding volume expansion of a dynamical
system evolving in phase space.

Summarzzmg Traditional predlctablhty experi-
ments in meteorology determine the error growth from
the evolution of an assumed true state disturbed by a
random error perturbation. This provides an estimate
of the largest Lyapunov exponent. The expansion of
an initial sphere of infinitesimal errors growing into an
ellipsoid (evolving in the phase space of the dynamical
system) corresponds to all positive Lyapunov charac-
teristic exponents, which give more complete infor-
mation of the dynamical system’s sensitive dependence
on initial conditions. To gain this information on pre-
dictability the phase space of the dynamical system
(2.1) is reconstructed—as described in the following
subsection—by using an observed time series of one
its variables (defining one coordinate), and the time
series of the same variable but shifted by (m — 1) time
lags (providing m — 1 further coordinates). In this new
phase space, spanned by delay coordinates, some geo-
metrical properties of the system’s time evolution may
then be estimated such as the dimension of the attractor
and the divergence of nearby pieces of trajectories (as
a measure of predictability).

b. Predictability on attractors

The time evolution of the dynamical system (2.1) is
described by a trajectory in the n-dimensional phase
space, spanned by the » different variables x;, i
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= 1,00, n. The position of the trajectory is defined
by the components x; of the state vector

X(0) = (D), X0+ + * 5 XlD).

Portraits of the time evolution may show distinct pat-
terns, called attractors that trap trajectories after tran-
sients. originating from the initial states decreased.
These attracting sets often reveal dimensions d,, < n.
Furthermore, attractors do not necessarily have integer
dimension; fractal or noninteger dimensions seem to
be common for many turbulent systems, which are
deterministic with a strong sensitivity on initial con-
ditions and irregular (or chaotic) behavior.

If geometrical properties (such as the dimension of
attractors or the characteristic exponents of the flow)
are to be evaluated from observations, one is generally
confined to time series of a single state variable sampled
at regular time intervals Af. Therefore, Packard et al.
(1980; see also Takens, 1981) suggest a reconstruction
of the phase space picture of the attractor which can
be made plausible by the following arguments. The
dynamical system (2.1) for n variables (i.e., aset of n
first-order differential equations) can be transformed
10 a single nonlinear differential equation (of nth order)
by eliminating all but one of the variables, say x(z),
from (2.1);

(2.14)

x=f06x, .-,

The new trajectory, x(¢) = (x(?), x'(¢), - - +, x"'X1)), of
the transformed system describes the same dynamics.
It evolves in a phase space spanned by the coordinate
x(¢) plus its (n — 1) derivatives x(¢), - - -, x*"V(¢). In-
stead of this continuous variable x(¢) and its derivatives,
a discrete time series and its shifts by (n — 1) time lags
may be considered (Ruelle, 1981): x(¢) = [x(8), x(¢
+7),+ * -, x(t + (n — 1)7)]. Choosing 7 as the macro-
time scale (or autocorrelation time) of the time series
x(2) should guarantee linear independence of the delay
coordinates. This is plausible because for time lags
larger than 7 the autocorrelation of the time series tends
to zero; i.e., the data become uncorrelated or linearly
independent, because a vanishing dot-product defines
orthogonality.

Now the attractor of a dynamical system is embed-
ded in a new phase space of delay coordinates without
changing its topological (or geometric) properties (e.g.,
see Fraedrich, 1986). Thus, it is sufficient to (i) consider
a single state variable x(f) of a dynamical system and
(ii) its trajectory evolving in phase space spanned by
time shifted coordinates, if such properties are to be
derived from empirical data. In the following two geo-
metrical properties of attractors will be estimated from
a statistical analysis of the distances between pairs of
points on the trajectory (Grassberger and Procaccia,
1983, 1984): the dimension of attractors and the di-
vergence of independent pieces of trajectories evolving
on them,

X D) (2.15)
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Consider a pair of points in an m-dimensional phase
space of time-lagged coordinates which is sufficiently
large to embed the attractor:

Xm(t) = (x(t),* + -, x(t;i+(m—1)7))

X)) = (X(5), + + <, x(G;+(m—1)r)).  (2.15)
They are a distance r; j(m) apart (using Euclidean norm)
which depends on the phase-space dimension m:
(2.16)

The number N, (/) of such pairs, whose distance is
smaller than the prescribed threshold 7; ; < /, is formally
determined by

N
NaDy= 2 B(I“Tij(m))

i,j=1

ri (M) = X, — X(2)] with £, — tl>r.

