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ABSTRACT

Linear convective instability is revisited to demonstrate the structurally different growth rates of disturbances
in balanced and unbalanced models where diabatic heating is parameterized to be proportional to the vertical
mass flux, and Ekman-type lower boundary conditions are introduced. The heating parameterization leads to an
*‘effective static stability,”* which is negative when the vertical cumulus mass flux exceeds the total mass flux.
This results in large-scale convective overturning. The appropriate horizontal scale is the usual Rossby defor-
mation radius modified by the parameter /y — 1, where y is the ratio of cumulus to total mass flux. The
unbalanced flow instability varies from zero growth (¢ = 0) at finite horizontal scale (corresponding to twice
the modified deformation radius L = 2R) to infinitely large values (o — ®) at smallest scales (L = 0). The
growth of the related balanced model commences at the same scale (L = 2R) but attains infinitely large values
on approaching the scale of the modified deformation radius L = R. This short-wave cutoff appears as a result
of the changing vertical mass flux—heating profile associated with the Ekman boundary condition. Growth rates,
horizontal length scales, and associated mass flux profiles are qualitatively supported by observations.

A feature of the solution is its dependence on vertical structure. Specifically, for each imposed vertical structure
there are two solutions: one unbalanced corresponding to the cloud scale, and one balanced corresponding to
the scale of the modified deformation radius. It is the thesis of this paper that the latter (large scale) solution

VoL. 52, No. 11

represents a viable mechanism for the initial growth of either cloud clusters or tropical cyclones in nature.

1. Introduction

Lilly (1960), in an extension of the work of Haque
(1952) and Syono (1953), constructed a linear per-
turbation model for the development of a tropical cy-
clone. The model is hydrostatic and nonviscous with
a zero basic state; the distinguishing feature is the
presence of a modified static stability whereby in the
regions of upward vertical motion the static stability
is that relevant to saturated ascent along a pseudoadi-
abat and so is negative. Despite being developed as
an aid in understanding tropical cyclones, the unsta-
ble solutions were of internal gravity wave type (de-
pending on the unbalanced response of the partial
derivative of wind with respect to time to the pressure
gradient force), and the growth rate asymptoted to-
ward infinity with vanishing horizontal scale. It was
thus interpreted by later authors (Kuo 1961, 1965;
Charney and Eliassen 1964; Charney 1973; Yama-
saki 1972; Asai and Nakasuji 1977; Ooyama 1982;
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Yoshizaki and Mori 1990) as being the instability
governing the growth of cumulonimbus convection
and thus a mathematical model for moist conditional
instability. Charney and Eliassen (1964) and, inde-
pendently, Ooyama (1964 ) proposed an alternate lin-
ear perturbation model for tropical cyclone devel-
opment. The model geometry was essentially similar
to that of Lilly (1960), with hydrostatic, nonviscous
governing equations, zero basic state, and an initial
region of upward motion surrounded by a laterally
unbounded region of downward motion. The insta-
bility mechanism, however, was distinctly different
from that of Lilly (1960). The instability was present
in the balanced set of equations, which means it was
not of internal gravity wave type. An essential com-
ponent of the instability was a parameterization of
heating that included a component proportional to an
Ekman boundary condition for vertical motion. Thus,
the heating contained a proportionality to the model
low-level vorticity field and was essentially different
from the Lilly instability, which depended on the
presence of a modified static stability (Mak 1981).
This second instability formulated by Charney, Elias-
sen, and Ooyama is referred to as CISK (conditional
instability of the second kind).
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In this paper, we return to the modified static-stabil-
ity instability model of Haque and Lilly. We demon-
strate that an effective or modified static stability can
appear in the thermodynamic equation through the use
of a mass-flux-based parameterization scheme appro-
priate to large-scale flow. In the presence of the Ekman
boundary condition the resultant instability has both a
balanced and an unbalanced solution. The balanced so-
lution gives growth rates on the timescale of a day, and
on length scales of several hundred kilometers. Both
the growth rate and horizontal scale are related to the
vertical structure of the initial perturbation. By com-
parison with vertical structures and horizontal scales of
incipient tropical cyclones in nature, we propose that
the balanced version of the model may be a viable
mechanism for either tropical cyclone or tropical cloud
cluster development in nature.

