Salvadore Dali (1983): The Swallowtail (Oil on canvas, 73 x 92,2 cm). This is Dali’s
last work and belongs to the series of catastophe paintings.
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Abstract. Climate modelling strategies are demonstrated by toy models of
the greenhouse planet, the atmosphere, and the ocean. A minimum energy
balance model of the greenhouse provides the setting for a review on the
construction and analysis of climate systems, which are simple and noisy.
Two prominent climate compartments follow; these are the mid-latitude at-
mosphere and the wind-driven ocean, which are also subjected to stochas-
tic forcing. The atmosphere’s dynamics is derived analytically for a periodic
channel; the (linearised) quasi-geostrophic, baroclinic flow shows a response
on stochastic forcing which may serve as a parameterisation of the eddies.
A wind driven ocean circulation is analysed numerically in a high resolution
square basin employing the (nonlinear) shallow water system. Imposing spa-
tially inhomogeneous random wind stress forcing generates a response with
regime transitions which do not exist otherwise. From a more general per-
spective, a modular stochastic climate system emerges in the outlook.
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1. Climate and climate modelling

The atmosphere cooperates with its companions in the climate system. These
are the ocean, but also biosphere, pedosphere, cryosphere, and lithosphere play
a prominent role. In each of these compartments the life-span of the largest en-
ergy containing perturbation characterises the predictability in terms of its decay
period. Useful estimates of the memories and thus predictabilities of these sub-
systems can be obtained from the different residence times of water as the most
important carrier of latent energy. The observed large differences of the memories
of the systems challenge monitoring and modelling of climate variability:

compartments time-scale estimates

atmosphere < 10 days (weather)
ocean/land 1 month (upper layers) to 10® years (deep ocean)
cryosphere < 10 years (seaice) to > 10% years (ice shields)

Climate modelling serves the purpose to improve understanding and forcast-
ing in terms of relevant theoretical concepts and guidance for practically useful
predictions; and most of the present models lie within these two extremes. Con-
ceptual models require a small embedding dimension of the system’s dynamics
to be analysed while nonlinear prediction models incorporate almost all known
effects. Consequently, experiments performed with these models fall into the cat-
egories of more or less sophisticated thought experiments or of highly elaborate
numerical simulations:

model toy model general circulation model
purpose conceptual understanding practical forecast guidance
building dimension as small as neccessary as large as possible
experiments Gedanken experiment simulation and prediction

Model building provides a suitable physical and spatial description of the cli-
mate system whose dynamics is based on fundamental conservation laws of thermal
energy (first law of thermodynamics), momentum (Newton’s law), and mass (con-
tinuity equation). Physical embedding can be achieved by a scale analysis leading
to a spectrum of approximations describing geophysical fluid flow. It ranges from
the shallow water equations and the quasi-geostrophic approximation (with the
semi-geostrophic transform and hypo-geostrophy), via the primitive equations to
the Boussinesq (and anelastic) system (see Pedlosky [23]). The primitive equations
with the conservation of thermal energy and mass (air, salinity, water) provide the
dynamical core of the present numerical weather prediction (NWP) and general
circulation models (GCM). Spatially, the dynamics is decomposed in boxes, grids
or layers, or spectral modes. Thus, as truncation is neccessary, a parameterisation
of the unresolved subgrid scale processes cannot be avoided.

Three equilibria characterise the geophysical fluid flow, two of which are re-
lated to the thermal energy and momentum equations: Hydrostatic and geostrophic
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equilibrium characterise the dominating fluid forces in balance: vertical and hori-
zontal pressure gradients and the accellerations induced by the earth’s gravitation
and rotation. The third equilibrium is related to radiative-convective processes. It
describes the greenhouse representing an equilibrium between incoming short wave
(solar) and outgoing long-wave (terrestrial) radiation including moist convective
overturning. Deviations from these equilibria and their attractivity constitute the
dynamics of the climate system.

The experiments with conceptual or low order systems differ from those con-
ducted with climate or weather prediction models:

(i) Experiments with low order climate models are made to develop concepts
and parameterisations of the underlying processes analysing stability, sensitivity,
and the effect of stochastic forcing. Stability analysis refers to special trajectories
like fix-points, limit cycles and their internal stability properties at fixed exter-
nal parameters; furthermore, static and dynamic properties of attractors are de-
duced. The effect of changing external parameters shows routes to chaos based on
changes of structural stability. In this sense, the variability of the climate system
is understood through both its internal dynamics (El Nino-Southern Oscillation,
biogeochemical interactions, nonlinearities) and the effect of external parameter
changes (Milankovich cycles, changes of the solar radiation, volcanic activity, an-
thropogenic impacts). In practical applications related to the real climate system,
sensitivity analysis provides insight into parameter changes modifying the equilib-
rium state of the global system (in a linear framework). The stochastic analysis is
based on the two time scale approach, resolving the system’s slow dynamics while
parameterising the fast fluctuations by noise which, in turn, may generate resonant
responses. Underlying this approach is the assumption of a spectral gap; it sepa-
rates the slow system with large energy containing eddies from the fast low energy
fluctuations, both of which follow different power law behaviour. Most relevant
is the closure; here stochastic model parameters are adjusted to force the overall
system to satisfy additional criteria, for example, the global entropy balance.

(ii) Experiments with comprehensive climate models have their origin in nu-
merical weather predictions which, since the fifties and sixties, have been contin-
uously improving; three day forecasts then had the quality of six day predictions
now. Advances in model physics, data assimilation techniques, and computational
power contributed to improve the forecast skill. Coupling of the atmosphere with
the ocean, the sea ice, the continental ice shields, and the biosphere creates a
hierarchy of GCMs to simulate the present and past climate as close to reality
as possible analysing natural climate variability and the sensitivity on natural or
anthropogenic impacts (for more details, see von Storch [29] in this volume).

Independent of their level of complexity, climate and weather models require
the parameterisation of the fast and spatially unresolved processes. The time span
which covers the dynamics to be parameterised depends on the time (and space)
scales required for the predictions of the first kind (at fixed boundary conditions).
The predictions of the second kind are made when a change of boundary conditions
matters (see Table 1).
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Table 1: Parameterisation and prediction of the first and second kind.

lead time (days) 3 0.1 \ I 10 \ 100 { +1,000

atmosphere-ocean ’ parameterisation ’ prediction of 1. kind | prediction of 2. kind

The outline of these lecture notes is as follows: Section 2 introduces the earth’s
greenhouse in terms of a zero-dimensional energy balance climate model; this min-
imal model serves as an example to demonstrate strategies of model building and
analysis. A linear quasi-geostrophic atmosphere in a channel is described in section
3. Baroclinic instability, which is the origin of mid-latitude weather disturbances,
is used to excite a response on stochastic forcing which resembles observed large
scale atmospheric variability. Finally, section 4 presents a high resolution shallow
water ocean in a square basin where the nonlinear response on idealised stochastic
forcing due to atmospheric variability generates regime transitions.

2. Zero-dimensional energy balance climate model

To demonstrate climate modelling strategies, a minimum energy balance model is
introduced first to provide the setting for the analysis of simple climate systems
(for a review see Saltzman [26] and [28], North et al. [22]). It is based on a poor
man’s radiation scheme leading to the greenhouse climate system which, when in
equilibrium, plays a similar role in climate dynamics as geostrophy and hydrostasy
do in geophysical fluid flow. First, the dominant radiative fluxes contributing to
the climate are defined in terms of a simple two-stream method, which is reduced
to an atmosphere interacting with the land/ocean by radiative fluxes only; that is,
sensible and latent heat fluxes are not explicitely considered. Parameterisation of
the atmosphere by statistically deduced feedbacks leads to the statistic-dynamical
model version, which is subjected to stability, sensitivity, and stochastic analysis
in order to characterise climate variability.

2.1. A two-stream radiative scheme

A simple two-stream radiation scheme is confined to a single surface and two atmo-
spheric layers which are associated with the respective heat capacities C (strato-
sphere, troposphere, and land/ocean with subscripts S, A, B). Long-wave (IR) or
terrestrial radiative fluxes are described by the Stefan-Boltzmann law, cT* with o
= 5.67 1078 Wm=2K ~%. Note that, in the climate case, a linear law may suffice.
The long-wave upward flux is partially absorbed in the next upper layer (absorp-
tion coefficients or emittance, @4 and ag) and transmitted further (transmission
coefficients 1-a4 and 1-ag). The long-wave downward radiation, however, is to-
tally absorbed by the next lower layer. The short-wave (sw) or solar radiation, I, ~
1360 Wm ™2, passes a completely transparent atmosphere; it is absorbed at the
bottom (land/ocean) from where a remaining part is reflected to space, 1I,(1-a),
with the (planetary) albedo or whiteness a (see, for example, Eliassen and Laursen
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Rt=oT* (1— % o)

Ficure 1. Incoming solar and outgoing terrestrial radiation of
the zero-dimensional climate system.