2.17)

where 0 is the Heaviside-function with (@) = 0 or 1,
if @ > or < Q; N is the total number of points. The
related cumulative distribution C,,(/) is normalized by
the total of N? pairs of points:

C{l)=N,(D)/N>. (2.18)

This distribution function is an ensemble average
over all N points x(¢) = (x(¢), x(t + 7),- + +) which
define a trajectory embedded in the m-dimensional
phase space of time-shifted coordinates. Thus, C,(/)
describes the mean relative number of points which
occur in a m-dimensional volume element or ball of
the radius /, which surrounds every individual state or
point of the trajectory x(z) on the attractor. With in-
creasing distance threshold (or size of the ball) the
number C,(!) of pairs grows; furthermore, C,(I)
changes its shape with increasing embedding dimension
m. For N = oo the distribution function C,(/) leads
to estimates (i) of the dimension of attractors and (ii)
of the divergence of trajectories which evolve on them.

1) DIMENSION OF ATTRACTORS AT FIXED EMBED-
DING DIMENSION m

Consider data points homogeneously distributed on
a line (on a surface; in a volume); the number of all
pairs of points C(/) which are up to a distance / apart,
grows linearly (quadratic or cubic) with increasing /;
i.e., proportional to / (/% I3). An attractor is described
by a trajectory (of N = oo data points) x(f) = (x(2), x(¢
+ 7),+ + +, x(t + (m — 1)7)) evolving in a sufficiently
high dimensional phase space (of dimension m); its
dimension d,, scales with the cumulative distance dis-
tribution function (2.18) of pairs of points on the tra-
Jjectory (for / = 0):

Chy~ 1% (2.19)

2) CHARACTERISTIC EXPONENTS AT FIXED DIS-
TANCE THRESHOLD /

A state x(f) = (x(t), x(tg + 7),° -, x(tg + (m

— 1)) in the m-dimensional phase space of time
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shifted coordinates defines a piece of time trajectory
of the length (2 — 1)r. States within a m-dimensional
ball of size / surrounding the state x(¢;) define other
pieces of trajectories on the attractor, which remain
close (i.e., within a distance < /) during the (m — 1)
time steps. Thus C,,(/) defines the mean relative num-
ber of all pairs of pieces of trajectories which stay close
together within a distance < / during the time evolution
(m — 1)r. They start, however, at different #. Thus, av-
eraging is to be taken over all points on the attractor.

Increasing the embedding dimension from m to m
+ 1 (but keeping / fixed) prolongs the pieces of trajec-
tories by one time step 7 from (m — 1)7 to mr. Thus,
the new cumulative distribution C,,4 at fixed / de-
scribes the (now reduced) mean number of trajectories
which still stay within the distance < /; i.e. they remain
within balls of size /—the others have escaped. Thus,
the change from (m — 1)7 to mr or from C,, to Cp;
provides a measure for the mean escape rate (diver-
gence) of close pieces of trajectories on the attractor
or, which is equivalent, for the Lyapunov characteristic
exponents. A scaling of the cumulative distance dis-
tribution function C,, by the Lyapunov characteristic
exponent (and the sum & = ¥ L;, L; > 0) can be de-
duced.

Consider two pieces of diverging trajectories which
remain within a distance threshold (J6x| < /) during
(m — 1) time steps 7. Their chance to diverge beyond
the fixed threshold value during the next time step 7
rises proportionally to expLmr [see (2.8)]; vice versa,
their chance to remain trapped within the distance
threshold decreases proportionally to exp(—Lmyr).
Furthermore, the chances for an initially large ensemble
of trajectories to remain trapped within a volume ele-
ment (or ellipsoid) decrease proportionally to the ex-
pansion along the principle axes, i.e., exp(—L,mr); note
that only diverging axes (L; > 0) contribute. Accord-
ingly, the average relative number C,, of pairs of points
with distances r;; < / decreases proportionally to

Cn ~ exp(—m7rL,); exp(—mrLy), + + +
~ exp[—mf(L, +L2 4 oo )]

~ exp(—mrh). (2.20)
Thus, the predictability 4 can be interpreted as a mean
exponential expansion rate or divergence of pieces of
trajectories of the length mr; averaging occurs over all
points of the attractor.

