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SUMMARY

A global atmospheric circulation model is used to derive the properties of the subscale forcing in the
primitive equations. The study is based on a simulation with the model PUMA (Portable University Model of the
Atmosphere), which represents a dynamical core with linear diabatic heating and friction. The subscale forcing is
determined for a low wave number resolution T 21 (≈5◦ × 5◦) embedded in T 42 resolution (≈2.5◦ × 2.5◦) using
the differences between the low wave number filtered T 42 model and the forcing by low wave numbers (T 21).
The mean subscale forcing vanishes (besides a small heating contribution). The variance has largest values in the
midlatitudes for vorticity (mid-troposphere), temperature (lower troposphere), and in the polar mid-troposphere
for divergence. The temporal correlations reveal a slow decay in the first few hours followed by an exponential
decay with an e-folding time of about one day. The correlation with hyperdiffusion (∼∇8) is below 0.4. Based on
these results the design of stochastic parametrizations is suggested.
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1. INTRODUCTION

Finite resolutions in atmospheric circulation models constrain the complete non-
linear interactions, which requires provisions to yield a simulation of the realistic equi-
librium state determined by the interaction of all scales. In particular, the cascades of
energy and enstrophy predicted by two-dimensional (2D) turbulence theory are dis-
turbed. The neglect of small scales alters the large-scale behaviour, and hence the
simulated climate mean and the variability. The traditional theory of 2D turbulence
(Kraichnan 1976) predicts two inertial subranges: for large scales the indirect energy
cascade reveals an energy spectrum proportional to k−5/3, and for small scales a direct
enstrophy cascade with k−3. Both subranges are separated by the forcing range.
However, this theory demands infinite domains and leads to problems with the energy
sink for vanishing total wave number in numerical models. The atmosphere is charac-
terized by a broad forcing range, mainly determined by baroclinic instability, associ-
ated with an approximate enstrophy range, but no energy cascading range (Boer and
Shepherd 1983). In the range of the lowest wave numbers, backscatter towards higher
wave numbers occurs, which acts as an additional source and leads to a further direct
enstrophy cascade. Considering wave and rotational modes separately, Bartello et al.
(1996) find that wave modes are damped, whereas rotational modes are forced by sub-
scale modes (by a negative eddy viscosity). The large-scale energy spectrum depends
crucially on the choice of the dissipation (Ekman damping or hyperdiffusion) and on
the type of forcing (Tran and Shepherd 2002). Thus the structure of the atmospheric
energy spectrum and the existence of the two cascades remains an open problem.

The downscale interactions are parametrized by eddy viscosity or hyperdiffusion
(∼∇2h). These parametrizations are also beneficial for the numerical stability of the
codes. Koshyk and Boer (1995) and Kaas et al. (1999) relate the subscale forcing
to the spectral horizontal diffusion in observations and general circulation model
(GCM) simulations. The upscale interaction can be incorporated as stochastic forcing,
which accounts for the irregular and unpredictable nature of the subgrid processes.
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A part of the upscale interaction can be considered as a backscatter effect and
parametrized by deterministic negative hyperdiffusion (Frederiksen and Davis 1997).

A justification of the stochastic forcing within dynamical systems theory is given by
Palmer (2001). Stochastic parametrizations are included in the ECMWF model (Buizza
et al. 1999, 2000; Shutts 2001) and improve the precipitation simulation (see Theis
et al. 2003). In mesoscale convective systems this problem has been considered by Lin
and Neelin (2000, 2002). The effect of unresolved variability has been parametrized by
the inclusion of noise, and interpreted as additional damping in terms of a fluctuation–
dissipation relation (von Storch 2004). The impact of stochastic forcing in general
circulation models has been analysed in ensemble simulations by Pérez-Muñuzuri
et al. (2003, 2005). They show that stochastic forcing can lead to enhanced order
and coherence, whereas the traditional point of view emphasizes the excitation of
instabilities and disorder. The stochastic parametrizations in these models are based on
simple assumptions for the statistical properties, and the forcing is either uncorrelated in
space and time or with constant magnitudes within finite regions and time intervals. So
far, there is no systematic treatment of this problem in GCMs except for a project at the
European Centre for Medium-Range Weather Forecasts (ECMWF), which addresses the
unknown stochastic forcing (Hoskins et al. 2004). There, a very high resolution version
of the forecast model (T 799) is compared with a lower resolution version (T 95) to
derive the subscale processes.

