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Summary. Reconstructing past climate states requires the identification of the mean
and the variability of the atmosphere and, once interpreted as a response, the type of
the underlying atmospheric forcing. Adjoint modelling diagnostics based on a primi-
tive equations simplified global circulation model (GCM) is used to analyse the climate
mean induced by a stormtrack and the variability of a low frequency pattern resembling
the North Atlantic Oscillation (NAO). First, given the climate mean, the associated
location, shape and intensity of the forcing can be successfully determined so that,
rerunning the model with the reconstructed forcing, the original climate variability is
retained. Second, given the climate variability represented by a daily NAO-type in-
dex, its temperature forcing on short timescales is diagnosed in terms of temperature
sensitivity patterns at different time lags. These two feasibility studies of adjoint tech-
nique applications demonstrate their potential usefulness in climate and palaeoclimate
diagnostics.
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22.1 Introduction

For simulations of past climate with general circulation models (GCM) it is im-
portant to know, how strong the link between the forcing and the climate response
patterns is. Do fixed boundary conditions lead to non-stationary behaviour? Can
different conditions generate the same climate? This is of relevance, if circulation
patterns deduced form proxy data are simulated as a response to a forcing, which
needs to be determined (von Storch et al. 2000, Jones and Widmann 2004). This
is of particular interest for regional climate change analysis.

The North Atlantic-European sector is dominated by the North Atlantic Os-
cillation (NAO). It characterises the North Atlantic stormtrack intensity through
the pressure difference between Iceland and the Azores. For past climates, Green-
land ice core analyses suggest that there is a fundamental change between region-
ally more active and passive NAO-phases lasting for decades (Appenzeller et al.
1998). These two phases can be distinguished by the coupling strength between
the NAO and the Pacific-North-American pattern (PNA), which has substantial
impact on the continental European climate. Raible et al. (2001) show that
comparable phases also appear in a purely atmospheric model forced by climato-
logical sea surface temperatures (SST), though integrations coupled with ocean
dynamics show a more realistic behaviour. Even a simplified GCM with storm-
track induced variability reveals these regimes of decadal variability (Franzke et
al. 2001). The underlying mechanisms have yet to be identified. Related atmos-
pheric phenomena such as blocking or zonal index changes have been subject to
studies with adjoint models. Perturbations that optimally trigger the onset of
blocking were studied in a quasi-geostrophic (Oortwijn 1999) or two-layer primi-
tive equations model (Li et al. 1999). Li and Ji (1997) describe an adjoint method
to derive forcing modes for a damped barotropic model the response to which is
primarily composed of teleconnection patterns.

This paper presents a feasibility study diagnosing the relationship between

forcing and climate by adjoint modelling. The model used is the simplified atmos-
pheric circulation model (PUMA, Portable University Model of the Atmosphere,
Fraedrich et al. (1998)) which represents the dynamical core of a primitive equa-
tion GCM forced by linear relaxation processes. Instead of the traditional analysis
of the atmospheric response to forcing (like regional diabatic heating of varying
intensity), we prescribe the atmosphere’s response, say a circulation pattern ob-
tained from proxy data, to determine the underlying forcing, its intensity, and
spatial structure. Two cases are distinguished:
(a) Given a climate or time mean temperature field from a complex GCM simula-
tion or proxy data as the only information, the diabatic forcing is reconstructed
for a model run. Such a goal has been pursued by Lunkeit et al. (1998) in
sensitivity experiments with the objective to mimic complex GCM (ECHAM)
COg-scenario climates and their atmospheric variability with an adapted simpli-
fied GCM (PUMA).
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(b) Given the variability of a recurrent large scale atmospheric flow pattern, the
heating is determined, which generates the growth or decay of these patterns on
timescales of the order of ten days. We demonstrate the use of adjoint mod-
elling diagnostics based on the PUMA-GCM to derive the forcing of the observed
variability.

Oortwijn and Barkmeijer (1995) employ the adjoint of a quasi-geostrophic
three layer model to determine perturbations that optimally enhance the projec-
tion of the atmospheric state on a blocking pattern at forecast time. Corti and
Palmer (1997) apply the same type of model to investigate the sensitivity of the
NAO and PNA-pattern to small streamfunction perturbations. Adjoint model
diagnostics allows the direct identification of location, shape, and magnitude of
the sensitive regions (Hall 1986). Here we modify this technique and look for
perturbations of the heating in PUMA and demonstrate a sensitivity study in an
idealised setting.