2. Governing equations and analysis

The governing equations for convective instability
used in this study are the following set for inviscid,
hydrostatic, slab-symmetric flow on an fplane in pres-
sure coordinates with diabatic heating proportional to
the vertical mass flux. They were used in the early
1950s and 1960s by Haque (1952) and Lilly (1960) as
linear perturbation models before convective instability
of the second kind (Charney and Eliassen 1964; Oo-
yama 1964; Mak 1981) was discussed:
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Here u, v, w are the velocity components in the x, y, p
directions; ¢ is geopotential height; and all four depen-
dent variables are perturbations about a zero basic state.
Further, § is the static stability; Q is the diabatic or
cumulus heating; R * is the gas constant; and \ is a trace
indicator set to A = 1 or = 0 according to whether or
not the model describes unbalanced or balanced flow.

a. Parameterization of convection

There are many observational studies demonstrating
that for large-scale motions in the Tropics the diabatic
heating associated with mesoscale convective com-
plexes approximately balances the adiabatic cooling as-
sociated with large-scale upward vertical motion
(McBride 1981a; Frank 1980; Mapes and Houze
1992). However, when large-scale disturbances de-
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velop, the surface pressure goes down by 1-2 hPa
(McBride 1981a). Through hydrostatic considerations,
this means the heating has slightly exceeded the cool-
ing. Thus, we introduce the concept of an effective
static stability, defined mathematically as

Effective Static Stability = (1 — v)S, (2)
where the coefficient v is defined as the ratio of diabatic
heating to adiabatic cooling:

R *
'yE—Q /wS.
974

Thus, v is positive if condensational heating occurs.
Substituting (3) into the thermodynamic equation of
set (1) gives a cumulus parameterization of the mathe-
matical form

(3)

OR*
c,p

= —wvyS. 4)

This formulation may be interpreted in terms of a
mass flux convective parameterization scheme follow-
ing the classical model of Fraedrich (1973), Arakawa
and Schubert (1974), McBride (1981b), and others.
The diabatic heat source due to a cloud mass flux M.
is virtually realized by the large-scale disturbance in its
cloud-free environment through ‘‘compensating sub-
sidence’’ of the cloud mass flux acting on the ambient
static stability S

OR* M: M- M
cp M:S or vy v; Y

(5)

That is, the mass fluxes, M¢c = —awc and Mg = — (1
— a)wg, in the cloud and cloud-free areas, @ and (1
— a), are balanced by the total M = —w. First-order
estimates may be based on climatological scaling: (i)
radiative cooling of 1K day ~' is compensated by large-
scale subsidence in the cloud-free environment where
Mg ~ (1 — a) 30 hPa day™'; and (ii) the total mass
flux in a tropical cyclone is about M = —w ~ +200
hPa day ~! (averaged over the scale of the disturbance,
which a posteriori has an approximately 325-km ra-
dius). This determines the total mass balance (5) and
yields a measure for the parameter y ~ Mo/M ~ 1.14
representative for a convectively active area: a =~ 0.1.

Mathematically, the parameterization (4) is equiva-
lent to that used by Haque (1952) and Lilly (1960).
In their studies, the parameter (1 — y)S is a moist static
stability corresponding to the difference between the
atmospheric lapse rate and the moist-adiabatic lapse
rate. Thus, their condition for instability was that y ex-
ceed 1, corresponding to a conditionally unstable strat-
ification. In the present model, the actual parametric
condition required is that the diabatic heating slightly
exceed the adiabatic cooling.
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b. Solution procedure

Now an omega equation may be derived, which, af-
ter nondimensionalization of the horizontal and vertical
coordinates y = y*R and p = p* P where P = pz — py
(po, ps being pressures at the top and bottom of the
domain) and making use of the expression e, yields
the following form:

0.2
—-wy*y*-i- ()\_+ l)w‘,*p*=0, (6)

f2
where asterisked subscripts denote partial derivatives
with respect to the nondimensional independent vari-
ables.