3) COMBINATION AND METHOD OF ANALYSIS

Combination of the proportionalities (2.19) and
(2.20) leads to the scaling law of the cumulative distance
distribution function C,(/):

C(l) ~ 1% exp(—mrh). (2.21)
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Here it should be noted that a rigorous derivation of
this scaling law (e.g., see Eckmann and Ruelle, 1985,
based on Pesin, 1977) connects the sum of positive
Lyapunov characteristic exponents /4 of the flow with
the mean rate of creation of information or reduction
of predictability (i.e., the Kolmogorov-Sinai entropy).
It can be approximated (Grassberger and Procaccia,
1984) by C,.({), which is a measure of the order-2 Renyi
entropy. In this sense the unpredictability 4 (in 2.20)
or mean rate of information production defines a lower
bound for the mean rate of divergence (2.13) of pieces
of trajectories on the attractor (and therefore an upper
bound for the predictability time scale). Furthermore,
considering empirical data, (2.21) should be interpreted
as a limit process with the following requirements: The
time series x(¢) should be sufficiently long (N — o)
after decay of the transients to ensure that the trajectory
evolves on the attractor and covers it; the phase space
should be of sufficiently high dimensionality (m —> o0)

to embed the attractor, and the balls of size / should

be sufficiently small (/ - 0). Note that in calculating
the pairwise distances r;;{m), (2.16), the constraint
needs to be observed that |1, — £;| > 7; i.e. only inde-
pendent samples (pieces) of trajectories enter the cu-
mulative probability distribution C,,(/). Now it is pos-
sible to deduce (i) the dimension of attractors d,, and
(ii) the mean rate of divergence of (pieces of ) trajectories
on attractors using the scaling law (2.21) of the cu-
mulative distribution function C,,(/).

The dimension of attractors can be deduced from
the (linear) slope of the distribution in a In{C(/)] versus
In/ diagram

d = In[C()]/In(/) (2.22)
if the dimension m is chosen sufficiently high (m
> m,,) that the attractor is embedded in the phase space
of m,, time-shifted coordinates. In this sense one ob-
tains the attractor dimension as a saturation value d,,,
which does not change if further coordinates (m > m,,)
are added to the embedding phase space, i.e., if the
slopes of the cumulative distributions C,(/) remain
constant for m > m,,. The dimension d,, of the at-
tractor (or, if fractal, its nearest larger integer) provides
a measure of the minimum number of independent
variables necessary to adequately model the dynamics
of the system. The embedding dimension m,, gives a
reasonable upper bound for the number of variables
sufficient to do so. A noninteger attractor dimen-
sionality characterizes chaotic behavior of the time
evolution of the dyrdamical system (with its sensitive
dependence on the initial conditions). Furthermore, it
provides evidence for the possible existence of a strange
attractor, which governs the time evolution and the
inherent limit in predictability. However, this estimate
of dimensionality does not provide a quantitative
measure of the degree of chaos. Therefore, it seems to
be relevant to meteorology to also obtain a quantitative
estimate of the rate at which predictive -ability is lost;
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this is provided by the sum # of the positive Lyapunov
exponents,

The predictability h on attractors can be estimated
from slopes of the distribution function in a InC,,(/)
versus In/ diagram (Fig. 1), if the dimension m is chosen
sufficiently high (m > m,,) that the attractor is embed-
ded in the phase space of time shifted coordinates. The
difference between In[C,,.+1(/)] and In[C,,({)] at a fixed-
distance threshold / leads to the mean predictability 4

1 Cnm
h~ Tkln Co

The fixed distance / should be selected from an In/-
interval where the related distributions In[C,,(/)] can
be approximated by straight lines of identical slopes,
i.e. where C(/) ~ 1% is satisfied. The inverse value 1/
h of the mean divergence defines a mean time scale up
to which predictability may be possible, if e-folding
volume expansion is considered.