[4]). Including absorbtion of solar radiation requires an additive term contributing
to the radiative heating of the layer.

stratosphere  Cs(Ts): = 0+ ag aBJTé(l —ag) +as as0Ty —2as0Ta
troposphere Ca(Ta)e =0 + Qg chrTé + asaTé - 2(¥A0'Tj
land/ocean Cp(TE): = %Io(l —a) —apoTy + 0Ty

I,(1-a), bal-

At equilibrium (subscript ’o’), the incoming solar radiation, R, = %

ances the terrestrial outgoing radiation: R, = R] = R1.

2.2. Statistic-dynamical climate model

A minimum energy balance model is obtained discarding the stratosphere (as
= 0) but keeping the tropospheric emittance with @ = a4 # 0. This yields the
coupled greenhouse climate model with a black body land/ocean surface (ap =
1) and without solar absorbtion in the atmosphere (Fig. 1):

atmosphere Ca(Ta): = {CTT% — 2(TTA4}O£ (2.1)
land/ocean Cp(TB): %Io(l —a)—{oTg — acTa*}

Two approaches are commonly considered: (1) Modelling purely atmospheric vari-
ability, land and ocean remain fixed to provide the boundary conditions, (Ts): = 0.
The dynamics is relatively fast due to the small heat capacity Ca.

atmosphere Ca(Ta): = {i[o(l —a)— 20’TA4(1 — %a)}a (2.2)
where C'y = cp% with the surface pressure, psr. ~ 1000 hPa, the specific heat,
cp ~ 1005 Jkg™' K1, and the Earth’s acceleration, g = 9.81 ms™2. The incoming
solar radiation, %L,(l — a) with the planetary albedo, a ~ 0.3, and the emittance,
a ~ 0.7, lead to a stable equilibrium, T4, ~ 240 K, to which all initial condi-
tions, Ty > 0, converge. It corresponds to the observed temperature averaged over
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the atmospheric mass,
the mid-troposphere near 500hPa. The linear stability, (674): = —%5TA, of the
equilibrium solution, which defines the Newtonian cooling, is determined by the

radiative time scale, 74 = %CATA,)(O’.R,))_l ~ 1 to 2 months.

p"gf" T a0 ~ PsIT fTAdp, which is close to that observed in

(il) Statistic-dynamical coupling of the fast atmosphere with a slow land and
ocean requires a special strategy to model the dynamics of the slow system (Tg)
and to make forecasts beyond the atmosphere’s limit of predictability. A com-
mon approach is to parameterise the influence of the fast compartment (7). Here
it leads to the statistic-dynamical climate model with feedbacks incorporating the
statistical effects of the fast system. A similar strategy is employed for atmospheric
global circulation models (AGCMs) when parameterising the fast and small scale
processes of the boundary layer or cloud ensembles (after suitable space-time av-
eraging).

Dynamical core (approximate inertial form): A suitable Ansatz for the pa-
rameterisation is a diagnostic atmosphere, (T4); = 0. It reacts ’'instantaneously’
to changes of the slow system and feeds back to it by the Stefan-Boltzmann effect
of the long-wave radiative fluxes of the atmosphere. This leads to the dynamical
core of the statistic-dynamical model and its associated linear version:

dynamical core  Cp(TB): = 11,(1 —a) —oTh(1 — ta) (2.3)

linear version (6Tg): = —%JTB

with the outgoing and incoming radiation, UT%(I-%@) and %Io(l-a). At equilib-
rium, the global surface temperature, T'p, = TAO\4/§ ~ 280 K, exceeds the at-
mosphere’s by about 20%. This characterises the greenhouse effect which corre-
sponds to the vertical temperature gradient between surface and mid-troposphere:
Tpo — Ta, ~ 40 K. Linearisation shows that the equilibrium is internally stable
and all initial conditions Tp > 0 converge to it. The negative eigenvalue represents
the inverse of the associated slow relaxation time scale, 7 = iCBTBO/RO ~ 10
to 20 months > 74.

Parameterisations: The dynamical core of the system is completed by feed-
backs which describe the effects of the fast variables on the slower ones. Linear
feedbacks are most commonly used in climate modelling modifying the green-
house climate by its albedo (T') and emittance a(T'). Budyko [1] introduced the
ice-albedo feedback as a linear regression. To simplify matters, the quadratic law,
a = as —byT?, will be adopted with fixed (empirical) coeflicients az, by. A positive
albedo-feedback is obtained (satisfying 0 < @ < 1), which increases the albedo
with temperature reduction:

a-feedback

temperature-albedo temperature drop — more snow — higher albedo
albedo-temperature less sw-radiation absorbed — further temperature drop

Swinbank [31] introduced a positive emittance-temperature feedback, a = a(Tp),
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from clear sky radiation measurements in the tropics, %a = ¢3 + d2T3. While
the COz-effect can be associated with ¢o = 0.235In(C'O3) (CO: in ppm), the
atmospheric moisture content modifies the emittance, 0 < a < 1, by a positive

temperature feedback:

a-feedback

temperature-moisture temperature-rise — more evaporation — more vapour
moisture-temperature  more IR radiation from sky — further temperature rise

Combination of the dynamical core with the (often empirically deduced) feed-
backs defines the statistic-dynamical climate model whose external parameters
are linked to natural and anthropogenic processes.

2.3. Analysis: stability, sensitivity, and stochasticity

Climate model analysis follows three paths: The theoretical approach of stability
analysis applies nonlinear systems analysis methods. Here, catastrophes and re-
silience are the subjects of interest while other systems may show routes to chaos.
More practically oriented is the estimate of climate sensitivity as the linear evolu-
tion near the stable equilibrium. Sensitivity analysis is often applied to data sets
satisfying the global energy balance. Both analyses are basically deterministic and
employed to identify and interprete stable fixpoints as climate means. They need
to be complemented by the stochastic analysis to obtain estimates of higher mo-
ments. Here the Langevin approach, which is most commonly used in stochastic
climate models, is adopted with white noise being added to the linearised system.
Langevin or sensitivity approaches are similar in that the response of white noise
or other impacts added to a linear system is analysed.

2.3.1. STABILITY ANALYSIS: The theoretical approach applies nonlinear systems
analysis methods for which the predictions of the first and the second kind provide
a suitable frame. The climate dynamics is described by a single variable gradient
system, Ty = f(T,p;) = —dF (T, p;)/dT, associated with the potential F. It exhibits
domains of structural changes or catastrophes and resilience depending on the
external parameters p;. A parameter u (~ 1) is introduced to characterise changes
of the intensity of the incoming solar radiation i[o. Note that the subscript "B’
for the land/ocean temperature will be omitted in the following:

Ty = f(T.p;) = {d20T® — (1 — c2)oT* + p2L,boT? + piI(1 — a2)}C5* (2.4)

Prediction of the first kind describes the flow T(t) commencing at T'(¢1), and
its internal stability at fixed external parameters p;; prediction of the second kind
characterises the effect of varying p; associated with external or structural stability.

Internal stability at fixed external parameters is commonly analysed by per-
turbations 4T on special trajectories like stable equilibria T,, limit cycles, etc.
Taylor expansion, (T, + 6T); = f(T,) + %|TO(T —T,) + ..., leads to the linear
tangent version of the climate model, 6T; = T; — f(T,) = J(T,)0T, whose eigen-

value is the inverse relaxation time scale, A = — 25|, = o5+ As [ = — 57 is the
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FIGURE 2. Zero-dimensional climate system with combined ice
albedo and greenhouse feedback: a) Equilibria on a cross-section
through state space, b) bifurcation diagram on a parameter plane
of the generalised polynomial of (2.4), and ¢) schematic presenta-
tion of the potential of a gradient system (see Fraedrich [6]).
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Ficure 3. GCM-experiment (after Weatherald and Manabe
[33]): Area-mean temperatures (in K) at various levels (indicated
on the right margin) versus changing incoming solar radiation (in

percent).

gradient of a potential F(T,p;), the equilibrium solution T, corresponds to an ex-
tremum or saddle-point in the cross-section of the state-parameter or (7', p;)-space

where f(T,) = —g—g = 0. Its internal instability is defined by an F-maximum which
depends on the sign of the eigenvalue, A = z;li T, < 0.

