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ABSTRACT

The Kelvin wave-CISK theory of the Madden-Julian oscillations in the tropical troposphere is reexamined
by introducing a phase lag between the maximum cloud heating and the maximum convergence of the Kelvin
wave. The study was motivated by the observations in the equatorial Pacific that clouds in the Kelvin waves
are organized into westward propagating mesoscale cloud clusters. Since this phase lag depends on the propagation
speed of the Kelvin waves, the waves become dispersive, and this leads t a favored growth of long waves. The
results of this study suggest that the presence of organized mesoscale cloud systems needs to be parameterized
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directly into those climate models that cannot adequately describe their dynamics.

1. Introduction

Among the several theories proposed to explain the
30-50 day oscillations of the tropical troposphere, two
appear to be related. Emanuel (1987) and Neelin et
al. (1987) suggested the phenomenon is caused by a
wind-evaporation feedback mechanism that modulates
cumulus convection as the energy source for the os-
cillation. In a test using a simplified general circulation
model, Neelin et al. showed that the peaks around 20-
25-day period in the power spectra of the deviation
fields of the tropical troposphere are considerably en-
hanced with the inclusion of wind-evaporation feed-
back. In another theory proposed by Chang and Lim
(1988) and Lau and Peng (1987), Kelvin wave-CISK
was suggested as the responsible mechanism. However,
because of the nondispersive nature of Kelvin waves,
results from linear analyses suggest a scale selection
that favors waves of short wavelength, rather than long
wavelength such as wavenumber 1 or 2, as required by
the phenomenon.

Some authors attempted to find a solution to this
scale selection problem by looking for processes that
may suppress the rapid growth of Kelvin—-CISK at short
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wavelength. Wang and Rui (1989, 1990), for example,
showed by considering the coupling of Kelvin wave-
CISK modes with the Rossby waves through Ekman-
type boundary-layer effects, that the wave-CISK modes
are most unstable at wavenumbers 1 or 2. A few others,
such as Lau and Peng (1987) and Lim et al. (1990)
on the other hand, argue that linear CISK analysis is
inappropriate because negative heating is allowed in
regions of downward motion. These authors demon-
strated that the scale selection problem can be avoided
altogether if a “positive-only nonlinear heating” is used
to represent the cumulus effects. As explained in Lim
et al., this “nonlinear effect” is present even when the
amplitude of the disturbance is very small, and it is
therefore a very severe form of nonlinearity. Using a
model with a “positive-only nonlinear heating,” but
linearized in all other terms of the governing equations,
Lim et al. showed that the Fourier components of a
disturbance, after a period of initial adjustment, all
grow at the same rate so that the form of the disturbance
can be preserved. However, a recent analysis by Crum
and Dunkerton (1992) seems to suggest that the scale
selection problem in linear Kelvin wave-CISK theory
is only modified by the introduction of nonlinear heat-
ing but not eliminated.

The purpose of this paper is to consider yet another
aspect of this scale selection problem: namely, the or-
ganization of cumulus clouds into cloud clusters, and
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the effect of this organization on the distribution of
heating in the Kelvin wave. The study is partly moti-
vated by the fact that the positions of cumulus con-
vection in the Kelvin waves in the theories just men-
tioned do not appear to agree with observations. Qual-
itative results from observational studies seem to
suggest that areas of strongest cumulus activities appear
to the west (or, lagging in phase) of the region of low-
level convergence (Nakazawa 1988; Madden and Ju-
lian 1971, 1972), while in the traditional linear wave—
CISK theory or in “the nonlinear CISK” theory, it is
assumed to take place in phase with low-level conver-
gence. The location of cumulus convection in the
wind-evaporation feedback theory depends on the di-
rection of the background wind. If a low-level easterly
wind is assumed in the background in accordance with
the observed mean state of the equatorial troposphere,
then cumulus convection should be the strongest to
the east, in advance of the low-level convergence.
The observational evidence of a time lag between
cumulus convection and low-level convergence was
first reported by Cho and Ogura (1974); the effect of
a time lag on the wave-CISK theory was first examined
in Davies (1979), where the plausibility of the time
lag was discussed. There are several physical processes
that may cause a phase difference between low-level
convergence and cumulus convection; one which has
the potential to cause the longest phase delay is that
cumulonimbi are often organized into mesoscale sys-
tems, which propagate at a velocity distinctly different
from the background system in which they are embed-
ded. Nakazawa (1988) recently reported a hierarchy
of cloud organizations associated with the 30-60 day
oscillations; the smallest unit is the westward propa-
gating mesoscale cloud clusters embedded inside the
synoptic-scale eastward propagating superclusters. The
cloud clusters typically have a lifetime of about two
days, and travel about 2000 km during their lifetimes,
a fair distance even for global-scale systems. This ob-
served hierarchical structure forms the basis of this
study. A specific scheme will be proposed to incorporate
the effect on the distribution of heating due to the west-
ward propagation of the cloud clusters. We will show
that, because of the phase lag in heating caused by the
cloud clusters, even the linear wave-CISK theory may
exhibit the necessary scale selection to remain a credible
explanation for the Madden-Julian oscillations.