A modified Rossby radius of deformation, R
= JS(y — 1) P/f, has been introduced for conve-
nience. Separation of the variables w(p*, y*)
= w(p*)W (y*) yields

W,

2
Zyry*

g Wy *p
= (NG 41 ) Ee s e,
W (*fz ) w "

The separation constant m’> represents the vertical
scale in terms of a vertical wavenumber m.

The vertical boundary conditions lead to constraints
that determine the instability of the flow and the growth
rate of initially small amplitudes. There is vanishing
mass flux w(p = py) = O at the top of the domain
associated with two different types of lower boundary
conditions at p = pj.

(7)

(i) The vertical mass flux at the lower boundary
vanishes:

w=0.

(8)

(ii) An Ekman-type lower boundary condition can
be derived from the assumption that the vertical mass
flux through the top of the boundary layer is propor-
tional to the geostrophic vorticity at the top of the
boundary layer:

Kf

w =—-;()\02/f2+ Dwpys, 9)
where the constant of proportionality KX is taken as the
half-depth of the boundary layer (Charney 1973, chap-
ter 13). It is worth commenting that this makes no as-
sumption about balance (or geostrophy) in the interior
of the fluid. It simply assumes that the adjustment time
of the boundary layer is very rapid, so that an instan-
taneous balance between friction, pressure gradient,
and Coriolis can be assumed in the boundary layer.
This can be done even when no balance is assumed in
the fluid interior because the adjustment time of the
interior fluid is slower (Charney 1973).

The solution of (7) for horizontal structure satisfying
both symmetry and maximum mass flux at y = O is

W (y*) = cosky*. (10)
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The solution for the vertical structure (satisfying the
upper boundary condition) is

aan)

with 0 < p* < 1, so the value m = 7/2 yields a vertical
half-sine profile from a value of O at the top of the
model to a maximum heating of 1 (mp* = 7/2) at the
top of the boundary layer. Conversely, when m = ,
the heating has a full vertical sine profile (i.e., from 0
to 7) with maximum heating in the middle of the layer
(0=sp*=<1).

For consistency, the horizontal and vertical scales k
and m are linked to the growth rate o/f through sub-
stitution of (10), (11) into the omega equation (7):

2
k2=m2()\;—2+ 1).

Application of either lower boundary condition to
the set (11), (12) eliminates one of the parameters (%,
m), so that we can relate either scale directly to the
growth rate o.

Treating first the zero mass flux lower boundary con-
dition (8), we obtain m = 7 (or integer multiples of
), so that :

o’ k*
N }; =3

This is mathematically equivalent to the classical
solution of Lilly (1960) and will be analyzed in sec-
tion 4b.

The application of the Ekman lower boundary con-
dition (9) at p* = 1 and some algebra gives the relation

w(p*) = sinmp*,

(12)

- 1. (13)

0.2

o
A=+A=-+1=0, (14)
f? f
where
P tanm o? 12 .
A—ET and m—k/()\f—z+1> . (15)

This leads to a set of Ekman-influenced instabilities
according to whether or not the flow in the interior of
the system is considered balanced (A = 0) or unbal-
anced (A = 1). Thus, we have three unstable solutions:
(i) Eq. (13), (ii) Eq. (14) with A = 0, and (iii) Eq.
(14) with A\ = 1. In the following section, we present
the relationships between. horizontal scale, vertical
scale, and growth rate for each instability.

3. Convective instabilities

a. Unbalanced without Ekman boundary condition

We consider first the case with zero mass flux at the
lower boundary, which has the scale—growth relation-
ship (13). This instability has been extensively ana-
lyzed [see, e.g., the Type I solutions of Lilly (1960);
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Yoshizaki and Mori (1990)] and is commonly asso-
ciated with cumulus and cumulonimbus convection.

Putting N\ = 1, the instability diagram (Fig. 1, curve
1) shows the normalized growth rate o/f versus hori-
zontal wavenumber k, inversely related to the normal-
ized length scale or half-wavelength L/R representing
the size of the (cloudy) area of upward motion and
convective heating. The growth rate increases with hor-
izontal wavenumber from zero growth at k/w = 1,
where the upward mass flux area attains the scale of
the modified deformation radius R, to infinity. For suf-
ficiently large wavenumbers and growth rates a linear
relation is attained, o/f ~ k/w. As smaller scales are
related to larger growth rates this convective instability
has been associated with cumulus and cumulonimbus
clouds. Note that this model provides a finite upper
limit, L = R, of the horizontal scale, beyond which
there is no growth. That is, convectively unstable un-
balanced flow regimes without the Ekman boundary
condition exist from zero size up to an area correspond-
ing to the modified deformation radius.