Eaxternal stability is associated with the prediction of second kind and the sys-
tem’s sensitivity to changing external parameters or boundary conditions. This can
be characterised qualitatively by catastrophes in the state-parameter or (T,,,p;)-
space by J(T,) = %|To = filzTﬂTo = 0: Bifurcation occurs where a stable and an
unstable fix-point coincide leading to a fold-catastrophe at T.; the coalescence of
two folds defines a cusp, T);*:

fold  f(Trp) =0, &l =0 (2.5)
cusp f(To**J%) = 07 % Tx* = 07 :JJH? T3 = 0

The results are summarised in Fig. 2. There is a stable equilibrium, 7, repre-
senting today’s greenhouse climate. The two neighbouring fix points at the same
external parameter constellation are unstable and act as repellors defined by the
maxima of the potential F(T'). All initial conditions in their environment are at-
tracted by the stable equilibrium 7, or the 'deep freeze’ and ’'boiling heat’ bounds
limited by a = (0,1) or @ = (0,1). The direction of the flow depends on the sign
induced by the incoming and outgoing radiation difference, R{ - Rf. Changing ex-
ternal parameters reveals the generic configuration of two fold-catastrophes with
stable and unstable equilibria coalescing. One of these catastrophes is attained,
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for example, when reducing the incoming solar radiation or the parameter y. Note
that GCMs (Manabe and Weatherald [33], Fig. 3) revealed similar behaviour when
reducing solar radiation with ice conditions approaching.

More variables complicate matters but add interesting dynamical features
(Saltzman et al. [27], Kallen et al. [16]). For example, the ice-albedo feedback can
be extended introducing the latitudinal extent of the sea-ice or the continental
ice-sheet, respectively, as a new state variable, which interacts with the global
energy balance. The sea-ice extent acts as an insulator for the global temperature
represented by the ocean. The dynamics of the continental ice-shield is linked to
the global temperature through the ice-albedo feedback; here the position of the
snow-line separating accumulation and ablation zones needs to be parameterised
by the global temperature.

2.3.2. SENSITIVITY ANALYSIS: The sensitivity analysis is a more practical ap-
proach to determine the system’s linear behaviour near its stable equilibrium.
Before evaluating climate variance formally by the stochastic analysis (see below),
the effect of changing feedback parameters on climate, assuming these to be part
of the dynamical system, is estimated. It is commonly applied to global data sets
satisfying the global energy balance at equilibrium (see textbooks, Hartmann [11]).
Near the stable T,-equilibrium the linear response of the system to small varia-
tions of external parameters defines the sensitivity in terms of global mean surface
temperature variations §7,:

climate sensitivity (0T = —0T + {sensitivity} (2.6)
sensitivity (in K) 0T, = %To{&z + 84}

where the co-albedo and co-emittance variations are §, = —da/(1-a) and d, =
%6{1/(1-%@. Setting (6T); = 0, relates small external parameter variations to

changes of the equilibrium temperature leading to the sensitivity 8 = %TO(JQ—I—JQ),
which is commonly applied to various external parameterst: G(r) = §T,(r) = rT).
That is, a B(r) = 0.018T, shift of the equilibrium temperature is caused by a 1%
change in the parameter, r, keeping all others constant. Two sensitivities are of
particular interest because of their association with global change issues of anthro-
pogenic and natural impact on the climate system. They are related to changes
of the C'O,-concentration in ppm, ¢ = 0.235In(C'0O;), and to changes of the in-
coming solar radiation p associated with astronomical cycles. Polar and tropical
regions may be distinguished by the dominance of the ice-albedo and the moisture-
emittance feedback, respectively. Thus, changing the incoming solar radiation by
1% (the ice-age reduction is about 1.6% ) shows that the polar sensitivity is twice
as large as the tropical response with 1.9K versus 0.9K. Note that the Stefan-
Boltzmann effect (designated as 'no-feedback’) gives about 0.7K (see Table 2). A
similar result is obtained for COz-doubling (a 100% change): The polar response
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Table 2: Sensitivity of the greenhouse climate due to changes of solar radiation,
B(), and carbon dioxide, G(COy).

sensitivity (in K)

feedback B(1) B(COs)
1o 72 1.7
albedo (polar) 191 4.5
emittance (tropical) 90 3.0
albedo and emittance 413 13.7

exceeds the tropical by 30% with a 4.5K sensitivity compared to 3.0K. Introduc-
ing the moisture-emittance feedback almost doubles the C'Os-sensitivity of the
no-feedback climate from 1.7 to 3.0K.

Two comments are in order: (i) For a complete sensitivity analysis the de-
pendence of the single external parameter r on all other parameters p; needs to be
included, ‘f]—r;p = %—? —I—Ei% % Here, however, these relations are discarded assum-
ing all other factors being constant. (ii) A positive feedback destabilises the system
only, if a perturbation grows, which implies positive eigenvalues of the linearised
system. At fixed external parameters the variations of albedo and emittance are
da = —2byT,0T and %(50{ = 2dyT,0T. Therefore, the two linear regression-type
positive feedbacks (by = 2byT,,d; = ngT,)) do not alter the system’s internal
stability, if 0 < by < 4(1 —a,)/Tp ~ 0.01 and 0 < dy < 4(1 — %ao)/To ~ 0.01.

2.3.3. STOCHASTIC ANALYSIS: The deterministic sensitivity analysis provides in-
formation about climate variability by feedback induced changes of albedo or emit-
tance. It is complemented by a stochastic analysis of the linear tangent model to
obtain explicit estimates of the climate variance. This leads to the Langevin cli-
mate with white noise being added to the linearised system (replacing the feedback
sensitivities). The distinctly different time scales involved, 75 > 74, may be vi-
sualised as an analogue of the Brownian motion with its small and fast moving
particles exciting the large and slowly hoovering ones (Hasselmann [12]). In this
sense the white noise is a parameterisation of the fast atmosphere’s fluctuations
(14) forcing the linearised slow climate system (7z) to a response which charac-
terises climate variability:

Langevin’s climate 0 = —%6T + {noise es(t)} (2.7)
noise variance o4 = %q

Stochastic forcing acts as a white noise energy injection rate parameterising the
sensible and latent heat exchanges. Formally, the auto-covariance describes the
infinitesimally short memory of the delta-correlated fluctuations acting on the cli-
mate system: <ea(t)ea(t+ 8)> = ¢d(s) ~ %q ~ (Tier[:p(—%|s|) with the white
noise spectrum or forcing intensity gq.
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Closure by entropy balance: Stochastic forcing and the dynamic response of
the climate system are limited by global energy and entropy constraints that are
satisfied by both the fast and the slow system. This leads to a closure which, in
general, arises when coupling the fast parameterised with the slow resolved dy-
namics. A first order closure links the stochastic forcing intensity with the large
scale asymptotic response realizing the global entropy balance of the atmosphere
as the gas working for the greenhouse heat engine. At equilibrium, its efficiency n
is a measure of the portion, nlR, = D, of the incoming solar radiation, which is
converted into mechanical energy (or dissipation D). It drives the atmospheric mo-
tion by convective overturning exchanging airmasses between surface (T') and aloft
(T'4). These motions force the variability of the slow climate system by stochas-
tically fluctuating energy injections; they are measured in terms of temperature
changes (divided by the land/ocean heat capacity C') and the slow relaxation time

scale 7p:
closure Ta= % = n% = %n% and o4 = . (2.8)

As the working fluid is the atmosphere, and the greenhouse is the heat engine,
the global climate system does not deliver the mechanical energy to space but
keeps it through dissipation. Thus the mechanical energy dissipation D at tem-
perature, Tp, contributes to the entropy budget and remains part of the global
energy balance instead of being extracted. In this sense Margules’ approach on the
energetics ("Uber die Energie der Stiirme’ [20]) is extended here by the appropri-
ate entropy balance. In equilibrium this leads to an efficiency of the atmosphere
contrasting Carnot’s reversible case which is related to technical heat engines:

Margules Carnot
energy 0=R|]—Rt 0=R|—-Rt-D (2.9)
entropy 0=5] 51T +Sins 0=5-57
efficiency N = NrewTD/Ta0 Nrew = 1 — Tao/To

Import, export, and internal generation of entropy are S| = RJ]/T, and ST =
R1/Ta0, and S;t = D/Tp. The efficiency of the greenhouse, n = D/R] ~ 16%,
depends on the temperature, T'p ~ %(TAO +T,), attributed to the internal entropy
generation and the Carnot efficiency, 9,.¢, ~ 1— V2 ~ 15%. Note that in Carnot’s
reversible case, the entropy import balances the export and the mechanical energy
D is extracted from the system’s energy balance, where it remains in Margules’
case.

Climate response: The stochastic differential equation can be solved by stan-
dard methods (see, for example, Gardiner [10]). Given the white noise forcing
variance, 0% = (nR,/Cp)? = q/Ta, and the decorrelation time scales of the fast
and the slow systems, 74 and 75, the asymptotic response can be quantified by the
variance spectrum, S(w), employing the Fourier transform (Fig. 4), or denoting
the total variance, 02 = g7 = JiTATB:
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FIGURE 4. Spectral response of the Langevin climate system on
white noise stochastic forcing: (a) theoretical and (b) observed

(after Kutzbach and Bryson [17], and Lemke [18]).