2. Governing equations and Kelvin waves

The governing equations for the Kelvin waves in the
pressure coordinate system after linearization in the
equatorial beta plane are

du  d¢

a0 5;—0 (1a)
P
é—+6yu=0 (1b)
dy
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Bt(ap) C,dr (1d)
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The right-hand-side term of ( 1d) represents the heating
rate due to cumulus convection where s is the entropy;
o in this equation is the stability parameter. The last
of these equations is the hydrostatic relation where «
is the specific volume, R the gas constant, and 7 the
temperature.

If a sinusoidal dependence in x and 7 is assumed in
the form

exp[i(ut + kx)]

then the governing equations become

iuu + ik®d =0 (2a)
92 + Byu =0 (2b)
dy
tku + 5’2 =0 (2¢)
op
i;z(gg) + ow = Q. (2d)
op

The term Q in (2d) represents the heating term on the
right side of (1d). Eliminating « from (2a) and (2b),
one obtains the solution:

- B -
o Qoexp[ ZCy], (3)
where ¢ = —u/k. Therefore, equatorially trapped so-
lutions are possible only if the real part of ¢, Re(c)
> 0, or eastward propagating waves. The governing
equations may be reduced to a single equation in terms
of the vertical p velocity w:

v o 1
wtae=ae
This is obtained from (2a), (2¢), and (2d) by elimi-
nating all other variables.
We will assume as in many CISK studies that the
heating rate is proportional to low-level convergence,
represented by the vertical velocity w* at a low-level p

(4)

0 = esw™* f(p); (5)

Jf(p) here is a normalized vertical distribution function:

l 'Ds
EL fp)dp =1
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low-level convergence, and this can be accomplished
by letting ¢ have a complex value.

Equation (4) together with the heating parameter-
ization gives rise to an eigenvalue problem in terms of
c. Given the heating rate Q, (4) can be solved to give
w(p); but heating in turn depends on the vertical ve-
locity w. Therefore, the condition that

w(p*) = w*
gives rise to an equation that can be solved for the
eigenvalue c.
3. Sinusoidal heating profile

Our interest in this problem was stimulated by the
discovery that if a simple sinusoidal heating profile is
assumed in (5), no unstable solution can be found if
¢ is assumed to be real. A simple calculation will verify

part of the complex propagation speed as functions of the heating
parameter ¢, for the piecewise linear heating profiles with zero phase
lag. Only unstable modes with ¢; > 1 m s~' are shown.

where Ap = (ps — p,), the difference between the pres-
sures at the surface and at the tropopause, respectively.
Here ¢ is a nondimensional constant indicating the in-
tensity of heating. Later in this paper we will consider
the effects of a phase difference between heating and

this: assuming

f(P)=gsin[§i,(ps—p)], (6)
(4) is satisfied by
w= "e"z“’*,r : sin[{—pms—p)]. (7)
2(o=<(3))
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FIG. 2. Same as in Fig. | except a phase angle ¢ is introduced between maximum cioud heating and maximum low-
level convergence: (a) ¢ = +7/4, (b) ¢ = —7/4, (c) = —n/2, and (d) ¢ = —3x/4. Negative phase angle indicates

heating lagging behind low-level convergence.
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FIG. 3. Growth rates of Kelvin waves as a function of wavenumber when a phase angle is
introduced according to (15). The vertical distribution of heating is piecewise linear, same as in
Figs. 1 and 2. The curves labeled 1, 2, and 3 correspond to 1.0, 2.0, and 3.0 for the heating
parameter ¢. Panel (a) corresponds to the case ¢; = 0.0 m s and panel (b) ¢, = —10.0 m s™".
The calculations are made assuming the cloud clusters have a half-lifetime of 24 hours.