(2.23)

3. Application to weather and climate variables

The method of estimating the predictability on at-
tractors is applied to time series of a variable of the
weather and the climate system. These are variables,
which have been used to estimate the dimensionality
of weather and climate attractors (Fraedrich, 1986):
Daily values of surface pressure as a single station
weather variable (Berlin-Dahlem) and an oxygen iso-
tope record of an Atlantic deep-sea core representing
a climate variable. The following results should be in-
terpreted with care, because an insufficient number of
data points may lead to systematic etrors.

a. Weather variables

Only erisembiles of winter seasons (of 120 days com-
mencing on 1 November) are analyzed; seasonal time
series allow estimates (of a lower bound) of the satu-
ration dimension d,,, because the related weather at-
tractors can be embedded into phase spaces of the di-
menston. However, attractors described by trajectories
of a 10 to 15 year time period include long-range pro-
cesses with memory from season to season. Their di-
mension d,, is so large that even embedding dimensions
My = 15 to 20 are not sufficient; i.e., the dynamics of
these processes is governed by too many degrees of
freedom. These estimates are obtained from the slopes
d = In[C,.(D)/In] of the cumulative distribution func-
tions C,,(/) plotted in a In[C(/)] versus In/ diagram (see
Fig. 1). The slopes d(m) change with increasing
embedding dimension m until saturation d, is
achieved at m,,; d,, defines the attractor dimension,
m,, the dimension of the phase space sufficient to
embed the attractor. A further increase of the embed-

.ding dimension (m > m,,) does not change the satu-

ration dimension (d,). Note that the saturation di-
mension d,, provides a lower bound of the number of
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F1G. 1. Cumulative distribution functions C,(!) for a sequence of
embedding dimensions (m = 1, + + -, 15 increasing from left to right).
A weather variable (top): daily surface pressure values (at Berlin) for

winter seasons. A climate variable (bottom): § %0 data of the Meteor
core 13519 covering 775 000 years bp.

essential variables needed to model the dynamics; the
upper bound of variables sufficient to do so is estimated
by the embedding phase space dimension at saturation,
m,,. For the Berlin surface pressure we obtain d,
2 6.8t07.1 and m,, = 15,

Beyond saturation (d,,, m > m,), it is possible to
estimate the mean predictability / using (2.23), where
mis interpreted as m > m,, . At fixed-distance threshold
1 the difference between InC,,., and InC,, can be ob-
tained from graphs such as shown for the daily surface
pressure (Fig. 1); the macro-time scale r = 3 days is
chosen for the weather variable. The predictability es-
timate leads to an e-folding predictability time scale
(1/h) of about two weeks (12-15 days). This time scale,
(although to be considered as a very weak limit) seems
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to be in some agreement with the error doubling time
of about 8 days deduced from analogues in past ob-
servations (Lorenz, 1969; Gutzler and Shukla, 1984);
note the conversion factor In2 = 0.69 - « - from e-fold-
ing phase space volume expansion to doubling. Models
of the general circulation or hydrodynamic flows
(Smagorinsky, 1969; Shukla, 1981; see also Shukla,
1985, for a review) reveal estimates between 2 and 4
days for the doubling time of small errors (the common
measure for predictability experiments). This time-
scale, however, is about 3 to 5 days shorter than our
predictability estimates form observed time series on
attractors (realizing the conversion In2 = 0.69). This
discrepancy may be related to the presence of a mod-
erately strong spectral gap in the mesoscale range; such
a gap in the energy spectrum would increase the model
predictability by about 3 days (Lorenz, 1984b).

b. Climate variables

The analysis of a climate attractor is based on an
oxygen isotope record of planctonic species (Sarnthein
et al., 1984) gained from a 10.7 m long deep-sea core
(Meteor 13519) from the eastern equatorial Atlantic.
The 182 & 30 values cover 775 000 years BP. They
are deduced from 3 to 7 cm slices corresponding to
2000-4000 years of sedimentation. For the embedding
of the time (depth) series we use multiples of 7 = 1 (or
7 ~ 3000 years). The analysis of the cumulative dis-
tribution (Fig. 1) leads to a predictability time scale (1/
h) of 10 to 15 thousand years, provided one accepts the
slope d,, = 4.4-4.8 as (the lower bound of) the di-
mensionality of the climate attractor (See Table 1).
Comparable results can be obtained from an analysis
by Nicolis and Nicolis (1984), who derived a dimen-
sionality of d,, ~ 3.1. From their distribution function
one derives a predictability time scale (1/4) of 17 to 20
thousand years. These estimates should be interpreted
with care, because both climate time series consist only
of a limited amount of data.