Our aim is to analyse the dynamic subscale processes in a GCM simulation to
derive quantitative properties of stochastic parametrizations for low resolution GCMs
in long-term climate simulations. The atmospheric circulation model PUMA (Portable
University Model of the Atmosphere), which is driven by simple diabatic forcings,
is a GCM restricted to the dynamical core of the primitive equations. It presents a
well-defined physical setting since it avoids problems due to model-specific diabatic
parametrizations. The simulation is performed in a moderately high resolution (T 42,
≈2.5◦ × 2.5◦) environment where all scales are included explicitly and the subscale
forcing is extracted numerically after the definition of an intermediate cut-off scale
(T 21, ≈5◦ × 5◦). The approach is described by Domaradzki et al. (1987) for the Navier–
Stokes equations. It was applied later to passive scalar turbulence (Lesieur and Rogallo
1989) and to an assessment of the different properties of rotational and wave modes
(Bartello et al. 1996). The properties of these residual terms are subjected to statistical
analyses in grid and wave number space to detect the main physical properties.

In section 2 the dynamical model is described and in section 3 the experimental
design for the analysis of the subscale forcing is specified. In section 4 the results for
the statistical analysis of the subscale forcing are presented. A summary and an outlook
on the application to stochastic parametrization conclude in section 5.

2. MODEL

PUMA (Fraedrich et al. 2005a) is an atmospheric global circulation model based
on the multi-layer primitive equations (see Hoskins and Simmons 1975; James and
Gray 1986); the prognostic equations for vorticity ζ and horizontal divergence D, the
hydrostatic approximation, the continuity equation and the thermodynamic equation are

∂(ζ + f )

∂t
= 1

(1 − μ2)

∂Fv

∂λ
− ∂Fu

∂μ
− ζ

τF
+ Hζ , (1)
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with

Fu = V (ζ + f ) − σ̇
∂U

∂σ
− T ′ ∂(ln ps)

∂λ
,

Fv = −U(ζ + f ) − σ̇
∂V

∂σ
− T ′(1 − μ2)

∂(ln ps)

∂μ
.

The temperature T = T0 + T ′ is separated into a constant reference temperature T0
and an anomaly T ′. The horizontal coordinates are μ = sin ϕ with the latitude ϕ and the
longitude λ. The vertical coordinate is σ = p/ps, where p and ps denote pressure and
surface pressure. U and V are the zonal and meridional wind components multiplied
by cos ϕ. The vertical velocity in σ -coordinates is σ̇ = dσ/dt , ω = dp/dt is the vertical
velocity in the p-system, � denotes the geopotential, κ is the adiabatic coefficient, and
f the Coriolis parameter.

Newtonian cooling, (TR − T )/τR, parametrizes the heating processes relaxing tem-
perature towards a prescribed restoration temperature field TR with the time-scale τR.
TR is zonally symmetric with an equator–pole gradient of 70 K without annual or
daily cycle. That is, the subsequent experiments represent an aqua-planet at equinox
conditions. The vertical distribution in the troposphere is given by a lapse rate of
0.0065 K m−1. The restoration time-scale τR is 30 days in the top three levels, 10 days
in the second lowest and 5 days in the lowest level. Due to the absence of an explicit pre-
cipitation parametrization, tropical perturbations, which strongly depend on evaporation
and precipitation, are under-represented.

Rayleigh friction, which describes surface drag and turbulent exchange of mo-
mentum in the boundary layer, damps vorticity and divergence with the time-scale τF.
Rayleigh friction acts only in the lowest level with the time-scale τF = 1 day. Hζ , HD

and HT denote the hyperdiffusion in (1), (2) and (5). For a prognostic variable Q, the
hyperdiffusion is

HQ = −(−1)hK∇2hQ (6)

with h = 4 and a diffusion coefficient K which is the same for all variables. Hyper-
diffusion provides the energy cascading into subgrid scales and its dissipation. The
diffusion coefficient K is chosen to damp the smallest resolved wave in T 42 with a
time-scale of 0.25 days. Horizontal fields are represented by triangular truncated series
of spherical harmonics with T 42 resolution. In the vertical, five equally spaced σ -levels
are used. While linear terms are calculated in the spectral domain, nonlinear products
are computed in grid-point space.