The condition that w(p*) = w* requires

1 _ meoT
2[o — c*(x/Ap)’]
which gives
A
c=+22 a”z{l -z sin[(
T 2

¢ is real or pure imaginary depending on the value of
¢, so long as it is a real number. The pure imaginary

value of ¢ is obtained when

e>ec=2/1rsin[(

ps — p*
Ap

Ds — p*
Ap

P B -
sm[Ap(ps D )]

R
]

that is, when cumulus heating is greater than adiabatic
cooling at all height levels. This represents an unstable
mode. However, according to (3), a pure imaginary
value of ¢ does not represent an equatorially trapped
wave; therefore it is not a physically realistic solution.
Assuming

ps = 1000 mb, p, =100 mb, p* = 900 mb
the critical value of € is
e = 1.87.

For € < ¢, we have only stable solutions. Assuming
107 for the value of o, we have

1/2
C ~ 30(1 —i) .
€

50 T T T T T T
(b)
40 W
30} 4
20 ¢ 4
o 2 E
3
o L . L L L
0 2 4 6 8
Wavenumber

FIG. 4. The phase speeds of the Kelvin waves corresponding to cases shown in Fig, 3.
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FIG. 5. Same as in Fig. 3 except the half-lifetime for the
cloud clusters is assumed to be 48 hours.

Results from observational studies seem to suggest
that in general the strongest cumulus convection does
not always occur at the place where we have the largest
low-level convergence (e.g., Cho and Ogura 1974). This
difference in phase between cumulus heating and low-
level convergence can be accommodated by allowing
¢ to have complex values; as can be seen from (5), the
phase angle of a complex e corresponds to a phase shift
between the heating and the low-level convergence of
a linear sinusoidal wave. It is easy to see from (8) that
physically acceptable unstable mode is possible in this
situation. The effect of this phase shift will be discussed
in detail later in this paper.

4. Piecewise linear heating profile

In more general cases unstable solutions are possible
even for real values of e. We consider, for example, a
piecewise linear heating profile given by

2(ps — p) P>
(p:—pp) ’ ?
= 9
=10 . 9)
(pp—pt) ’ 7 ’

where p, is the level of maximum heating. To obtain
the solution of this eigenvalue problem, we write

W= w,+ we

where § is the Dirac delta function, we require
dPw. o 2e0*(ps — p1)
7 T 3w =
dp* ¢ (ps = o) (Dp — 1)

subject to the boundary condition that w.= 0 at p = p;
and p = p,. It is straightforward to show that

é(p—pp) (10)

2ew*(ps — p1)
(ps - pp)(pp - pt)

we =

G(p’ pp)9

where G(p, p,) is the Green function (see Appendix)

. [N [N
( . Sm[? (py — pc)] Sln[? (p-— ps)}
N

b

N
sin{? (pp — pt)]

Ds>p>DpD
G(p,p,,)=J ’

. [N . [N
. sm[? (P — ps)] sin B (p— p,)]

N [N ' ’
sin| — (ps — pr)

c

{ pp>p>p; (11)
N here is used to denote
N=Vo.
"~ Combining w, and w,, one obtains
2ew*(ps — .

w=ew*f(p)+ (2s — pi) G(p, pp). (12)

and let
w, = ew* f(p).
Since
d’w, ¢ 1 2ew™(ps — p1)
+Sw,=—50- 5(p = Pp)»
dp2 C2 @ C2 Q (ps - pp)(pp - pt) p p)

(Ps - Pp)(Pp - pt)

Now, usually p* > p,, the condition that w = «* at p
= p* gives the following equation,
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2¢(ps —p*) ¢

2¢(ps — p1)
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. [N [N
Sm[; (o — Pz)] sm[; (p* - ps)]

gle)=1-

(0s— 1)) N(s— ) D»

It is difficult to find solutions of this eigenvalue
equation by analytic means. Instead, a numerical
method is used to determine the zeros of g(c¢). For ¢
= ¢, + ic;, where ¢, and ¢; are the real and imaginary
values of ¢, the values of g are scanned in the region
0 < ¢ < 50 and 0 < ¢; < 50, with intervals Ac, and
Ac¢; 0.1 m s™'. A particular interval is considered to
contain a zero if both the real part and the imaginary
part of g change their signs over the interval. Note that
this method will find only eastward-propagating neutral
and unstable modes. The following values for the pa-
rameters are used:

Pps = 1000 mb, p, = 100 mb,
Pp=600mb, ¢ =107,

Figure 1 shows the unstable modes determined using
this method as functions of ¢ in the range (0, 4). Several
unstable modes are found, but only those with max(c;)
= 1 m s~ are shown in this as well as the following
figures. The solid line shows the real part of ¢ and the
dashed line the imaginary part. Here ¢, ranges between
6 and 12 m s™!, while ¢; has values 1-6 ms™!. As a
reference for comparison, it is noted that a wave with
phase speed ¢, = 10 m s~ travels around the earth in
about 42 days. For a given value of ¢;, the growth rate
of the wave is inversely proportional to wavelength be-
cause of the nondispersive nature of the Kelvin wave.
For ¢; = 1 ms™', the e-folding time for waves with
wavelength A = 1000 km is about 1.9 days, while the
corresponding e-folding time for wavenumber | wave
is 69 days. This represents a considerable weakness for
the Kelvin wave-CISK theory: the CISK mechanism
appears to favor the growth of waves with short wave-
length instead of waves of global extent.

The role of the phase difference between wave-in-
duced low-level convergence and heating can be ex-
amined by letting

€ = ¢ exp(ig). (14)

Positive or negative values of the phase angle ¢ cor-
respond to the positions of cumulus heating leading or
lagging in phase relative to the wave-induced low-level
convergence. The real and imaginary parts of the ei-
genvalues as functions of ¢ are shown in Fig. 2 for (a)
¢ =w/4,(b) ¢ =—7m/4,(c)¢d = —7/2, and (d) ¢
= —37 /4. Again eigenmodes with max(c;) <1 ms™!
are not shown in these diagrams. For the same value
of ¢ the phase speed of the most unstable wave in-

- D)

= 0. (13)

[N
sm[;(.ps - pz)]

creases as ¢ decreases from w/4 to —3w/4. Note the
axis for ¢, has been shifted downward by 10 m s™! for

= —n/2,and by 20 m s~ for ¢ = —3w /4. The imag-
inary part of c first increases, then decreases with de-
creasing values of ¢. For ¢ = 2 and ¢ = —= /4, for
example, the most unstable mode has ¢; = 15 ms™!,
or an e-folding time of 4.6 days for a wave with wave-
length equal to circumference of the earth at the equa-
tor. But because of the nondispersive nature of Kelvin
waves, the shortest wave grows the fastest.

5. Incorporating the propagating cloud clusters

One of the main differences between the air-sea in-
teraction theory according to Neelin et al. (1987) and
Emanuel (1987) and the Kelvin wave-CISK theory is
the relative location of cumulus heating in the distur-
bance. If the surface evaporation is included as a mois-
ture source in addition to low-level convergence, the
relative location of cumulus heating will be shifted from
the position of maximum low-level convergence toward
the position of maximum surface evaporation. Since
in a linear normal-mode analysis the magnitudes of
the variables are proportional to one another, one can
assume cumulus heating to be proportional to any of
the disturbance variables provided an appropriate
phase angle is taken into account.

In a recent observational analysis using GMS high-
resolution IR data, Nakazawa (1988) showed a hier-
archy of organizations of cumulus convection in the
30-50 day oscillations in the equatorial western Pacific.
The oscillation is associated with a number of synoptic-
scale super cloud clusters that have a horizontal scale
of several thousand kilometers and propagate eastward
at a speed about equal to that of the Madden-Julian
oscillations. Within each super cloud cluster are short-
lived cloud clusters with a typical lifetime of the order
of two days. These clusters are typically generated in
the region of low-level convergence, but propagate
westward at a speed about 10 m s™! to the rear of a
super cloud cluster.

The presence of propagating cloud clusters suggests
that the location of maximum cloud heating is not
likely to be at the place where the clusters are generated.
Since the propagation speed of the super cloud clusters
is about the same as the propagation speed of the Mad-
den-Julian oscillations, they are not likely to contribute
to any significant phase shift between low-level con-
vergence and cloud heating. The westward propagating
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FIG. 6. Phase speeds of the Kelvin waves corresponding to cases shown in Fig. 5.

cloud clusters, however, will be able to cause consid-
erable phase shift if heating maxima are not reached
during the early stages of their lifetimes. If one assumes
the heating maximum is reached at the half lifetime of
a cloud cluster, then the following phase shift between
low-level convergence and heating can be expected:

T

¢ =3 (e — o)k, (15)
where 7 is the mean lifetime of the cloud clusters and
¢, its propagation speed; ¢, and k are the real part of
the phase speed and the wavenumber of the Kelvin
wave. In our calculations we have imposed the con-
dition that —7 < ¢ < =, for otherwise we would be
allowing the unrealistic situation to happen where the
cloud clusters are allowed to propagate over one wave-
length in either the positive or the negative direction.
The introduction of such a phase shift in cumulus
heating means the parameterized heating is dependent
on both the phase speed as well as the wavenumber of
the wave; consequently, the Kelvin wave becomes dis-
persive.

a. Piecewise linear heating profile

We first consider the case of a piecewise linear heat-
ing profile. The CISK analysis with a phase shift given
by (15) is performed in the same way as described in
the previous section. Figure 3 shows the growth rate
(instead of the imaginary part of the phase speed) as
a function of wavenumber. The calculations are done
with 7/2 = 24 h; all other parameters are the same as
described before. Panel (a) shows the results obtained
with ¢; = 0, while panel (b) is for the case with ¢,
=—10 m s!. The lines labeled 1, 2, and 3 in each
panel correspond to the values of the heating parameter
¢ = 1, 2, and 3. Results shown in these panels indicate
that the growth rates have maxima toward the long

wavelength end of the spectra. The peaks in growth
rates in the case ¢, = 0 m s™! are located at wavenum-
bers 3, 4, or 5, depending on the value of the heating
parameter. In all three cases, however, the growth rate
drops rapidly toward wavenumber 1. In the case ¢,
= —10 m s™!, the growth rate peaks at wavenumber 2
when ¢y = 1.0, with much smaller growth rates at both
wavenumbers 1 and 3. For ¢, = 2.0 or 3.0, the peaks
are located at wavenumber 3, but the scale selection is
weak among the first three wavenumbers of the spectra.

(a)

(b) 4
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N
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FI1G. 7. Growth rates of Kelvin waves when a sine heating profile
is used. A phase angle between heating and wave convergence is
introduced according to (15), as in Fig. 3. The results shown are for
the cases ¢; = —10.0 m s™': (a) 7/2 = 24 hours and (b) 7/2 = 48
hours. Labels 1, 2, and 3 are the same as in Fig. 3.
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The maximum growth rates in these two cases are about
0.6 day™'.

Although the present analysis assumes no back-
ground wind, it can be considered as carried out in a
moving reference frame provided that the background
wind is uniform with height. Therefore, it is somewhat
difficult to decide what phase speeds for the Kelvin
waves are implied by the periods of the Madden—Julian
oscillations. For Kelvin waves with wavenumber equal
to 1, 30-50 day periods correspond to phase speeds 7~
12 m s~'. But considering the Doppler effect of the
mean easterly wind over the equatorial region, a phase
speed anywhere between 7 and 25 m s~! can probably
be considered as reasonable.

The phase speeds of the waves obtained in this anal-
ysis are shown in Fig. 4 for (a) ¢, = 0 and (b) ¢
= —10 ms ~'. In the first case, ¢, = 0 m s7', the phase
speeds for waves with wavenumbers 1, 2, and 3 are all
within reasonable range. But the phase speeds are
probably too large at wavenumber 4 for ¢ = 2.0, and
at wavenumber 5 for ¢ = 1.0 and 2.0. In the case ¢,
= —10 ms !, the phase speeds are reasonable at wave-
number 1 and 2 for all three values of ¢. At wave-
number 3, the phase speeds exceed 30 ms™' for ¢
= 2.0 and 3.0.

We have repeated the analysis using 7/2 = 2 days.
The results are shown in Fig. 5 for the growth rate
spectra and in Fig. 6 for the phase speeds of the Kelvin
waves. In both of the cases ¢; =0m s™'and ¢, = —10
m s~ the growth rates at ¢y = 3.0 are very small at all
wavenumbers shown. At ¢ = 1.0 and 2.0, the spectra
are much narrower than those obtained with 7/2 = 1
day, and have peaks located at wavenumbers 1 and 2.
The e-folding times at maximum growth rate for ¢,
= 2.0 are about 3 days when ¢, = 0.0 ms™}, and 4
days forc; = —10.0 m s\,

b. Sine heating profile

A similar analysis was also carried out using the sine
heating profile given in (6). The results are very similar
to those described in the previous subsection: maxima
are found in the long wavelength end of the growth
rate spectra for the variety of values of the background
parameters specified. Figure 7 shows as an example the
growth rate of the Kelvin wave as a function of the
wavenumber for the cases with ¢, = —10 m s™', and
7/2 equals (a) 24 h and (b) 48 h. Note that in these
cases no growth was found for the waves with wave-
length shorter than that of wavenumber 4.