The behavior of this model appeared to be unsatis-
factory in explaining the development of larger-scale
hurricane-like disturbances in the Tropics. Therefore,
an Ekman-type boundary layer plus diabatic heating
parameterized to be proportional to the mass flux at the
top of the boundary layer were introduced to balanced
and unbalanced models. Although leading to convec-
tive instability of the second kind (Charney and Elias-

growth rate‘ e-folding time
o/t
- 3 hr t
(c)
[11
20
Balanced with Ekman
6 hr
10 - -
L 12 hr
1 day
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sen 1964; Ooyama 1964; Mak 1981), these amend-
ments did not (at least in a simple format) reveal the
short-wave cutoff required for convectively driven
disturbances in the tropical atmosphere to grow most
intensely at large scales. These disturbances were still
favoring waves of short wavelength.

b. Large-scale convective instability: Unbalanced
Sflow with Ekman boundary condition

In a similar sense we extend the instability analysis
and include an Ekman-type lower boundary condition
(to balanced and unbalanced flow regimes) but retain
the diabatic heating to be proportional to the vertical
profile of the vertical mass flux. The relationship be-
tween growth rate and scale is given by Eqgs. (14) and
(15). Setting A = 1 gives a quadratic for the growth
rate of convectively driven unbalanced perturbations
with Ekman-type lower boundary.

Unstable perturbations, ¢ > 0, require A < 0 or tanm
< 0, which holds for 7/2 < m < 7 (and integer mul-
tiples). Substituting into (11), the vertical mass flux
profile is the proportion of the sine wave from mp*
= 0 at the top of the atmosphere to mp* = m at the top
of the boundary layer. Thus, the unstable vertical mass
flux profiles have shapes ranging from a full (0, 7) to
a half (0, w/2) vertical sine profile. The instability re-
lation (14)—(15) shows large and small growth rates
(Fig. 1, curve II), which can be related to balanced and

£
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o
// Unbalanced without Ekman
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>

2R R

2n WAVENUMBER k

0.5R HALF-WAVE LENGTH L= nR/Kk

F1G. 1. The solutions for growth rate (normalized by f) versus the horizontal wavenumber k and the updraft length scale L (normalized
by a modified Rossby deformation radius R). Curve I is unbalanced flow with a zero vertical motion lower boundary (i.e., the original
conditional instability model). Curve II is for unbalanced flow with an Ekman lower boundary condition. Curve I1I is for the balanced model
with an Ekman lower boundary. The dashed curve replaces curve II for the model with the alternative form of the Ekman boundary condition,
as discussed in section 4b. The letters a, b, and ¢ on curves II and II refer to the vertical structures shown in Fig. 2.
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unbalanced flow regimes and the associated vertical
mass flux/heating profiles (Fig. 2).

For large growth, ¢ > f, the system operates in the
unbalanced flow regime, and spatial scales are small (k
large). In the limit as o/f ~ —A — o, the vertical
wavenumber m — /2 (using 15), corresponding to a
half-sine (0, 7/2) vertical mass flux profile. In this part
of the solution space the growth rate o increases line-
arly with horizontal wavenumber o/f ~ 2k/7, that is,
at twice the rate found in the unbalanced flow regime
without Ekman boundary layer.

For small growth, ¢/f = 0, —A — «, the system
operates in the balanced flow regime, also revealing a
half-sine vertical mass flux profile with m — 7/2 in the
limit of zero growth. This limit is associated with a
finite horizontal wavenumber, k = 7/2, corresponding
to a half-wavelength L = 2R, which is twice as large
as observed in the unbalanced flow regime without the
Ekman boundary layer. That is, the Ekman boundary
condition enhances the scale of the convectively unsta-
ble flow to twice the modified Rossby deformation ra-
dius. In the next subsection we show that this scale
enhancement is related to the dynamics of balanced
flow with lower Ekman boundary condition, which re-
veals maximum growth of unstable perturbations at the
finite half-wavelength L = R (k = w) and thus a short-
wave cutoff.