Before the differences between low and high resolution are examined, the cli-
matologies of the mean circulation and its variability are presented. The zonal mean
circulation of PUMA (Fig. 1) shows the midlatitude jet streams (left panels) and the
zonal-mean circulation (right panels). The high resolution simulation (T 42) in the upper
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Figure 1. Zonally averaged zonal wind (a), (c) (m s−1) and meridional stream function (b), (d) (1010 kg s−1) for
simulations with high resolution T 42 (a), (b) and low resolution T 21 (c), (d).

panels reveals higher intensities than the low resolution (T 21, lower panels). Besides the
intensification in the higher resolution, a weak displacement is observed.

The standard deviations of the dynamical variables (not shown) are of the order of
σζ ∼ 10−5 s−1 (vorticity), σT ∼ 2 K (temperature), σD ∼ 10−6 s−1 (divergence), and
σps ∼ 5 hPa (surface pressure). Differences (Fig. 2) are shown by the zonally averaged
standard deviations of (a) vorticity, (b) temperature, (c) divergence, and (d) surface
pressure (high minus low resolution). The differences appear in the regions of maximum
standard deviations and are most prominent in the midlatitudes. Note that the difference
in the divergence (c) is one order of magnitude smaller than that in vorticity (a). Vorticity
and temperature show large differences near the jet streams. The change of the surface
pressure variability corresponds to those of vorticity and temperature.

3. EXPERIMENTAL DESIGN AND METHODS OF ANALYSIS

The simulations are performed in the high resolution model with pre-determined
parametrizations (1)–(5). In this section the state vector X comprises the complete set of
dynamical variables, vorticity ζ , divergence D, temperature T , and surface pressure ps.
The subscript A describes all wave numbers and L the low wave numbers (large scales)
only. Hence XA denotes all wave numbers of the variables and XL the low wave numbers
of the variables (for a schematic overview see Fig. 3). In our study, A corresponds to
triangular truncation T 42 (≈2.5◦ × 2.5◦) and the large-scale set L to T 21 (≈5◦ × 5◦).
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Figure 2. Differences of zonally averaged standard deviations in the high minus a low resolution simulation for
(a) vorticity (10−5 s−1), (b) temperature (K), (c) divergence (10−7 s−1), and (d) surface pressure (hPa).

The dynamic equations can be split into nonlinear (NLIN) and linear (LIN) contri-
butions. Thus, for the complete set A the equations are written symbolically as

∂

∂t
XA = NLINA(XA) + LIN(XA). (7)

The subscript A of NLINA denotes the nonlinear terms forcing all (A) resolved wave
numbers. The dynamics of the low wave numbers is given by the low wave number
filter of (7)

∂

∂t
XL

∣∣∣∣
filt

= NLINL(XA) + LIN(XL) (8)

where NLINL(XA) denotes the low wave number filtered couplings between all scales.
The pure large-scale model comprises only low wave numbers XL and follows the

dynamics
∂

∂t
XL

∣∣∣∣
large

= NLINL(XL) + LIN(XL). (9)

Note that we do not consider different linear processes in the large-scale model since
we are interested in the nonlinear interactions. Figure 3 shows that in the large-scale
regime the hyperdiffusion of the high resolution simulation (H-42) is negligible com-
pared to the large-scale hyperdiffusion (H-21). The differences between the nonlinear
forcings of the large scales in high (8) and low resolution (9) are denoted as residuals
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Figure 3. Scale separation for all (XA) and large-scale variables (XL) in wave number space. R denotes the
residual tendencies with upward and downward fluxes across the cut-off scale. The curves show the relative
magnitudes of the hyperdiffusion (∝ {l(l + 1)}4) for high resolution (H-42, solid) and low resolution (H-21,

dashed).

(Domaradzki et al. 1987)

R = ∂

∂t
XL

∣∣∣∣
filt

− ∂

∂t
XL

∣∣∣∣
large

= NLINL(XA) − NLINL(XL). (10)

The properties of the residual terms are analysed in the following. In analogy to the state
vector X, the residual R includes Rζ for the vorticity, RT temperature, RD divergence,
and Rps for the surface pressure.