6. Discussion and conclusions

An alternative to the nonlinear Kelvin wave-CISK
theory (Lim et al. 1990) is proposed to overcome the
scale selection problem in traditional linear Kelvin
wave—-CISK analysis. The analysis is based on the ob-
servations that in the equatorial Pacific, cuamulus clouds
are organized into westward propagating cloud clusters,
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which in turn are organized into superclusters that
propagate at about the same phase speed as the Kelvin
waves in which they are embedded. We attempt to pa-
rameterize the presence of this hierarchical structure
in terms of a phase lag between the low-level conver-
gence and the maximum cloud heating. This phase lag
depends on the phase speed of the background Kelvin
wave and the speed of the cloud clusters, and as a result
the Kelvin wave becomes dispersive, leading to the
preferred long-wave growth. In a qualitative sense this
can be visualized as organized cloud clusters com-
mencing their activities at a maximum of low-level
convergence, propagating westward, and reaching
maximum heating at about half-life time. It is in agree-
ment with the observations that clouds appear mostly
to the west of the low-level convergence in equatorial
Kelvin waves.

The results of this study appear to suggest the fol-
lowing.

1) Cumulus convection does not lead directly to
the presence of the Madden-Julian oscillations. In-
stead, they are organized into cloud clusters that are
meso-a-scale phenomenon.

2) The Madden-Julian oscillations are caused by
latent heat release in organized cloud clusters.

3) Therefore, the observed hierarchical organization
of cloud clusters should be considered as an integral
part of the dynamical processes leading to the 30-50
day oscillations of the tropical troposphere.

Among the theories that have been proposed to ex-
plain the 30-50 day oscillations, only the process pro-
posed in this study and that discussed in Wang and
Rui (1989, 1990) show the correct scale selection
property. The Kelvin waves in the wind-evaporation
feedback theory discussed in Neelin et al. (1987) and
Emanuel (1987), as in the original Kelvin wave—-CISK
theory (Lau and Peng 1987; Chang and Lim 1988),
are nondispersive and therefore are most unstable at
the shortest wavelength. A recent study by Crum and
Dunkerton (1992) suggested that even the nonlinear
effect in the “positive-only nonlinear heating” (Lau
and Peng 1987; Lim et al. 1990) only modified but did
not eliminate this scale selection problem. It would be
interesting in the future to construct a model that allows
us to select and combine these processes, and to com-
pare the model results with observations in order to
narrow the range of possible explanations of the Mad-
den-Julian oscillations.

In addition, we did not consider in this study the
presence of superclusters. What are the effects of super
clusters on the Madden-Julian oscillations? What are
the processes responsible for the organizations of clouds
into clusters and superclusters? These are but a few of
the questions that must be addressed in order to un-
derstand the complete dynamical processes leading to
the appearance of the 30-50 day oscillations in the
tropical troposphere.



76 JOURNAL OF THE ATMOSPHERIC SCIENCES

Acknowledgments. The research was supported in
part by research grants from the Canadian Natural Sci-
ences and Engineering Research Council, the Atmo-
spheric Environment Service of Canada, and the Fed-
eral Ministry of Science and Technology of Germany.
The work was initiated when one of us (HRC) was
visiting the National Central University under the
sponsorship of the National Science Council of Taiwan.

APPENDIX
The Green Function

We will use p, to denote the limiting value of p
when it approaches p, from the side where p > p,, and
p, from the p < p, side. To determine the Green func-
tion given in (11), we note the G(p, p,) in the solution
of w, can be written as

[N
Asm[;(p—ps)], Ds>p>Dp
G(p,pp) = N
Bsin[;(p—pz)], Dp>D> D

From this expression the derivative of G(p, p,) with
respect to p can be determined easily:

A]Icos[]—v(p—p)] Ds>p>Dp,
dG(p, p,) ¢ ¢ N ?

dp N N N

B— cos[~— (p— p,)] s Pp>D> P
¢ ¢

By definition, & should be continuous across p,, while

its derivative is discontinuous with a jump from p, to
p, equal to unity:

A sin[l—cv(pp — ps)] - B sin[g(pp - Pt)] =0

N N N N
A— cos[— (po —ps)] — B— cos[— (py —Pz)] =L
c c c c
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These equations can be solved for A and B to give the
Green function given in (11).
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