_ 2, =2
response spectrum S(w) = q/(w” +757) (2.10)
standard deviation (in K) o= ir)To %

The response spectrum, S(w), of the stochastically forced Langevin climate is
characterised by the following regimes in the frequency domain (Fig. 4): For high
frequencies (w > %) the stationary spectral response attains a red noise power
law, S ~ w2, with variance densities rising from high to low frequencies. In the
low frequency domain (w < %) a flat white spectral plateau emerges with § ~

q7% (Fig. 4). Given an order of magnitude difference between time scales of the
fast and slow components of the climate system, :T; ~ 0.1, the efficiency of the
greenhouse heat engine, n ~ 16%, and the stable equilibrium, T, ~ 280 K, we
obtain a stochastic response measured by the temperature standard deviation, o
= V<dT?> ~ 3 K, of the climate system. Both red noise spectrum and response

intensity are in qualitative agreement with the observed climate variability.

3. Quasi-geostrophic two-layer atmosphere in a channel

Highs and lows are synoptic scale eddies with remarkable influence on the climate,
its variability in the mid-latitudes and in the tropics. Therefore, climate modelling
cannot be persued without incorporating these weather processes in parameterised
format or explicitely resolving them. A minimum linear dynamical system of the
quasi-geostrophic flow in a zonal channel is introduced as a 'toy weather model’ to
illustrate some dynamical and energetical aspects of the weather systems related to
the classical baroclinic instability problem. Responses to damping and to stochastic
forcing conclude the analysis. They are attributed to the larger and the smaller
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scales (Fig. 5), which embed the midlatitude synoptic disturbances. This leads
to realistic estimates of the space-time variability representing mid-latitude storm
tracks which, ultimately, may serve as the stochastic input to the ocean model
(section 4). First, the basic approximations underlying quasi-geostrophy are briefly
summarised (for more details see Holton [13], Pedlosky [23]).

Time-Scale
20 days Dp]anetary waves

[:]highs and lows

[_———] tropical cyclones
2 days
Dfroms
6 hours [_—__\
thunderstorms
1 hour :]
cumulus clouds
10 minutes :]
turbulent eddies

Space-Scale 0.1 1 10 100 1000 10.000 km

FIGURE 5. Space-time scales of atmospheric phenomena.

3.1. Quasi-geostrophy

The quasi-geostrophic flow is the basis for toy models describing mid-latitude
synoptic systems (Fig. 5). General assumptions are a shallow atmosphere, whose
vertical extent is small compared to the earth’s radius, so that hydrostasy can be
employed balancing gravity and the vertical pressure gradient force:

hydrostasy 0=—p~lp.—yg (3.1)

Thus pressure p can be used as the vertical coordinate and its height z (or geopo-
tential gz) as an independent variable. The density p satisfies the equation of state,
p = pRT, with the gas constant R so that the temperature can be expressed in
terms of thickness, T'= —pR™'gz,. The balance of Coriolis and horizontal pres-
sure gradient forces defines the geostropic wind, fou, = fo(ug,vg) = g(—2y, 22),
with the Coriolis parameter, f, = 2Qsin(lat) ~ 1.12-107*s™1, at latitude lat=50°
and the Earth’s rotation rate,  ~ 27 day~!. Variation of the Coriolis parameter
is often introduced by a (-plane approximation, f = f, + Sy where 8 = f, =
2Qa™tcos(lat) ~ 1.471 - 1071m =L, On constant pressure levels the geostrophic
flow follows the geostrophic streamfunction, ¢ = flqz, which does not contribute

o

to the mass balance

continuity Uy +0y = —wy (3.2)
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so that the vertical mass flux, dp/dt = w ~ —pgw with w = dz/dt, is determined
by the ageostrophic part of the windfield, u, = u —u,.

Quasi-geostrophy may now be introduced as an approximate inertial form (in
a similar manner as the dynamical core of the statistic-dynamical climate system)
assuming the adjustment to geostrophy to occur instantaneously. This can be pa-
rameterised as a diagnostic process effecting the change of horizontal momentum,
du/dt ~ dgug/dt. It feeds back to the dynamics through the ageostrophy induced
vertical mass flux due to the imbalance between Coriolis and pressure gradient
forces effecting the momentum and the thermal energy equations:

zonal momentuim (% +u,-Vug = +fv— gz, (3.3)
meridional momentum (% +u,- Vv, = —fu—gz,
thermal energy (% +u,- V)T = wS

Damping, F,. Fy, and diabatic warming, ()/c,, may be added to the rhs. The wS-
term comprises both the vertical temperature advection, wTj,, and the pressure
work, pdp/dt. The static stability, S = of =T, + g%, is assumed to remain
unchanged. For further analysis this system is conveniently reduced to equations
of vorticity, (; = V24, and thermal energy:

vorticity (2 +u, V)V + Bipy = fowy (3.4)

thermal energy (% +u,- V), = —fiw

Eliminating w shows that the quasi-geostrophic potential vorticity, W = f,+ By +
V3 + (ff/a)’(ﬁpp, is conserved for adiabatic quasi-geostrophic flow. Combination
provides the diagnostic w-equation describing the secondary circulation of the flow:

w-equation Viw+ %wpp = f;"{ug V(V2)+ f)}p — f;"vz(ug - Vip,)
Upward motion is caused by differential vorticity advection (of upper cyclone, near
surface anticyclone) or warm air advection (by upper high, near surface low). This
secondary circulation is induced by the imbalance between Coriolis and pressure
gradient forces so that the height adjusts to the vorticity field (rhs first term) and
vice versa (rhs second term).

A more formal derivation of the quasi-geostrophic system is based on the
estimate of |u,|/|u,| ~ O(Ro) <« 1 by the Rossby number, inertial/Coriolis force
or Ro = fOLL’ whose smallness is a measure of the validity of geostrophy (for de-
tails of a perturbation theory in terms of the Rossby number see Pedlosky [23]). In
summarising quasi-geostrophy, we follow Holton [13]: The momentum (and its rate

of change following the horizontal flow) can be approximated by its geostrophic
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value (and its rate of change following the geostrophic wind) and the small verti-
cal advection can be neglected. As the vorticity is constrained to be geostrophic,
the vertical motion, which is uniquely determined by the geopotential height field,
ensures that vorticity changes will be geostrophic.

3.2. Linear two-layer baroclinic model

A minimum model describes the quasi-geostrophic flow in a linear two-level, f-
plane channel spanned by (z,y,p)-coordinates. The dynamics is reduced to upper
and lower layer vorticity equations (Fig. 6). They are formulated on two pressure
levels (subscripts 1 and 3), p1 = 250 and p; = 750hPa of Ap = 500hPa difference,
and coupled by the thermal energy equation at the 500hPa level (subscript 2). Top
and bottom levels (subscript 0 and 4) satisfy the boundary conditions associated
with the vorticity at the levels 1 and 3 without or with massflux injection.That is,
a vertical massflux induced by boundary layer friction (Ekman pumping).

Levels Variable Equation
Omb 0------ w,=0 or # 0: Ekman pumping
250mb R I, Vorticity
500mb 2emeeee w, Thermal Energy
750mb e A Vorticity
1000mb 4omme w,=0 or # 0: Ekman pumping

FiGUre 6. Vertical structure of the two-layer baroclinic model.

Linearisation leads to perturbations, u} 3 = w13 — U3 etc., about the ba-
sic state with upper and lower layer zonal current, Uy 3, which is separated into
the barotropic and baroclinic contributions: the vertical mean, U = %(Ul + Us)
~ 10ms™!, and the difference or half-shear, Ur = %(Ul —Us) ~ 10ms~L. The
thermal wind, 2Ur, is a measure of the baroclinicity. Due to geostrophy of the
basic state, the thermal wind is related to the meridional temperature gradient,
T, = A,T/L,, and characterises the mid-latitudes with mixing of the warm sub-
tropical and cold polar air, A,T ~ 25 K:

thermal wind 2Ur = —%Ty ln(ﬁ—f) ~20ms™?

static stability o = —I—%S ~3-105m2Pa 252

The static stability realizes the radiative greenhouse effect with the mean temper-
ature, T ~ T4, at 500 hPa, and the vertical gradient, T, = A,T/Ap with AT =
T3 =T, ~ 50 K. It enters the Rossby radius of deformation, s~ = % Vo ~ 720 km
(or K ~ 6k or wavenumber six), which describes the horizontal distance travelled
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by an internal gravity wave during a pendulum day. The zonal extent of the peri-
odic channel, L, = 2wacos(50°) ~ 25000 km, corresponds to the fundamental zonal
wavenumber one, ki = 27/L,. Meridionally, the channel extends over a 30° belt
about 507 latitude, which defines a fundamental half-wavelength, L, = 3400 km, or
meridional wavenumber, [; = 7/L,.. These values remain unchanged in the subse-
quent stability analysis. Finally, perturbations of the geostrophic streamfunction
are separated into an external barotropic, ¢ = %(1/)14—1/)3), and a baroclinic or
first internal mode, 6 = %(1/)1 —1p3); V2(1p,0) and (1, 0), represent the respective
vorticities and the meridional geostrophic wind components. The f-term may be
included by adding the planetary vorticity advection, 8, or 36, to the baroclinic
or barotropic equations:

barotropic (2 + ULV + Up(V?), =F, (3.5a)
baroclinic (2 +ULZ) (V20 — 2620) + Up(V2p + 26%4p), = Fy