The aim of stochastic parametrization is to mimic the residuals R as a stochastic
process η in the large scale dynamics

∂

∂t
XL

∣∣∣∣
stoch

= NLINL(XL) + LIN(XL) + η. (11)

An optimal choice of η should reveal the properties of the high resolution simulation
(8).

The residuals R are due to the modes, which are unresolved in the low resolution;
these are interactions between the high wave numbers and interactions between the high
and the low wave numbers. The residuals are large-scale variables and the analysis
will show that their dominant intensity is in the highest wave numbers resolved by
the low resolution model. Although the residuals look typically wave-like, they do not
correspond to meteorological phenomena but represent nonlinear interaction triads with
at least one unresolved mode (i.e. wave number higher than T 21). The residuals include
downscale and upscale fluxes. The downscale part is due to the decay of the smallest
resolved eddies in the large-scale resolution and can be considered as eddy viscosity.
The upscale part describes forcing of resolved modes by unresolved eddies. Due to the
unpredictable character of this part, it is possible to consider it as a stochastic process.

To obtain the residuals R, a simulation in T 42 resolution is performed. Additionally,
at every time step the large-scale nonlinear tendency terms NLINL(XL) are used to
derive the residuals. There is no parallel simulation required by a purely large-scale
model. The experiment is performed on an aqua-planet at equinox with a total duration
of 10 years. The T 21-data are stored every hour corresponding to the integration time
step that would be used for PUMA in a low resolution (T 21) simulation (9).

4. ANALYSIS OF SUBSCALE FORCING

In this section the residuals R are analysed. These residuals are large-scale tenden-
cies of the variables, which describe the high wave number mode forcing not included
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in a low resolution model. First we present (a) snapshots of the residual fields to ob-
tain qualitative views of their structure, because they serve as the basic dataset of the
subsequent analysis. Means and variances of the residuals R are determined (b) in grid
point and (c) in spectral (wave number) space. The frequency distributions (d) of time
series show whether R can be considered as a Gaussian process and reveal the role
of extreme events. Temporal correlations (e) determine the time-scale of the residuals,
and vertical correlations (f) between the model levels indicate whether R is vertically
coherent. Finally, the correlations of the residuals with the large-scale variables (g) and
their hyperdiffusion (h) are determined to unveil whether a part of the subscale forcing
can be parametrized using the large-scale variables.

(a) Snapshots
Some of the characteristic properties of the residuals R are visible in the snapshots

in Fig. 4. These snapshots show the instantaneous residuals (a) Rζ for vorticity, (b) RT

temperature, (c) RD divergence, and (d) Rps for the surface pressure. The patterns (a)–
(c) are derived in the mid-tropospheric model level σ = 0.5. All patterns are determined
at the same time and the residuals are per hour.

The residuals in Fig. 4 share common characteristic properties. The preferred spatial
scale in all regions is characterized by the largest wave numbers. Whereas lower absolute
values show extended bands, the highest intensity is concentrated in restricted regions.
Positive as well as negative residuals are present and both with approximately equal
frequency, indicating that the mean vanishes. The major part of the variability occurs
in the midlatitudes while in the tropics only weak wave-like patterns are observed.
Further inspection shows that these patterns propagate with the mean zonal flow in the
midlatitudes.

(b) Spatial distribution
First the mean value of the residuals is of interest, since non-vanishing deviations

imply systematic forcing errors being present in the low resolution model. Since the ex-
periment is zonally symmetric, we consider means of the dynamical variables averaged
along latitude circles for the whole simulation time. The zonal means (not shown) are
at least one order of magnitude smaller than the standard deviations. The patterns are
spatially erratic for vorticity, divergence and surface pressure. The temperature shows a
slight deviation from this behaviour with coherent positive residuals in the lower mid-
latitudes and smaller negative values in the lowest level; all values are below 10% of
the standard deviation of the residual. This effect is explained by the different circu-
lation and climate obtained in the higher resolution version of the model. The heating
leads to a higher global mean temperature in the higher resolution which amounts to
roughly 0.3 K. However, since we cannot exclude that this effect is caused by the model
parametrization we cannot attribute this to a general property of the residual forcing.
In the following analyses we consider anomalies of the residuals.