The outline of the study is as follows. First the PUMA model and its adjoint
are introduced. Section 3 demonstrates the reconstrucion of the forcing from the
mean climate response. In section 4 the detection of the temperature forcing
of climate variability, given by a daily NAO-index, is illustrated in an idealised
setting.

22.2 PUMA and its adjoint

The PUMA model solves the primitive equations on a sphere with optional orog-
raphy (Hoskins and Simmons 1975), but it is completely recoded in Fortran 90
with some alterations (Fraedrich et al. 1998). Due to its portable and trans-
parent coding it is used for research and educational purposes. Rayleigh friction
at the lowest level and Newtonian cooling are the only parameterisations. The
Newtonian cooling parameterisation for the diabatic forcing uses a relaxation
temperature field T. At each timestep the model temperature T is relaxed
towards this parameter with a time constant 7(0):

(a—T> _Tr =T (22.1)
at diabatic T(U)

Physically the relaxation temperature 7Tz can be interpreted as a radiative-con-
vective equilibrium temperature. Due to advection there are significant differ-
ences between the relaxation temperature field and the time mean temperature
of the model. For the experiments presented here the resolution is set to five
o-levels in the vertical with the highest level centered at 100 hPA and approx-
imately 5.6° x 5.6° (T21) in the horizontal. The time step is set to one hour.
The relaxation time constant is set to five days at the lowest, ten days at the
second lowest, and thirty days at the other levels. The model has been used in
a number of studies ranging from ultra-low-frequency variability (James et al.
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1994) to storm track organisation (Frisius et al. 1998), storm track interaction
(Franzke et al. 2000), low frequency variability and teleconnections (Franzke et
al. 2001), storm track sensitivity towards SST anomalies (Walter et al. 2001),
and climate change scenarios (Lunkeit et al. 1998).

Adjoint PUMA model: The adjoint PUMA model is derived by the Tangent and
Adjoint Model Compiler (TAMC; Giering and Kaminski 1996, 1998, Giering
1999). Since adjointness is a property of linear operators, the adjoint model is,
strictly speaking, adjoint to the tangent linear version of PUMA. It describes the
linear growth of a perturbation of the nonlinearly evolving flow. Therefore, a
tangent linear model can be written as a linear operator, which depends nonlin-
early on the unperturbed flow. Since there is no feedback from the perturbation
to the unperturbed flow, it can extract an infinite amount of energy violating the
energy conservation. Consequently simulations with the tangent linear model are
only valid for short time periods of the order of a few days.

Let A be a matrix representing the tangent linear operator for a given flow
and time period. Then its adjoint A* is defined by

(Az,y) = (z,A"y), (22.2)

where (-,-) is an inner product and not necessarily Euclidian. With complex z
and y the operator A* is the Hermitian or conjugate transpose A* of A; for
real x and y this is just the transpose. The adjoint operator A* is useful in
a number of calculations. If it exists as a model code, various states can be
analysed without extracting the matrix A for each case individually, which is time
consuming. The choice of x and y is subject to definition. They may, for instance,
be streamfunction disturbances at different times, but many other choices are
useful depending on the application. An introduction to adjoint applications can
be found for instance in Errico (1997) or Talagrand (1991) while Marchuk (1974)
is probably the first source that applies adjoint methods in meteorology.

22.3 Tuning: Forcing of a mean state

Aims and Methods: The long-term or climate mean fields are considered as the
response to a forcing. In particular, changes in the climate are linked to changes
in the climate forcing. Here we analyse the link from a time-mean tempera-
ture field (target climate T'p from the control run) to its forcing field. That is, a
suitable forcing field is reconstructed (for example, the PUMA relaxation temper-
ature Tg), whose time-mean response (substitute climate T') should be as close to
the target climate T'7, as possible. A unique forcing-response relation, however,
cannot always be guaranteed as different forcings may lead to the same climate
mean state. Therefore we carry out an internal experiment in the sense that the
target climate itself has been produced by the PUMA with a prescribed forcing.
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This allows an objective judgement of the quality of the forcing reconstruction
by comparison with the known solution. For the forcing reconstruction we define
a cost function J, which describes the distance between target and its substitute:

= % (T~ Tr,T - Tr). (22.3)