Parameterisations: To analyse variability induced by stochastic forcing (z),
damping is required to ascertain asymptotic equilibrium and prevent the system
from instability:

forcing Fy = —%fo(wo —ws)/Ap+ zy(t) Fy= —%fo(wo + wy)/Ap+ 29(2)

Ekman pumping, g—;woA =—r13 Vz’(l)]_’g, is associated with relaxation time scales,
r13 ~ 1.25day™!, denoted as Rayleigh damping. The simplest form is upper and
lower lid pumping of the same intensity, » = r1 = r3, which may be interpreted
by friction at the lower boundary and, at the upper boundary, by export into the
barotropic component U of the basic state, where it dissipates at the same rate:

—%f,)(w(, —ws)/Ap = —r V2 — %f{)(w() +ws)/Ap = —rvZ%e

Stochastic forcing is introduced as a white noise vorticity injection rate (DelSole
and Farrell [3], and not as a momentum injection). It is parameterised by ver-
tical mass fluxes through the upper and lower lid and adds to the deterministic
contribution of Ekman-pumping. Associated with these vertical mass fluxes, we
assume that vertical overturning provides the stochastic input: warm and cold
fronts, convective complexes, up- or downdrafts at the top of the boundary layer
and anomalous energy import or export from an overcast or cloud-free top level
(in terms of deviations from the basic state):

Zy = Z ey 11(t)sin(ly)erp(ike) zg = Z eo.xi(t)sin(ly)exp(ikx)
k,l ks,
Without stochastic forcing, the meridional temperature difference drives the at-
mospheric motion by baroclinic instability. This flow exchanges airmasses through
slantwise convection from the subtropical lower-layers to the sub-polar upper lay-
ers (and vice versa) and decays due to Ekman-pumping which represents lower
layer friction and upper layer export to the larger planetary or the zonal mean
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basic state U. The cycle may be closed by the baroclinically induced meridional
eddy heat flux divergence; it can be used to feed the baroclinic part of the basic
state low Ur, and thus change the thermal wind. The subsequent reduction of the
meridional temperature gradient is adjusted by radiative processes by Newtonian
cooling. Thus, at equilibrium, the eddy kinetic energy generation is balanced by
damping or dissipation while the excitation by stochastic forcing generates the
system’s variability.

Spectral model: The separation {1, 0} = {U(t), Oni(t) }sin(ly)exp(ikz) trans-
forms the (¢, #)-perturbations from the (z,y)-space to the zonal and meridional
wavenumber or (k,7)-domain by a superposition of orthogonal eigenfunctions. The
transformation replaces the partial differential equations by a spectral model in
terms of a set of autonomous ordinary differential equations describing the time-
evolution of the complex amplitudes, (1, Orr) = (Trs, Ort)r + 4(Tri, Org)s; the
subscripts k.| will be omitted in the following;:

barotropic K*U, = —ikK?U¥ —ikK?Ur® —r K*T + ¢ (3.5b)
baroclinic (K2 + 2k%)0; = —ikUp(K? — 2r5%)¥ — ikU(K? 4+ 26*)0 — rK?O + ¢4

with the total wavenumber, K? = k% + 12, and the stochastic vorticity injection
rate (€y,€g).

3.3. Analysis: stability and stochasticity

The model analysis follows two tracks: Baroclinic instability describes the asymp-
totic growth and decay of the system with and without damping; the phase relation
and the energy cycle offer further insight to the physical processes. The stochas-
tic analysis leads to a quantitative measure of space-time variability. Again, the
Langevin approach is adopted with white noise being added to the linearised sys-
tem. The frequency-wavenumber spectra of the geopotential height (or meridional
geostrophic wind) and the eddy meridional heat flux are deduced. Coupling with
the overall entropy budget provides a first order closure to derive the magnitudes
of stochastic forcing and its response.

3.3.1. BAROCLINIC INSTABILITY (r = 0, € = 0): Cast in matrix form the spectral
model (3.5) gives L&, = J® with ® = (¥, 0)7. Linear stability analysis reduces
to the eigenvalue-problem of the linear operator J, J 4+iwL = 0, replacing the time
derivative by —iw. Eigenvalues 'w’ (denoting angular frequencies) and eigenvectors
characterise the asymptotic (t — o) or normal mode behaviour of the solution.
The real part of the complex eigenvalues w leads to the zonal phase speed, Re(w)
= ck, and the growth or decay rates are defined by the imaginary part, Im(w) =
w; >0 or <O0:

dispersion(no damping)  det(J + iwL) = 0 (3.6)
asymptotic frequency w—Uk = 2t XUrk
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with X2 = gijlgj The real and imaginary parts of the eigenfrequencies are pre-
sented in a frequency-wavenumber or (w,k)-diagram (Fig. 7a) which shows the
basic features of baroclinic instability as discussed by Eady in his seminal 1949-
paper [5]:

(1) Short wave perturbations, K > V2K are neutral (w; = 0), and propagate
with two different zonal phase speeds which, for small waves, K — oo, tend towards
the basic zonal flow of the upper and lower layer, ¢ = U & Ur. That is, both layers
are uncoupled (Fig. 7a, curved lines).

(i1) Long wave perturbations K < V25 are unstable (w; > 0), couple upper
and lower layer and, therefore, propagate with the vertically averaged zonal flow,
¢ = Re(w)/k = U (Fig. Ta, straight line). The coupling commences at the bifurca-
tion point (K3)? = 2x2; maximum growth occurs at K2, = 2kvVr2 — k2 or k2,
= —(2x% +1%) 4 26/(262 +12) which, for I = 0, reduces to 2x2(v/2 — 1).

(iii) Phase structures of the baroclinically unstable waves (Fig. 8 top panel)
demonstrate further properties associated with the barotropic and baroclinic modes.
Being perpendicular, their wave solutions are shifted by %7(, which specifies the
separation Ansatz

¥ = Uoexp(wit)sin(ly)sin{k(zx — Ut)}
0 = Oexp(w;t)sin(ly)cos{k(z— Ut)}

Substitution into the spectral model provides the amplitude and phase relations
independent of the mean zonal steering flow U. Discarding the Doppler shift by
setting U = 0 does not change the results: ©, = \Ilowi(kUT)’l = ¥, X with
tan{a@) = X. Now the slope of the trough axis of the unstable waves can be
determined. It is tilted westward by a phase shift of 2a < %71’ from the lower to
the upper layer height field (or a < iﬂ to the mid-level temperature or #-field,
Fig. 8):
13 = £ 0 = Uoexp(wit)sin(ly)sin{k(z — Ut) £ a}/cos(a)

which, for maximum growth, is about 65°. Similarly, the mid-level temperature
wave and the vertical motion (secondary circulation) are derived using the thermal

energy equation with zonal, meridional, and vertical temperature advection by the
mean and eddy flow:

thermal energy 0, + Uby — p,Up = %%M
The wo-wave, wy=Quexp(wit)sin(ly)cos{k(x—Ut)} with Q,=2(w;O,—Urk¥,) Lo

gAp’
is in phase with the #-wave and reveals sinking cold and rising warm air masses.

This counstitutes a secondary circulation extracting kinetic perturbation energy
wof through eddy available potential energy by the meridional eddy heat flux ¥ 6
(see perturbation energetics and Lorenz energy cycle). Further physical processes
are related to the vorticity changes in both layers. They are induced by zonal
advection and stretching:
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FIGURE 7. Frequency-wavenumber diagram (along 50° latitude)
for the f-plane two-layer baroclinic model: Real and imaginary
parts of eigenfrequencies w for (a) no damping (r = 0) and (b)
damping with r = 1.25day™!; (c) shows contours of power spec-
trum density of the meridional wind for the stochastic excitation
of all wavenumbers (contour interval 10m?*s~2day). The baro-
clinic (barotropic) basic flow is Ur = 10ms~! (U = 10ms™1),
the fundamental meridional wavenumber is I; = 7/3400 km, and
Rossby radius is s~ ' ~ 720km. The upper abscissa gives the
related phase speed.
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vorticity (V2h13)t + U 3(Vih1 3)s = :Fg—“pwz

This leads to additional phase relations between a reference and other wave-
solutions (say 6 and b), v¢p = arctan{Im(0©/B)/Re(©/B)}.