In Fig. 5 we show the latitude–height cross-sections of the standard deviations of
the residuals of the vorticity, temperature, divergence, and the latitude section for the
surface pressure. The standard deviations reveal the following spatial structures:

(a) The vorticity residuals dominate in the mid-tropospheric midlatitudes where
they support the eddy-driven jet and are responsible for the enhanced variability of the
vorticity (Fig. 2(a)) in the high resolution simulation.

(b) The temperature residuals show largest variability in the lower troposphere of
the midlatitudes, with a secondary maximum in the upper polar troposphere.
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Figure 4. Snapshots of the residuals for (a) vorticity (10−7 s−1h−1), (b) temperature (10−2 K h−1), (c) diver-
gence (10−7 s−1h−1), and (d) surface pressure (Pa h−1). All terms are forcing per hour (h). Parts (a)–(c) are

located in the mid-tropospheric level, σ = 0.5. Intensities are indicated by the grey scale bars.

(c) The divergence residuals are concentrated in the subpolar troposphere, with a
poleward shift compared to the vorticity. The interpretation of this structure is an open
problem since it does not correspond to the enhanced variability of the divergence in the
tropics (Fig. 2(c)).

(d) The areas with large surface pressure residual correspond to those of the
divergence.

The residuals show marked deviations from spatial uniformity. Although the ob-
served spatial distribution hints at unresolved Rossby-wave interactions and surface
baroclinicity, an interpretation has to consider that the residuals are differences of non-
linear interaction terms which cannot be directly related to distinct physical processes.

(c) Spectral distribution
The residual snapshots in Fig. 4 indicate the large contribution of high wave

numbers to the residuals. Figure 6 shows the standard deviations of the residuals in
the total wave number l and the zonal wave number m domain. For each dynamical
variable the level of maximum variance is chosen (see Fig. 5). Vorticity and divergence
(a) and (c) are determined in the mid-troposphere (σ = 0.5) and temperature (b) in the
lower troposphere (σ = 0.9).

The residuals show the largest standard deviations near the highest total wave
number l = 21. All residuals grow almost linearly with the total wave number and the
growth rates are of comparable magnitude. The dependence on the zonal wave number
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Figure 5. Standard deviations of the residuals for (a) vorticity (10−7 s−1 h−1), (b) temperature (10−2 K h−1),
(c) divergence (10−7 s−1h−1), and (d) surface pressure (Pa h−1). The patterns (a)–(c) show latitude–height cross-

sections of the zonal means with isoline intervals 0.5; all terms are forcing per hour (h).

is weak (this confirms turbulence closure theories, see Frederiksen and Davies (1997)).
The main result is that the spectra are not white in wave number space.

(d) Frequency distribution
In addition to the standard deviation, the frequency distribution (FD) of the resid-

uals, and, in particular, the probability of extreme values is relevant for stochastic
parametrization. Therefore, for each of the residuals, a time series is analysed repre-
senting a grid point of maximum intensity (based on Fig. 5). The FDs are shown in
Fig. 7 for (a) vorticity (47◦N, σ = 0.5), (b) temperature (47◦N, σ = 0.9), (c) divergence
(70◦N, σ = 0.5), and (d) surface pressure (70◦N), on the same longitude.

To detect whether the residuals could be considered as Gaussian variables, a
Gaussian distribution is fitted in R = 0. The log-plots of the FDs show that for small
values of R, a Gaussian distribution is a reasonable fit (∝ −R2 in the log-plot) for all
residuals. However, for high values (compared to the standard deviation), the vorticity
and temperature residuals cannot be interpreted as Gaussian random variables. Instead,
the approximate linear decay of the FDs hints at an asymmetric exponential distribution
(∝ exp(−|R|)) with an abrupt decay for negative values. The conclusion derived from
this analysis is that in a first approach the forcing is adequately represented by Gaussian
noise.
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Figure 6. Standard deviation of the residuals vs. total and zonal wave numbers l, m for (a) vorticity
(10−7 s−1h−1), (b) temperature (10−2 K h−1), (c) divergence (10−7 s−1h−1), and (d) surface pressure (Pa h−1)
(all forcing terms per hour). (a) and (c) are in the mid-troposphere (σ = 0.5) and (b) in the lowest model level

σ = 0.9. Isoline intervals are 0.05 in (a)–(c) and 0.1 in (d); in (c) and (d), intervals are 1 for isolines ≥ 1.