In the experiments discussed here the inner product (-,-) contains area weights
to compensate for the geometry of the model grid and variance scaling with the
temperature variance of the control run. For the forcing reconstruction this cost
function needs to be minimised by choice of appropriate parameters T of the
relaxation temperature. The gradients of J with respect to the parameters are
calculated by the adjoint PUMA. Let H be the mapping of the n e N parameters
Tr on the n elements of T as calculated by PUMA:

H:R" —» R"
T — T. (22.4)

This makes the cost function J and its first order approximation éJ:

1 — _
J(Tr) = 3 (H(Tg) — Tr,H(Tr) — Tr) (22.5)
0J = (Vr,J(Tg),R). (22.6)
This equation introduces the gradient operator with respect to the parameters
of the relaxation temperature field Vr, to relate a small perturbation of this pa-
rameter 01 to a change in the cost function §J. Let A |TR0 be the tangent-linear

model of H, which is the Jacobian of H at a first-guess relaxation temperature
field Tg,. By writing 61" = A‘ 1,, L&, the differentiation of (22.5) and subsequent
0

application of the adjoint model A* (22.2) yields:
0] = (H(Try) = Tr, Al;, 0Tr,) (22.7)
= (A* Tr, (%(TRO) - TT), &TR) . (228)

Comparing (22.8) with the definition of the gradient of the cost function Vr, J(Tg,)
(22.6) leads to:
V. J(Tg,) = A"

(H (Tr,) — T7) - (22.9)

Tg,

The linear operators A |, and A |1, represent the tangent linear model and its
adjoint. Both depend on the first guess relaxation temperature field Tk, about
which the model is linearised. Equation (22.9) shows how the gradient of the
cost function with respect to the relaxation temperature parameters can be cal-
culated efficiently by feeding the misfit between the calculated and the targeted
time mean model temperature, #(Tg,) — T, into the adjoint model A* | Tr, -
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Single stormtrack climate (control run): Reconstructing the forcing of the mean
climate we use a single stormtrack climate (Frisius et al. 1998). It is generated
by a meridionally oriented heating and cooling dipole of the relaxation temper-
ature Tx (Fig. 22.2a), representing the contrast between a cold continent and a
warm ocean current. In the vertical its amplitude follows a lapse rate and be-
comes isothermal near the tropopause. The climate response is characterised by
a stormtrack developing downstream of the heating dipole. We use the climate
mean temperature T (Fig. 22.2b) of this model climate (and its standard devia-
tion or; Fig. 22.2¢) as the target climate T'r to reconstruct the forcing Tk.

Cost function properties: Experience has shown that with the above type of cost
function, where the time average of a variable is included, a few precautions need
to be taken. Lea et al. (2000) investigate the dependence of a time averaged
variable of the Lorenz (1963) model on a single parameter. Their results suggest
that analytical gradients calculated with the adjoint model are not useful for
minimising the cost function when the averaging time is too long. Nonlinear
dependence of the cost function on the parameter lets the gradient attain too
large values which only represent the slope in a very small neighbourhood. On
the other hand, for short averaging times, the dependence on the initial conditions
of the model variables distorts the picture. Therefore, they suggest an ensemble of
adjoint gradient calculations, with different initialisations of the model variables
and an intermediate averaging time. In the PUMA model the shape of the cost
function depends on the high-dimensional relaxation temperature field. In order
to plot the cost function for the PUMA model against the averaging time and
the choice of the relaxation temperature (Fig. 22.1), it is made dependent on a
single parameter A\ which represents a one-dimensional parameter subspace:

Tr= (1= MNTg + M\g,- (22.10)

Here Tg, is chosen to be the relaxation temperature of the control experiment,
which is the forcing of the single stormtrack climate. Choosing the mean tem-
perature response as the target climate 77 in the cost function J, we expect J
to converge towards zero for A =1 and t — oo.

Indeed the cost function possesses a marked minimum, where the forcing has
the right shape and amplitude (A = 1) even for short averaging times. This jus-
tifies the choice of an averaging time of 240 timesteps for the cost function in the
gradient calculations. At intermediate times in the order of months, however, in-
ternal variability causes some shifting of the minimum without severely changing
its location.