(iv) The mechanism of baroclinic instability can be interpreted in terms of a
positive feedback between the barotropic ¥»-wave and baroclinic -wave in vertical
shear flow Ur (Fig. 9a, b). The upper and lower layer i)-waves consist of zonally
alternating lows and highs with vertical trough and ridge axes. The §-wave de-
scribes zonally alternating mid-level warm-cold anomalies, whose trough axis is
tilted vertically by w. These waves interact by their horizontal and vertical advec-
tion of vorticity and temperature as follows:

Vorticity advection, Uy 3(V31)13),, creates upper and lower level cyclonic vortic-
ity east and west of the respective troughs (Fig. 9¢, d). Thus cyclonic vorticity
generation, which is induced by the westward tilted #-wave, leads to an untilted
1-wave. On the other hand, the vorticity generation by -wave advection supports
a #-wave of opposing vertical tilt. Thus, there is a negative feedback leading to an
oscillation such that the upper (lower) layer cyclones move eastward (westward)
relative to the mean flow. Meridional temperature advection, 1, Ur, introduces a
feedback loop: The barotropic ¥-wave creates a mid-level warming east of its ver-
tical trough axis which, due to hydrostasy, is associated with an eastern upper
level high and lower level low; west of the axis, cooling has the opposing effect
(Fig. 9e, f). This induces a westward tilted trough supporting the #-wave which,
due to its vorticity generation, feeds back onto the untilted -wave. Thus the
feedback loop is closed and wave amplidudes can grow so that instability arises.
However, the instability is diminished by the +-wave induced vorticity changes,

Level 1

Streamfunction 1;
250mb

¥ Temperature 6
warm T Vertical motion ws

Level 3 \

i‘:“);/ Streamfunction 3
750mb Y

&

P

Ficure 8. Properties of the most unstable Eady-type wave in
uniform shear flow in a uniformly rotating environment. The so-
lution depends on x, y, and the pressure level; the trough axis
is indicated by a thick line, arrows in mid-level denote vertical

velocities. The external parameters U, Ur, l1, k are as in Fig. 7.
The basic state streamfunction, —2Ury, is added to level 1.
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which do not support the #-wave tilt and the associated temperature tendencies.
Vertical motion plays the following role: The advective tendencies caused by the
-wave induce non-geostrophy, because pressure and vorticity fields become out of
balance. This is compensated by vertical motion (see w-equation). It counteracts
the advective tendencies but cannot cancel them and, therefore, creates a negative
feedback (—). Note that the generation of -wave vorticity by vorticity and the
generation by temperature advection cancel each other exactly. Therefore, vortic-
ity stretching must dominate over vertical temperature advection in order to have
a postive feedback. The first is more influential for long waves (~ k) while the
latter dominates for short waves (~ k®). Thus, positive feedback and instability
emerge for longer waves. Shorter waves, however, show oscillating behaviour (short
wave cut-off ) with uncoupled upper and lower layer dynamics being dominated by
the vorticity advection process (no feedback).

(v) Damping at top and bottom changes the dispersion relation whose eigen-
values are displayed in the (w, k)-diagram (Fig. 7b):

dispersion w — Uk = —{ir(K? 4+ k%) £ i\/(Upk)2(4x* — K*) + r2x%} /(K* 4 2K7)
instability (Urk)?(4x* — K*) 4+ 7%5* > r?(K? + £7%)?

The real parts are comparable with the no damping case. Although the imagi-
nary parts show the stabilizing effect of damping, the maximum instability (no
damping) and minimum stability (damping) occur at similar wavenumbers. There
is a marginal instability shear in the damped case, Up,, = rKk~1(2x5% — K?)7!,
whose minimum with respect to the zonal wavenumber defines a critical value for
instability to occur. The upper and lower layer phase speed occurs at the bifur-
cation, Upy, = —rﬁzkb_l(K;f - 4/44)71/2, whose wavenumber depends on the basic
state shear.

(vi) Perturbation energetics give an additional description of baroclinic in-
stability. It is obtained by the sum of the barotropic and baroclinic equations
after multiplying (3.4) with —(¢,8), respectively, and channel integration, that is
summing over all relevant wavenumbers, [ | = 2?7:0- Only waves which couple
upper and lower layers are associated with meridional heat transport and baro-
clinic energy conversions. This leads to the channel averaged generation of eddy
kinetic and available potential energy, a conversion between the available potential
energy reservoirs of the basic state to the eddies, and, finally, the dissipation of
kinetic energy D:

energetics [(¢2 + d)i) + (02 + 6’3) + 26%0%]; + 4Ur[K%4,0] = D + [tpey + Ocq)

Without the stochastic vorticity injection rate € and the associated energy gen-
eration, [y + feg]. the eddy perturbations gain from the basic-state reservoir
of available potential energy, AZ = [2k2U%y?], which is represented by the ba-
sic state meridional temperature gradient (or Ur) and maintained by the dif-
ferential heating between polar and tropical regions. The associated basic state
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FiGure 9. Mechanism of baroclinic instability: Zonal cross-

section of the ¢- and #-waves (a, b) and their tendencies induced
by the vorticity (c, d) and temperature (e, f) equation. Horizon-

tal vorticity and temperature advections lead to changes of the

trough axes ([, \) and ageostrophy. Vertical motions tend to re-

store geostrophy adjusting the vorticity and height changes (and

vice versa). A positive feedback links cooperating tendencies ().
The short wave cut-off occurs if the negative feedback (~ £*) dom-
inates over the positive feedback (~ k) for large wavenumbers (or

short waves).
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kinetic energy is KZ = 1[UZ + U3]. The baroclinic conversion, C(AZ, AE) =
—4Ur[k*9,0] = Urk[¥,.0; — U,0,]x2, describes the meridional eddy heat flux,
[2¢),0], and its correlation with the meridional temperature gradient (or ther-
mal wind, Ur). It supports the eddy available potential energy reservoir AE =
2k2[6?] at the expense of the AZ-reservoir, which is constant and, therefore, infin-
itely large in the linear system. The conversion from AE to eddy kinetic energy,
C(AE,KE) = —g—;[ngﬁ], describes vertical overturning by slantwise convection
and correlates an upward mid-level vertical massflux ws with a positive temper-
ature (or thickness) anomaly, f.0. Finally, the eddy kinetic energy reservoir, K E
= v} + 0] +uf +uf] = L[¥2 + U? + O + ©?]K?, is depleted by damping (or
dissipation), D = =2r[¢2 +42] = 2r[02 +607] = 2r K E, which closes the linear baro-
clinic branch of the quasi-geostrophic version of the Lorenz energy cycle (for more
details see, for example, James’ textbook [15]). After suitable seasonal or annual
averaging, the energy cycle is a useful diagnostic tool for model simulations and
observations; it does not explain cause and effect but keeps balances (baroclinic
branch in bold letters):

Lorenz energy cycle = AZ < C(AZK7Z) = KZ = D(KZ)
|l C(AZ,AE) { C(KZ.KE)
AE = C(AE,KE) = KE = D(KE)

3.3.2. STOCHASTIC ANALYSIS: Maintaining eddy variability against damping re-
quires forcing. It is provided by random vorticity injections which, added to the
barotropic and baroclinic mode, leads to the Langevin approach (see DelSole and
Farrell [3] for details). Formally, the white noise forcing €(t) is delta-correlated,
<eri(t)ef (t+s)> = qrid(s), and, in the frequency domain, €(w), is represented by
the intensity matrix, <ej(w)ef(w)> = Q = gI. The wavenumbers excited imply
independent forcing of the barotropic and the baroclinic modes by identical magni-
tudes of vorticity injection through Ekman pumping, qr; = const, of all long waves
below the bifurcation value, K < Kj. The asymptotic spectral response C(w, k, )
can now be determined analytically whose trace defines the variance spectrum Sgs:

Langevin weather Lo, = JP +e (3.7)
response co-spectra C(w, k1) = (2r) YT +4wL) 1QHF(JH —jwLH) !
variance spectrum Seo = quN/M

Integration over all frequencies, <>, gives the total variance at integer wavenum-
bers, which can be derived by residue calculus (see also DelSole and Farrell [3]). The
geopotential height or the meridional geostrophic wind are obtained multiplying
with f2 or k% f2, respectively; the kinetic energy is %[sz <Sgpg>]. Analoguously,
the off-diagonal elements lead to the co-spectrum, Sye, from which the meridional
heat flux, <kSye>, can be deduced.
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Atmospheric response: The determinant of the matrices attached to the co-
spectrum (when deducing their inverse) leads to the numerator N and the denom-
inator M = det(J +iwL)det(J¥ +iwLf) = {K2(K? 4+ 2r%) )2 (w—w; ) (w—w2)(w—
wi)(w — wi), which contains the squared product of the differences between the

driving and the eigenfrequencies, w and wy 5:

N = (w=Uk)*{K* + (K? + 2672} + (Upk)*(K* + (K? — 2%)% 4+ 292 K*)
M = {K*(K? 4+ 2:*)}*{(w — Re(w1))? + Im*(w1) H(w — Re(w2))? 4+ Im?(w2)}