TABLE 1. Estimates of attractor dimensions (d,.) and time scales
of predictability (1/4). The predictability time scale is a measure of
the mean e-folding phase space volume expansion; for volume dou-
bling multiply with In 2 ~ 0.69. The estimates are deduced from
the cumulative distributions (Fig. 1) applying the scaling law C,(/)
~ V= exp(—mrh). .

Estimates
Dimension of Predictability
attractors time scale
Variables (ds) (1/h)
Weather variable
Pressure 26.8-7.1 12-17 days
Climate variable
Meteor
8 %0 24.4-4.8 10-15 000 years

core
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4. Conclusion

The traditional predictability experiments in mete-
orology usually determine the error growth of an as-
sumed true state disturbed by a random perturbation.
This provides an estimate of only the largest (positive)
Lyapunov exponent. All positive Lyapunov exponents
correspond to the expansion of an initial sphere of in-
finitesimal errors growing into an ellipsoid which
evolves in the phase space of the dynamical system. In
this sense all positive exponents provide a more com-
plete quantitative measure of the degree of chaos (or

of the sensitive dependence on initial conditions) and, .

which is equivalent, of the unpredictability.
Predictability of the weather and climate system is
estimated from the evolution of single-variable time
series on attractors. These attractors can be embedded
in a phase space, which is spanned by coordinates de-
fined by the variable and its successive time shifts. Thus,
a point in the phase space represents a piece of a time
trajectory (evolving on the attractor), whose duration
or length is defined by the dimension of the embedding
phase space (i.e., the number of time shifts or phase
space coordinates). Thus, points in a ball of size / are
the realization of an ensemble of pieces of close tra-
jectories of the same length. Increasing the phase-space
dimension (i.e., adding a coordinate with a further time
shift of the variable) extends the pieces of trajectories
in time, Now, predictability is defined by the divergence
of initially close trajectories; this is equivalent to the
escape rate of points from a ball of size /, if the time-
lengths of the trajectories is stepwise extended, i.e., if
the same ball is embedded into a higher-dimensional
phase space. Thus, the number difference of pairs of

points (in balls of the same size but of dimensionality

‘increasing from m to m + k) is equivalent to the num-
ber of those initially close pairs of pieces of trajectories
which leave the prescribed distance threshold when
time progresses (form m to m + k by k time steps).
Now the mean predictability can be deduced from this
number difference related to the time steps, by which
the dimensionality of the embedding phase space is
increased (as time progresses); the averaging occurs over
balls of the same size /, which surround every point on
the attractor. One statistical procedure (suggested by
Grassberger and Procaccia, 1984) is based on cumu-
lative number distribution functions of increasing dis-
tance / between all pairs of datapoints as they are ob-
served on the attractor; the attractor should be embed-
ded in phase spaces of sufficiently high dimensionality.

The weather variable analyzed seems to evolve on
a low dimensional attractor after interannual variability
and seasonal variations have been excluded by using
only seasonal datasets. The observed predictability time
scale can be related to common weather predictability
studies which are based on observed analogues and
model experiments of error growth. However, limita-
tions of using single-point variables should be noted.
They provide only one projection of the weather at-
tractor whereas other further distant points are expected
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to characterize different regions (on the attractor) and,
therefore, may lead to different estimates of predict-
‘ability time scales. On the other hand, this method
may become a useful tool for the analysis of weather
and climate models. In particular, regional measures
of predictability can be evaluated. The new aspect in-
troduced would be an analysis of model performance
in phase space. Finally, it should be noted that both
the dimensionality of attractors and the predictability
on them can be estimated by the same procedure.
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