Through the quadratic (14), each vertical structure
gives two growth rates, one in each of the fast and slow
regimes, the slow occurring at large horizontal scales
compared to the modified deformation radius, and the
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fast at small horizontal scales. In the slow regime, the
growth rate curve almost overlays curve III (Fig. 1),
corresponding to the solution from the balanced set of
equations (next subsection). In the fast (unbalanced
flow) regime, the growth rate curve is qualitatively
similar to that of the classical Lilly—Haque solution
(i.e., curve I). The separation between the regimes oc-
curs at A’ = —2: This point is associated with a growth
rate equivalent to the inertial or Coriolis frequency o’
= f, a marginal vertical wavenumber m’ ~ 0.903x
~ 2.84, and a horizontal half-wavenumber k' = m',2
or k'/m ~ 1.3 corresponding to a length scale L'
~ 0.8R, which characterizes the size of the convec-
tively active area.

c. Large-scale balanced flow (A = 0)

For balanced flow the condition for growing initial
perturbations can be derived from (14)—(15) with A
=0

o K .
7 Pk cotk with k= m. (16)

The instability graph is presented in curve III of Fig.
1, increasing from zero at horizontal half-wavenumber
k/m = 0.5 (or horizontal scale L = 2R) to infinitely
large growth at k/m = 1 (or L = R). There is no growth
at smaller scales (larger wavenumbers). The corre-
sponding vertical mass flux and heating profiles can be
inferred from the magnitude of the wavenumber 0.5
< k/m = m/m < 1: zero growth corresponds to a half-

(@) (b) (c)
pt p. p.
0.0 k 0.0 0.0
— 0.5 0.5 —0.5
1.0 1.0 1.0
(1) (0] @
Unbalanced () o/f=0 k=n/2 o/f =1 k~09x+V2 No Solution
Solution (i) 6/f=oco k=oo
Balanced c/f=0 k=mn/2 o/t~ 05 k~09=n c/fse k=g
Solution

Fi1G. 2. Three vertical profiles of the vertical mass flux associated with different growth rates of
unbalanced and balanced flow regimes with Ekman boundary conditions: (a) the most stable so-
lution; (b) the limiting value for an unbalanced solution; and (c) the vertical profile corresponding
to the most unstable solution of the balanced model.
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sine (0, w/2) profile, which tends to a full-sine profile
(0, 7) in the limit of infinite growth at k/m = 1 or
L=R.

Although a short-wave cutoff is achieved, it should
be noted that balanced flow dynamics is applicable only
for growth rates o%/f* < 1. As described in the pre-
vious subsection the unbalanced model has a limiting
vertical wavenumber of m’ = 0.97 associated with hor-
izontal wavenumber k' = 0.972. In the balanced
model this vertical structure leads to a solution of o/f
= 0.5 (associated with k = 0.903 7) (see Fig. 2). This
growth rate is an appropriate upper limit for the con-
dition on o?/f?; thus, the vertical wavenumber m
= 0.97 can be considered the limit for both versions of
the model.

Two forcing mechanisms act in the large-scale con-
vective instability: (i) Ekman spindown and (ii) con-
densational heating due to parameterized cumulus con-
vection.

(i) Ekman spindown through vortex stretching is
largest if there is mass outflow throughout the layer
above the surface boundary and inflow in the boundary
layer only. Ekman spindown vanishes if inflow and
outflow balance above the boundary layer (showing no
upward motion through the top of the boundary layer).
These limits correspond to the half-sine (0, 7/2) and
full-sine (0, w) vertical mass flux profiles, respectively.

(ii) The condensational heating spinup creates the
instability of the model. The associated growth rate is
largest when Ekman spindown vanishes as a negative
feedback process, that is, when inflow and outflow bal-
ance above the boundary layer [ the (0, 7) sine profile].
The associated growth rate is zero when the Ekman
spindown is at its maximum [the (0, x/2) half-sine
profile]. This argument explains, in qualitative terms,
the extremes of the balanced flow instabilities and their
association with the vertical structure.