Forcing reconstruction: An internal experiment is carried out to reconstruct the
forcing of the single stormtrack climate. The mean temperature distribution of
the control run (Fig. 22.2b) is taken as the target climate T in the cost function
J. An iterative algorithm is used: First an ensemble of five calculations of the
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cost function J
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Figure 22.1: Cost function depending on different averaging times and param-
eters. The relaxation temperature parameters Tx change from the target mean
temperature T'r (A = 0) to the known relaxation temperature of the control run
Tg, (A =1) as described by equation (22.10). All integrations start (¢ = 0) from
the same atmospheric state randomly chosen from the control run.
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gradient is carried out with an averaging time of 240 timesteps (corresponding
to ten days). The initial conditions of the next ensemble member are the final
conditions of its predecessor. The ensemble mean gradient field is then used to
alter the relaxation temperature field Tx (that is the forcing) by a small amount.
Subsequently the model is run for 1200 time steps (50 days) to let the circula-
tion adapt to the new parameters; then the cost function is evaluated. The final
atmospheric conditions are made the initial conditions of the next iteration. The
procedure is repeated until there is no further decrease of the cost function.

a) T: control b) T, control c) o, control

€) Tmem Simulated

Figure 22.2: Control run (single stormtrack climate): a) Relaxation tempera-
ture Tg,, b) mean temperature T and target temperature 77 in the cost func-
tion J, c¢) standard deviation of the temperature or. Reconstruction: d) Relax-
ation temperature Ty reconstructed from 77, e) mean temperature of a simu-
lation with Tg, f) standard deviation of the temperature in the simulation with
relaxation temperature Tg (all at o-level 0.9 near 900 hPa).

Results: The gradients of the cost function .J, obtained by the adjoint model and
applied to reconstruct the single stormtrack climate of the control run, determine
the forcing reasonably well in the lower levels of the model (Fig. 22.2d) while
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the upper levels (not shown) are less well defined. The relaxation time constant
7(0) (Eq. 22.1) is larger in the upper (30 days) than in the lower levels (10 and
5 days, respectively). They reflect the relative importance of advection versus
radiative forcing. Long relaxation timescales should make the problem more
nonlinear. However shorter relaxation times in the upper layers cannot be seen
as a remedy since they would make the model less realistic and consequently alter
the link between climate and forcing.

A PUMA simulation with the reconstructed relaxation temperature T leads
to a time mean temperature (Fig. 22.2e), which is remarkably similar to the mean
temperature distribution of the control run (T7). This is also true for the upper
levels and in contrast to the poor reconstruction of the forcing in these levels.
Again their longer relaxation timescale appears to be the reason but this time
with a positive effect. Baroclinic processes probably triggered by the bottom
level make up for the errors in the radiative-convective parameterisation in the
temperature tendency. The similarities between the temperature variances in the
control run (Fig. 22.2c¢) and the simulation (Fig. 22.2f) are less well pronounced
but some features are reproduced. A second experiment, which includes orog-
raphy in the control run and in the run with the reconstructed forcing, yields
results of comparable quality (not shown).

22.4 Detection: Forcing of variability

Aims and methods: Short-term processes are part of the space-time climate vari-
ability. Their sensitivity to small changes of the forcing may contribute substan-
tially to the climate sensitivity. For example, a daily NAO-index and its changes
are linked to an atmospheric forcing and its modification.

Low-frequency variability in PUMA: The interaction of two stormtracks of 150°
zonal distance reveals patterns, which are similar to the NAO and the PNA
(Franzke et al. 2001). They are introduced into the model by two heating dipoles
in the manner described for the control climate of the previous chapter. This
stormtrack separation defines a larger A-region and a smaller P-region which have
the approximate meridional extent of an "Atlantic’ and ’Pacific’ region separated
by the North American east cost and Japan. The A-pattern ¢4 (Fig. 22.3) is
the one-point correlation from the basepoint 47°N, 56°W in the A-region. We
define a daily NAO-type or A-index Z by projection of the local streamfunction
anomaly of the daily streamfunction 1), from the mean v on this pattern.