In the frequency-wavenumber or (w, k)-domain, the variance density peak occurs
at the wavenumber associated with minimum damping (Fig. 7b and c). Further
results are noted: (i) The variance spectrum attains a red noise profile, Spp ~ w2
for w — oc. (ii) Location and intensity of the spectral peaks depends sensitively
on the choice of the parameters of the model. They identify wavenumber and fre-
quency of the dominant scale of variability responding on the stochastic forcing;
the associated zonal phase speed, ¢ = w/k, is the line connecting peak and origin.
(iii) Qualitatively, there is surprisingly good agreement with the southern hemi-
sphere 500 hPa geopotential height observations along 50° South (Fig. 10) which
are better represented by a flat zonal channel than the 50° North equivalent, where
stationary waves induced by mountains play a prominant role. Note that the mag-
nitude of the response remains to be determined by the intensity of the stochastic
forcing, gi;. It is assumed constant for all those wavenumbers which contribute to
the meridional heat-flux when upper and lower layers are coupled, K < Kj,.
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Ficure 10. Frequency-wavenumber diagram (along 50°South,
after Fraedrich and Kietzig [9]): Contours of power spectrum den-
sity (in m?s™2day) of the observed meridional geostrophic wind
at 500 hPa in winter. The linear frequency axis is labeled in pe-
riod (days); the upper abcissa gives the related phase speed (see

Fig. Tc).
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Closure by entropy balance: The stochastic forcing of the mid-latitude at-
mosphere is limited by global energy and entropy constraints satisfying both the
dynamical and stochastic part of the system. The global entropy balance of the
mid-latitude atmosphere leads to a first order closure for the stochastic forcing in-
tensity, g, utilising heat exchange between equator and pole as a thermodynamic
engine. At equilibrium its efficiency, n = A,T/T;, ~ 10%, is a measure of the
portion of the total energy input, R;, ~ 100 Wm~? at subtropical temperatures
T:,,, which is converted by damping, <D> = 2r<KE> = nR;,,. The energy output,
Rout = Rip, occurs at subpolar temperatures Th,y¢, with AyT = T5p, —Tour ~ 25 K.
The efficiency converting the heat input into mechanical energy leads to the as-
ymptotic eddy kinetic energy response of the channel, <KE> ~ 3.5 - 10°> Jm ™2,
dissipated at the rate 2r. Thus the closure, which determines the random injection
rate qi1, 18 prescribed by the system’s basic state temperature and radiation field:

N A ;
closure <D>= qklr[[(2<M>]7p =nR;, (3.8)

Again, [ ] = 2?’20 indicates summation over the relevant integer wavenumbers,
K? = (k* +1%) < Ky at fixed | = [;, which yields the channel mean. Now, the
intensity of the random vorticity injection rate, qz; ~ 0.8-107°s73, can be derived
employing residue calculus (see also DelSole and Farrel [3]): <%>= % + % with
A = {K*+ (K?42)?)%}, B = K4(K? 4+ 2)\%)(K? + \?), C = {2+ K*Up*(1 -
ANK 72 + 40 K~4) 72}, and D = {K? + E2Up? (202 — K2)r 2} (K? 4+ \?).

The closure quantifies the frequency-wavenumber or variance spectrum (3.7).
Both structure and magnitude of the variability (Fig. 7c) are surprisingly similar to
observations from the 'roaring forties’ driving the Southern Ocean (Fig. 10). This
response of the stochastically forced linear atmosphere will, in a conceptual sense,
enter the following nonlinear ocean model in terms of the spatially inhomogenous
stochastic wind forcing of the double gyre.

4. Reduced gravity ocean in a square basin

Prototypes for the study of the mid-latitude wind-driven ocean circulation are
the single and double-gyre models in a rectangular basin. They are designed as
conceptual tools to study physical mechanisms and hardly used to simulate the
actual ocean circulation. The solutions depend sensitively on boundary conditions
and subgrid scale parameterisations which are poorly know from observations.
Therefore, one of the main tasks of the wind-driven single and double-gyre is to
explore the role of dissipative processes within the western boundary currents (for
a review see Pedlosky [24]). The role played by dissipative processes to balance
the continuous input of vorticity by the wind stress is not the only fundamental
problem analysed by the wind-driven gyre models. Their rich structure of multiple
equilibria is becoming evident. In particular, the dynamics of the double gyre flow
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has received considerable attention as a conceptual model for the North Atlantic
current system.
4.1. Shallow-water equations and two-layer model

The two-dimensional shallow water equations govern the motion of a single homo-
geneous incompressible fluid layer in hydrostatic equilibrium on a rotating sphere,
whose depth is small compared to the earth’s radius. They can be derived from the
three-dimensional momentum equations by vertically integrating the hydrostatic
equation with constant density. By including a wind forcing, these equations de-
scribe a simple approximation to the depth averaged dynamics of the wind-driven
ocean circulation.

z Atmosphere

\/\/\/

HI(Xy.t
Layer 1 (xy.t)

TN T N

Layer 2 H2(x,yt)

/DM

FIGURE 11. Geometry of the two-layer shallow water model.

X

Derivation of the reduced gravity equations requires introduction of the a
two-layer version of the shallow water equations. Consider the motion of two ho-
mogeneous layers of uniform but distinct densities shown in Fig. 11. Subscripts
1 and 2 indicate upper and lower layer, respectively, which are attached to the
horizontal velocity u = (u,v), the density p, and layer thickness H. The pressure
and, therefore, the horizontal pressure gradients in each layer can be calculated by
integrating the hydrostatic equation with the surface condition of constant pres-
sure and using continuity of pressure at the interface of the layers with:

layer 1 Ly + fkxu, = —gVH +F, = —HV-w

layer 2 Luy + fk xup = —gVH + ¢'VH; + F, 4 = —H,V-uy
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The reduced gravity is ¢’ = g(p2 — p1)/pa, the layer depthis H = Hy; + Hy +
D where D is the bottom topography, and the total derivative for each layer is
designated by d/dt = 9/0t + u-V; g is the acceleration of gravity, and f is the
Coriolis parameter given by the S-plane approximation, f = f, 4+ (y. Forcing and
dissipation terms are summarised in F.

4.2. Reduced gravity model

In any three-dimensional representation of the oceanic or atmospheric circulation
the vertical structure can be represented in terms of barotropic and baroclinic
modes. For the ocean the time scale of the barotropic mode is about several hours,
whereas the time scales of the baroclinic modes are at least several days. This clear
separation of the barotropic and baroclinic time scales allow to use the reduced
gravity model to represent the wind-driven circulation of the upper layer.

Assuming the lower layer of infinite depth and at rest, Hy > H; and us =
0, the barotropic mode is filtered out leading to the reduced-gravity model in
component form, whereby the subscript 1’ for the upper layer is omitted:

zonal momentum (% +u-Viu = —¢H,+ fuv+F, (4.1)
meridional momentum (% +u-Vjv = —¢H,— fu+F,
continuity (2 +u-V)H = —H(u, +uy)

Note that the reduced-gravity equations are similar to the shallow-water equations
of flat bottom topography, with gravity g being replaced by the reduced-gravity ¢'.
In the subsequent discussion these equations are used to model the upper ocean in
a rectangular basin of 2400 km by 2400 km extent; the (z,y)-coordinates increase
eastward and northward.

Parameterisations: The external forcing and internal dissipative terms enter
the dynamic equation by the components F, and F,:

damping/friction F, = % —ru+ AAu, F, = % —rv+ AAv (4.2)

where 7 = (7%, 7Y) defines the wind stress forcing; the interfacial friction is pa-
rameterised by Rayleigh friction scaled by r» = 1077s™1 ~ 1/100days and the
lateral viscosity is represented by a Laplacian scaled by A = 200m?s~!, which are
standard values for high resolution models. The atmospheric forcing of the ocean
by the wind stress consists of a mean field and stochastic field:

wind stress T = 7_—’mecm + 7_—’stochc&stic

The mean wind stress Ty,eqn is represented by a zonal wind field of a sinusoidal
pattern in —%Ly <y< %Ly generating a northern cyclonic subpolar and a south-
ern anticyclonic subtropical gyre. The mean or reference wind stress amplitude 7,
is set to a standard value of 0.05 Nm~2. The amplitude of the fluid motion and
hence the nonlinearity of the system is proportional to its strength:

NTOcos(iﬂ)
v

€T
mean
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Ficure 12. The weight function f(z,y) for different values of
the inhomogeneity parameter (X in km) at y = 0.