The horizontal scale enters through the dynamics in-
volved: the balanced flow regime without inertia grav-
itational modes adjusts to the Rossby radius of defor-
mation at largest growth rate. In the unbalanced regime
this is not the case: largest growth is associated with
the half-sine (0, w/2) profile related to Ekman spin-
down, but the growth due to heating is more effective
in the limit of small horizontal scales associated with
(inertia) gravity modes.

4. Alternative solutions
a. Conditional heating

The above solutions are derived from the use of the
heating parameterization (4), where the coefficient y
has assumed a value constant throughout the domain.
Thus, in the region of the convective disturbance the
vertical mass flux is upward (i.e., w is negative) so that
the heating Q is positive. Conversely, in the surround-
ing region, w is positive and Q is negative.
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Many authors have solved the convective instability
problem using ‘‘conditional heating’> whereby the
heating is set to zero beyond the disturbance half-width
b:

gfp*=—S'yw,
where
y=+4ve |yl <b
y=0 |yl >b. (17)

Following this geometry, a separation of variables is
still achieved, but the horizontal structure is trigono-
metric within the distance b and exponentially decaying
outside. The solutions for growth rate as a function of
horizontal scale are shown in Fig. 3. Curves I, II, and
I are as in Fig. 1. The labels along the balanced curve
I are the value of the intercept of the vertical structure
function at the top of the boundary layer. Thus, if w
~ sinDp, these numbers are the value of Dpgy, where
ps is the pressure at the lower boundary. The solution
procedure to obtain Fig. 3 involves matching solutions
from the two domains (| y| < b, |y| > b) and there-
fore is more complicated than that described above.
However, as can be seen in the figure, the solutions are
qualitatively identical to those shown in Fig. 1, so that
all of the interpretation and conclusions made above
are unaffected by this extension to conditional heating.

b. An alternative form of the Ekman boundary
condition

In section 2b the vertical motion at the lower bound-
ary was assumed proportional to the geostrophic vor-
ticity at the top of the Ekman layer, w = —K&; = — (K/
)9*¢/10y* = —(KIfPo)(Ao* + f*)Owl/dp*. A
number of authors (e.g. Mak 1981; Fraedrich and
McBride 1989) have made the alternative Ekman as-
sumption that the vertical motion at the lower boundary
is proportional to the actual vorticity (w = —K¢
= KOul/3y). For the reasons discussed in section 2b,
we believe that the form of the lower boundary con-
dition in Eq. (9) is more appropriate for the present
study. It is instructive, however, to consider the solu-
tion obtained from the alternative version:

Kf

w=—Kf=———w,.

Po (18)

Then Eq. (15) is unchanged, but (14) becomes
g
A-+1=0, (19)
f

where, as before, A = (P/K)(tanm)/m, with m = k/
VAo %/ f7+ 1. For this equation set, the balanced so-
lution (A = O, curve III in Fig. 1) is unchanged.
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Fi1G. 3. Growth rate versus horizontal scale for the conditional heating form of the model. Curve I is for
the unbalanced solution with zero lower boundary condition. Curve II is for the unbalanced solution with
the Ekman boundary condition. Curve III is for the balanced solution with Ekman boundary condition. The
numbers along curve III refer to the intercept of the vertical structure function at the lower boundary. The
vertical structure for the heating (or for w) is sketched at 0.987 and at 0.57.

The instability relation for the unbalanced solution
(A = 1) is displayed as the dashed curve in Fig. 1.
Unstable perturbations require A < 0 or tanm < 0.
Thus, the vertical structure function m € [«n/2, «].
However, the loss of the quadratic means that each ver-

. tical structure has a single solution. As m approaches
w/2, the growth rate o < f, and there is balanced dy-
namics. As seen in Fig. 1 the instability curve (dashed
line) almost exactly overlays the solution for the bal-
anced model (curve II).

At the other extreme m — 7 and o — , and the
solution rapidly approaches that of the classical unbal-
anced/no-Ekman model of Lilly and Haque (curve I).

5. Discussion and conclusions

In summary, the following points are noted on the
properties of the large-scale convective instability ex-
plored in this note.

1) The traditional Lilly instability asymptotes at
zero wavelength and is present only in the unbalanced
set of equations.