(Ya — P, 1ha)
Ko '

The brackets (-, -) denote a scalar product with area weighting which compensates
for the the geometry of the model grid. For the detection of the variability forcing

Z(vha) = (22.11)
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Figure 22.3: One-point correlation in the A-region with basepoint 47°N, 56° W
(from Franzke et al. 2001). This pattern is referred to as the A-pattern 4.
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Figure 22.4: A-Index (projection of the streamfunction on the A-Pattern):
a) Time series of 20 years (7200 days; one standard deviation dotted) and his-
togram of persistence times of b) positive and c¢) negative projections exceeding

one standard deviation.
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(section 22.4) a time series of the daily index is calculated for a 20 year period
(Fig. 22.4a). Anomalies exceeding one standard deviation show persistence of up
to 25 days (Fig. 22.4b and c); the negative anomalies tend to last longer than
the positive ones. We select special events in this A-index timeseries and calcu-
late their associated temperature sensitivity patterns which lead to its increase
when introduced into the model as perturbations. Adjoint modelling provides
an advanced diagnostic tool to quantify this forcing-response sensitivity without
rerunning a suite of complex GCM experiments with different initial conditions.
The adjoint model directly calculates the spatial sensitivity patterns which, in a
first order approximation, most effectively induce a given change in the output.
Here we define the PUMA model to be a mapping # of the temperature 7'(—t)
at time —t on streamfunction (0) at time 0:

H:R" — R"
T(—t) — (0). (22.12)

This allows us to write the A-index Z(14(0)) (Eq. 22.11) at time 0 as a function
of the temperature T'(—t) at time —t:

(H(T(=1) = ¥, %)

Z(4(0)) = Toal (22.13)

oo = <R(_t’°|ffﬁ_t)’w>, with () = R(—t, 0)0T(—(22.14)
_ {dT(=1), R*1pa)

- e (22.15)

Introduction of the tangent-linear propagator R(—t,0) (the linearisation of H)
yields equation (22.14) for the first order approximation of the A-index §Z, and
application of its adjoint propagator R* (Eq. 22.2) gives equation (22.15). It fol-
lows that, in order to have a maximum change 6Z of the A-index 7 at time 0, the
initial temperature perturbation 61'(—t) needs to have maximum projection on
R*t4/||14]|, which, therefore, is interpreted as the sensitivity pattern. Keeping
the norm of the temperature, ||67(—t)||, fixed, we see that the sensitivity pattern
R*ta/||4]| in equation (22.15) not only defines the spatial shape but also the
strength of the sensitivity of the index change dZ on the initial temperature per-
turbation 67°(—t).

Sensitivity of the A-Index: Two special states of the A-index Z are analysed. They
are defined by at least five days of continuous index growth beyond plus (minus)
one standard deviation. The sensitivity patterns R*1)4/||1v4|| are calculated for
different lag times —t of 1 to 4 days. The composite pattern for each lag time
is the average of 34 (46) cases found in the A-index time series (Fig. 22.4a). In
addition the presence of the sensitivity patterns in the actual model run is verified



394 Simon Blessing, Klaus Fraedrich, and Frank Lunkeit

by calculating lag correlations between the projection of the model temperature
onto the sensitivity patterns and the A-index time series.

Results: The composite sensitivity patterns for the cases with a growing positive
A-index anomaly (Fig. 22.5) show a wave-like structure that propagates more
and more upstream with increasing lag time. In the vertical there is an increas-
ing westward tilt from equivalent barotropic in the 24 h pattern to a clearly
baroclinic structure in the 96 h pattern. The composite sensitivity patterns of
growing positive and growing negative (not shown) A-index anomalies are quite
similar. The lag correlations between the projection of the model temperature on
the composite temperature sensitivity patterns and the 20-year index time series
are quite strong (Fig. 22.6). They peak close to the lag time corresponding to the
sensitivity pattern, which underlines the dynamical importance of the detected
patterns. The cases for the growth of negative A-index are similar (not shown).
The correlations are different from zero on the 99.9% level. It is not obvious,
however, whether positive anomalies in the projection on the temperature pat-
terns correlate with positive index anomalies or whether mainly the respective
negative anomalies are correlated. When computing only positive and negative
projections in the lag correlation, their relative contributions are of almost equal
importance as expected for a linear mechanism. This is in good agreement with
the similarity of the patterns for the two situations. The largest correlation, how-
ever, appears closer to lag zero than expected. This shift again does not depend
on the sign of the respective temperature anomaly. By correlating the projection
on each individual model level we find that the shift of the maximum is strongest
in the contribution of the lower levels and not present in the 300 hPa-level.

22.5 Summary and conclusions

Reconstructing past climate states requires the identification of the climate mean
state and the climate variability of the atmosphere and, once interpreted as a re-
sponse, the type of the underlying atmospheric forcing. How adjoint modelling
may contribute to this goal, is demonstrated by a GCM approach to reconstruct
the forcing of the climate mean and to diagnose the forcing of the climate vari-
ability. Given the climate mean, the associated location, shape and intensity of
the forcing can be successfully determined so that, with this reconstruction, both
the climate mean and its variability are retained.