The spatially inhomogeneous stochastic forcing Tstochastic accounts for the high-
frequency atmospheric variability and is parameterised by the bulk formula for
the wind stress. The bulk formula is used in all experiments, which leads to the
parameterisation of the spatially inhomogeneous stochastic forcing:
ﬂtochastic = _pai'r'CD|u'|ula

where (u',v") ~ (€,(t),,(t))f(x,y), pair» |0| and u' are the air density of 1.3
kgm™3, the near surface wind speed and the velocity; Cp ~ 2-107% is the drag
coefficient and €, (t) is white noise with zero mean and standard deviation o.
In the numerical experiments the white noise is updated once a day. The weight
function f(x,y) parameterizes the spatial structure of the atmospheric variability
by a Gaussian shape, whose origin is placed in the center of the basin: f(z,y) ~
emp(% + %) Circular symmetry of the stochastic forcing, A\, = A, = A, is
employed for f:onvenience to parameterize the localised atmospheric eddy activity
along the storm tracks. The shapes associated with different A-values used in the
numerical experiments are shown in Fig. 12. The variance o2 of the white noise
is 28 m2s~2, characterizing the observed atmospheric conditions in the North At-
lantic region. This parameterisation is justified by the observed horizontal struc-
ture of wind speed standard deviations (see e.g. the COADS data prepared by
Wright [34]). For all parameters standard numerical values are used. Furthermore,
a standard finite-difference scheme is used to numerically solve the equations with
a partial-slip boundary condition (see Sura et al. [30] for details of the numerical
scheme and the boundary conditions).
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4.3. Analysis of numerical experiments: Design, results, and interpretation

The experiments focus on the nonlinear behaviour of the wind-driven double-
gyre circulation in the presence of a spatially inhomogeneous stochastic forcing.
Therefore, the model dynamics is analysed by numerical experiments.

Design: The effect of the stochastic wind stress is analysed by four different
experiments, three of which are conducted with varying inhomogeneity parameter
A = 300, 600, and 1200 km; in addition, a corresponding run without stochastic
forcing is performed. In the subsequent discussion only the experiments with A
= 300 km and the run without stochastic forcing are shown. The experiments
commence from a resting state and are integrated for 210 years. The spin-up
phase of about 10 years is skipped. For all further diagnostics monthly means are
used to calculate the basin integrated eddy kinetic energies (see below) because
it is reasonable to employ the period of the non-dispersive first baroclinic Rossby
mode in mid-latitudes as an appropriate time scale, which has the order of years.
A convenient overall description of the transient behaviour of the basin circulation
can be given in terms of the integrated eddy energy content in the basin domain.
Therefore, the time series of the basin integrated eddy kinetic and eddy available
potential energies are analysed:

energy KE(t) = %pl[ﬁ(u'z +0")] PE(t) = %g'pl[h'z] (4.3)

where horizontal averaging over the basin domain is denoted by brackets. The
layer thickness H is the sum of the equilibrium depth H, and the depth anomaly
h, so that H(z,y,t) = H,+h(z,y,t). All time dependent variables 1 are separated
into a long term mean 1 and a deviation ', 1 = 4 4+ ¢'. Furthermore, the mass
transport stream function is used to present the structure of the flow patterns
emphasizing the symmetry properties of the double-gyre.
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FiGURE 13. Time series of basin integrated eddy energies in
Jm™2: a) no stochastic forcing and b) spatially inhomogeneous
stochastic forcing (A = 300 km). The dashed (solid) line denotes
the eddy potential (kinetic) energy.
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Results: The double-gyre model with a spatially inhomogeneous stochastic
forcing shows a clear bimodal behaviour in the eddy energy time series (see Fig. 13).
One regime shows a quasi-antisymmetric, the other regime a nonsymmetric flow
pattern (Fig. 14a,b). More details are noted: (i) The nonsymmetric regime equals
one member of a well know nonsymmetric pair of stationary solutions. (ii) The non-
symmetric regime does not appear without the spatially inhomogeneous stochastic
forcing nor with spatially homogeneous stochastic forcing. Thus, the regime tran-
sitions are induced by the spatial inhomogeneity of the white noise variance. (iii)
The regime transitions commence from a positive curvature of the jet (Fig. 15).
After the transition the system remains in the nonsymmetric regime for several
years to decades before the northern extension of the anticyclonic recirculation
gyre detaches, again giving rise to the quasi-antisymmetric regime. The residence
duration of the nonsymmetric regime depends on the nonlinearity of the system.
Thus, the system undergoes a noise-induced transition (Horsthemke et al. [14]),
which can occur only if there is a certain amount of randomness in the environment
of the system under consideration.

Interpretation: The simple wind-driven ocean model forced by a combination
of a double-gyre wind stress and a spatially inhomogeneous stochastic field shows
an unexpected bimodal behaviour. One regime is a quasi-antisymmetric state with
a free jet penetrating deep into the basin; the more or less strong meandering of
the jet does not change the overall flow pattern. The second regime appears to be
related to the choice of the spatially inhomogeneous stochastic forcing. It consists
of a nonsymmetric flow pattern with a very strong northern recirculation gyre
and a north-eastward flowing jet with a penetration scale of 500 600 km. The
unexpected result of the presented experimental setup is the appearance of the

a
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FIGURE 14. Representative mass transport streamfunction fields

in m®s™! for the two different regimes (see Sura et al. [30]): a)
low eddy energy state and b) high eddy energy state. The axes
are labeled as horizontal distances in km.
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FIGURE 15. Snapshots of representative mass transport stream-
function fields (in m3s™!) with regime transitions (see Sura et
al. [30]). The axes are labeled as horizontal distances in k. The
origin of the annual sequence is arbitrarily chosen.
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nonsymimetric regime in the presence of the spatially inhomogeneous stochastic
wind forcing (Fig. 14b). This nonsymmetric regime represents a member of the
nonsymmetric part of stationary solutions. This is in agreement with McCalpin et
al. [21] who found no evidence of a bimodal behaviour related to multiple equilibria,
as long as the pure antisymmetric windforcing is used.

Thus the stochastic forcing enables the system to reach the neighborhood of
an unstable fix point, which cannot be reached without the spatially inhomoge-
neous stochastic wind field. The unstable fixed point then acts to steer the model
evolution in a temporarily persistent regime. Transitions into the nonsymmetric
regime commence from a abnormally positive curvature of the jet which also can-
not be attained without the spatially inhomogeneous stochastic wind stress. That
is, the curl of the localised stochastic wind stress forces an anomaly which leads
to the abnormal curvature of the jet. Thereby the very small basin of attraction
of the nonsymmetric state is reached and initiates the regime transition from the
quasi-antisymmetric, low eddy energy state to the nonsymmetric, high eddy en-
ergy state. The transition back into the quasi-antisyminetric regime is caused by
the detachment of the northern extension of the anticyclonic recirculation gyre.

The behaviour of the wind-driven ocean circulation can be substantially mod-
ified by the stochastic forcing of the atmosphere. This emphasizes the important
concept of noise-induced regime transitions in the wind-driven circulation. In this
sense, the analysis suggests [2] that multiple equilibria are of significance in the
description of the low-frequency variability of the wind-driven ocean circulation,
regardless of their stability.

5. Summary and outlook

These lecture notes introduce the global climate system and two of its major
players: the atmosphere and the ocean. Leitmotif is a toy modelling approach
to the analysis and understanding of climate variability in terms of noise and
noise induced transitions. First, a minimum climate model is derived to demon-
strate the model building strategy from a coupled atmosphere-ocean system to a
statistic-dynamical model with a parameterised atmosphere. In addition, analy-
sis methods are presented summarised under the key words stability, sensitivity,
and stochasticity. The stability analysis shows how elementary catastrophes de-
scribe the topological structure of a zero-dimensional climate system. Sensitivity
analysis is a frequently used technique analysing feedbacks in the real world and
demonstrating the effect of varying external parameters on the equilibrium state.
Additive white noise, which parameterises the influence of the fast atmosphere on
the climate, leads to the conventional Langevin approach explaining the variabil-
ity about the equilibrium as a stochastic response. A closure required to couple
the stochastic forcing intensity with the global climate thermodynamics leads to
realistic estimates of this variability. Next, atmosphere and ocean are treated. A
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textbook toy model explains mid-latitude weather systems by the linear baro-
clinic instability of a zonal basic state in a quasi-geostrophic channel. A novel
interpretation of the baroclinic instability is presented in terms of feedbacks be-
tween the barotropic and baroclinic modes. Including damping through Ekman
pumping stabilises the system; adding stochastic forcing leads to an asymptotic
respouse (presented in a wavenumber-frequency spectrum) which is in qualitative
agreement with the observed variability of the mid-latitude westerlies. Employing
a thermodynamic closure leads towards a consistent parameterisation of synoptic
scale eddies. Conceptually, this response (or parameterization) serves as a link to
the nonlinear ocean toy model which describes the double gyre circulation in a
square shallow water basin driven by a mean and stochastic wind forcing field.
Sufficient spatial inhomogeneity of the atmosphere’s stochastic forcing leads to
transitions between two ocean regimes one of which would not occur otherwise.
This introduces a new concept of decadal variability in the climate system.

With stochastic forcing being the overall theme, a climate modelling concept
emerges. That is, the response of a stochastically forced linear atmosphere serves as
a parameterisation of the fast fluctuating mid-latitude eddies which, by the mean
and the spatially inhomogeneous eddy wind forcing, drives the slow nonlinear ocean
to possible regime transitions. What remains is the introduction of a feedback from
the ocean to the atmosphere which, for the mid-latitudes discussed here, is one of
the priority research areas.
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