2) The large-scale instability is present also in the
balanced set and (when balanced) asymptotes at the
deformation radius.

3) This change in properties is brought about by the
presence of the lower Ekman boundary condition.

4) The horizontal structure and growth rate are de-
termined by the vertical structure of the initial distur-
bance. It is this property that forces the solution to the

large-scale balanced instability rather than the small-
scale Lilly unbalanced instability.

5) Mak (1981) and Charney and Eliassen (1964 )
had the large-scale instability present in their models.
Both authors had rejected it as unphysical. The basis
for our present claim that it may operate in the atmo-
sphere is our introduction of the concept of an ‘‘effec-
tive static stability’’ for large-scale flow. We derived
the effective static stability through the use of classical
cumulus mass flux concepts, but the key parametric
assumption is that the diabatic (or convective) heating
slightly exceeds the adiabatic cooling associated with
large-scale ascent.

In the context of the last point, it is noteworthy that
Gill (1982) also used the Lilly formulation to study
tropical cyclones. Gill used the classical model (i.e.,
without an Ekman boundary condition) and externally
imposed the horizontal scale so that he could study the
three-dimensional structure of the solution.

The large-scale instability of the present paper is
based on a representation of heating at a level in the
vertical being proportional to vertical velocity at that
same level, combined with an Ekman lower boundary
condition. The solution for this model using the full
(i.e., unbalanced) set of equations is represented by
curve I of Fig. 1. Each point on the curve corresponds
to a particular vertical structure of the heating, as rep-
resented by Fig. 2. '

From some perspectives, this dependence on vertical
structure could be considered a weakness of the model.
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It means that the model does not select a free mode;
one has to be preselected through specification of the
vertical wavenumber m. This is not unreasonable as it
is unlikely that in the tropical atmosphere the vertical
heating structure would result from the properties of a
large-scale dynamical instability mechanism. Rather,
the vertical structure would be a function of the internal
properties of the cumulonimbus ensemble, including
the collective effects of individual cumulonimbus ele-
ments and stratiform anvils. To reduce this argument
to its simplest example, the fact that the heating extends
through the depth of the troposphere is due to the parcel
buoyancy equation operating within the subgrid-scale
(or parameterized) convective clouds.

Once the vertical structure is specified, however, the
unbalanced solution (Fig. 1, curve IT) has an interesting
property. Each vertical structure yields two solutions:
one in the balanced domain resembling the solution
represented by curve III, and one in the unbalanced
domain resembling the original Lilly model (curve I).
This property is shown in Fig. 4, which shows the so-
lution to the unbalanced model with Ekman boundary
condition in m—L space. As illustrated for the vertical
structure m = 0.7, there is one solution corresponding
to the scale of individual cloud systems (i.e., an order
of magnitude smaller than the modified deformation
radius R) and one solution on the scale of cloud clusters
and tropical cyclones (i.e., actually greater than R).
Thus, this simple model actually duplicates the selec-
tion into two distinct horizontal scales, as occurs in the
atmosphere. There is a bifurcation point in the solution
(marked by the filled dot on Fig. 4) representing the
limiting vertical wavenumber (m, approximately
0.9037).

It is our thesis that the balanced (or large scale, slow
growth rate) part of the solution represents a viable
instability for the initial growth of either a tropical cy-
clone or a tropical cloud cluster in nature. This state-
ment may be justified through the following consider-
ations.

(i) Mathematically, the instability stems from the
combination of the Ekman lower boundary condition
and the assumption that camulonimbus heating at each
level is proportional to the large-scale vertical motion
at the same level. This latter assumption is verified in
nature through the common observation that the ap-
parent heat source Q, is approximately equal to
~w(0s/0p), where s is the dry static energy (Song and
Frank 1983; McBride et al. 1989).

(i1) The growth rate and horizontal scale of the so-
lutions to the balanced equations depend on the vertical
structure of the w profile in the initial disturbance. As
shown in Fig. 2, the largest growth rates are associated
with vertical profiles closest to a full-sine curve, while
the slower growth rates are associated with a half-sine
curve. Figure 5 shows observed vertical motion profiles
from the tropopause (100 hPa) to the top of the bound-
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ary layer (850 hPa) for four stages of tropical cyclone
development in nature. The incipient storm (stage D,)
approaches an almost full-sine structure with enhanced
convergence above the boundary layer in agreement
with the model, whereas in relative terms the boundary
layer convergence increases with maturity of the storm,
approaching an almost half-sine vertical mass flux pro-
file for the fully developed storm (stage D,).