As first example for this feasibility study we choose the single stormtrack cli-
mate simulated by an idealised experiment with the simplified general circulation
model PUMA. The reconstruction of the forcing from a climate mean response
may be useful for two main types of experiments: Firstly, adaptation of the model
forcing to complex GCM climates (for instance with ocean coupling) allows the
isolated investigation of the internal variability of the atmosphere and, due to the
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96h — Temperature Perturbation Sensitivity Map

vertical section (40 N
¢=0.9 0.1 ( )
0.3
o
g
Sos
&
©
0.7
0.9 T T y
180 120W 60E 120E
72h — Temperature Perturbation Sensitivity Map
vertical section (40 N)
0=0.9 0.1 SR
0.3
46000 “.60N ‘40N 120N £ 0.5
o
0.71
. 0.9 ;i T ;
180 60E 120E
30W
48h — Temperature Perturbation Sensitivity Map
vertical section (40 N)
0=0.9 0.1
0.3
“.60N ‘40N 120N £ 0.5
o
000
0.71
0.9 : s ; :
180 120W 60E 120E
24h — Temperature Perturbation Sensitivity Map
vertical section (40 N)
0=0.9 0.1
0.3{+
“.60N ‘40N 120N £ 0.5
o
0.71
0.9 ;i T ? T ; ;
180 120W 60W 0 60E 120E

Figure 22.5: Composite temperature sensitivity patterns for the positive A-index
growth cases (from top to bottom: 96 h, 72 h, 48 h, and 24 h; units are m2s~1K™1).
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Figure 22.6: Lag correlation between the projection on the temperature sensitiv-
ity patterns (growth cases) and the A-index time series. Negative lag times mean
leading temperature pattern.

relatively higher integration speed of the simplified model, longer runs and, there-
fore, better statistics. Secondly, climate reconstruction from temperature maps
derived from suitable proxy data may give an dynamically consistent estimate of
other climate variables and their variability which is not so easily obtained from
proxy data. The method as presented here is limited to scenarios with constant
forcing. Another limitation arises from the uncertainty of the reconstruction in
the upper model levels which appears to be a consequence of the strong advective
component of the temperature tendencies at these levels. This may be related to
the question of the uniqueness of the solution which cannot be guaranteed.
Given the climate variability, the forcing of a large scale atmospheric telecon-
nection pattern on short timescales is diagnosed. We choose the North Atlantic
Oscillation, which determines Europe’s present and past climates. It has also
been simulated by an idealised GCM experiment (PUMA). We determine those
temperature sensitivity patterns, which generate a NAO-index increase. The di-
agnosed temperature sensitivity patterns may help to identify mechanisms, which
force the variability of large scale atmospheric teleconnection patterns. Forcing
the model with one of the sensitivity patterns leads to a significant change of the
probability density function of the NAO-Index, which is consistent with results
from Corti and Palmer (1997). By identifying directly the heating sensitivity
patterns in a primitive equations model we may achieve a better understanding
of how the atmosphere reacts on changes of the forcing. It is a tool to determine
the influence of a (possibly external) thermal forcing on internal atmospheric
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variability. The reversed approach by the adjoint technique reveals sensitivities
not previously considered which is in contrast to the direct method where pertur-
bations are introduced in a more or less systematic way and therefore are shaped
by the initial paradigm. The main limitation lies in the linearity of the adjoint
sensitivities. Their validity is depending on the linearity of the studied process
which in turn determines the timescale. For the atmosphere this results in the
order of 10 days at maximum. However this is enough for some of the dynami-
cal processes linked with persistent large scale atmospheric circulation patterns
taken into account that tangent-linearity allows for the calculation of first order
sensitivities along almost arbitrarily complex trajectories.

These results suggest that the adjoint techniques presented may be success-
fully applied to analyse palaeoclimates by reconstructing and diagnosing the at-
mospheric forcing, which generates the atmospheric mean state, its variability,
and the underlying processes. Other adjoint techniques found in the literature,
such as the characterisation of the background flow by its (scalar) overall sen-
sitivity (Oortwijn and Barkmeijer 1995), or the stability analysis of persistent
states by finite time fastest growing modes (Frederiksen 2000), may also prove
useful in the field of palaeoclimatology.
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