(iii) At e-folding growth rates of the order of half a
day, the horizontal half-wavelength or diameter of up-
ward motion is approximately 1.1R, where R is the
modified Rossby radius of deformation. Using values
of f=0377.10"*s7', S = 1072 m*> s> hPa™?, P
= 800 hPa, K = 100 hPa, y = 1.12, this corresponds
to a diameter of approximately 750 km, which agrees
well with observations. It should also be noted that
while obeying the balance condition o?/f? < 1, this
growth rate (1/half-day) is much faster than the Char-
ney and Eliassen CISK growth rate, which is scaled by
the Ekman timescale of approximately 6 days (Charney
and Eliassen 1964; Fraedrich and McBride 1989).

These similarities with observations are a striking
feature of the balanced flow model with cumulus heat-
ing proportional to the vertical mass flux. Therefore,
we suggest that there may be a large-scale convective
instability in balanced flow associated with an Ekman
boundary condition and a convective heating propor-
tional to the vertical mass flux, which to our knowl-
edge, may have been left unnoticed.

As a final comment, it is appropriate to consider the
relationship between this instability and other mecha-
nisms for self-induced moist dynamics. As has been
discussed throughout the paper, the large-scale convec-
tive overturning is a mechanism distinct from CISK. In
recent years there has developed an extensive literature
on two additional mechanisms: wave—CISK (e.g.,
Hendon 1988; Wang 1988; Rui and Wang 1990; Cho
et al. 1994) and WISHE (wind-induced sea—air heat
exchange) (Emanuel 1987; Neelin et al. 1987; Yano
and Emanuel 1991). These two mechanisms also are
distinct from that described here with regard to both
physical or interpretive considerations and mathemati-
cal grounds. Mathematically, wave—CISK differs in
that it depends on a vertical phase shift between heating
and vertical motion (Bolton 1980; McBride and Fraed-
rich 1993). WISHE differs in that the heating is pro-
portional to the actual wind speed at low levels, which
means it will be dominated by the rotational wind at
low levels in most large-scale flows. This is distinct
from the heating at midlevels being proportional to the
divergent wind at midlevels as is the case in the insta-
bility treated here. Both wave—CISK and WISHE share
in common with the present instability the concept of
an effective static stability as modified by the moist
thermodynamics.

It is beyond the scope of the current paper to inter-
compare the three instabilities. Two of the most intrigu-



1922 JOURNAL OF THE ATMOSPHERIC SCIENCES VoL. 52, No. 11
mr
cloud scale Bifurcation point
Unbalanced O >>{ /
s o9mp
i
w
o
Z o8mf
z cioud cluster scale
> Balanced O <<f
<
z 07m _——— e ——_— —— /
z
3 | !
p
x 06w l |
>
ob5m ] 1 1 I 1 »
0 R/2 R 3R/2 2R
HORIZONTAL SCALE (L)
» GROWTH RATE (0)
oo 10f
(| 1 1 1 1 1 1 |
50f 5f 2f f 0.5f 0.1f 0.05f 0.01f 0O

FIG. 4. The solution of unbalanced model with Ekman boundary condition (curve II of Fig. 1) in vertical
wavenumber versus horizontal-scale space. Each vertical wavenumber m yields two solutions. They are
measured along the lower axis in terms of horizontal scale (in units of the modified deformation radius R)
or in terms of growth rate o (measured in units of the Coriolis parameter f ).

ing aspects of the present study are (i) the fact that
each imposed vertical structure leads to a scale sepa-
ration with one gravity-mode cloud-scale response and
one large-scale balanced response; and (ii) the role
played by Ekman frictional dynamics in forcing the
solutions toward large horizontal scales. It would be
worthy of investigation to determine whether similar
roles are played by the vertical structure and by friction

in the other two large-scale moist overturning mecha-
nisms.
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