(e) Temporal correlations
The temporal behaviour is characterized by the autocorrelation 〈R(t)R(t+τ )〉/〈R2〉

for time lag τ . At individual grid points and levels, two temporal regimes appear:

(i) For small time lags τ (up to about 6 h) the correlation decays algebraically
(≈1 − τ 2) and remains at a high level (>0.9).

(ii) For larger time lags (above about 12 h) the correlation decays exponentially
(≈ exp(−τ/T )) with typical decay times T of the order of one day.

The overall behaviour of the correlations is presented by autocorrelation coeffi-
cients for each of the dynamical variables at the time-lag 24 hours. Figure 8 shows
the zonal mean of the autocorrelation coefficient for the forcing of the vorticity (a),
temperature (b), divergence (c), and surface pressure (d). The maps reveal one day as a
characteristic decorrelation time for most of the model levels and latitudes. The corre-
lation is low in the mid-troposphere of the midlatitudes (a)–(c). This can be explained
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Figure 7. Frequency distribution of residual time series: (a) vorticity (47◦N, σ = 0.5), (b) temperature (47◦N,
σ = 0.9), (c) divergence (70◦N, σ = 0.5), and (d) surface pressure (70◦N). Solid lines are Gaussian fits centred

on R = 0.

by the zonal transport (see section 3(a)), which yields a rapid decorrelation at single
grid points. All correlations increase towards the poles due to the lower circumpolar
advection.

( f ) Vertical correlations
The vertical coherence of the residuals is relevant for interpretation and for mod-

elling as a stochastic process. Therefore, the vertical correlation coefficients between
the residuals are determined for vertically adjacent grid points and displayed as zonal
means in the intermediate levels σ = 0.2, 0.4, 0.6, 0.8 (Fig. 9). The correlations differ
distinctly for the vorticity (a), temperature (b), and divergence (c): vorticity residuals are
mainly correlated between the levels σ = 0.3 and 0.5 in the midlatitudes. Temperature
residuals show an opposite pattern with lowest correlations in the subtropics. In contrast,
the divergence residuals are uniformly correlated with the maximum between the model
levels σ = 0.3, 0.5, and 0.7. For a stochastic parametrization the main result is that the
dominant part of the forcing shows no vertical coherence.
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Figure 8. Autocorrelation coefficients of the residual for the lag time τ = 24 h: latitude–height cross-sections
for (a) vorticity, (b) temperature, (c) divergence, and (d) surface pressure (vs. latitude), with isoline intervals 0.1

(a)–(c).

Figure 9. Correlation coefficients of the residuals between the model levels: latitude–height cross-sections of
the zonal means for (a) vorticity, (b) temperature, and (c) divergence in σ = 0.2, 0.4, 0.6, 0.8. Isoline intervals

are 0.2 (a) and (c), 0.1 (b).
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Figure 10. Correlation of the residuals with the corresponding variables for (a) vorticity, (b) temperature,
(c) divergence, and (d) surface pressure. Isoline intervals are 0.1 (a) and (b) and 0.05 (c).

(g) Correlation with the variables
The cross-correlations of the residuals with the large-scale variables may provide

guidance for stochastic parametrization in terms of linear processes. Figure 10 shows
the correlations between the residuals and the corresponding large-scale variables at
each latitude and height for (a) vorticity, (b) temperature, (c) divergence, and (d) surface
pressure. The correlations are weakly negative (−0.2 . . . 0) with small positive values
for the temperature in the tropics (0 . . . 0.1).

These cross-correlations can be used to estimate a damping time scale τX for the
variable X:

RX ≈ − 1

τX

X. (12)

Based on the cross-correlations c, an estimation for τX can be derived by

τX ≈ −1

c

σX

σRX

. (13)

The magnitudes of the standard deviations σX of the model variables (not shown)
are σζ ∼ 10−5 s−1 for vorticity, σT ∼ 2 K for temperature, and σD ∼ 10−6 s−1 for
divergence. The σRX

values are the standard deviations of the residuals RX (Fig. 5).
For the vorticity, where the correlation is of the order of −0.1, with σRζ

∼ 2
×10−7 s−1h−1, we can estimate τζ ∼ 20 days. For the temperature, this analysis leads to
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Figure 11. Correlation coefficients of the residuals with hyperdiffusion for (a) vorticity, (b) temperature, and
(c) divergence. Isoline intervals are 0.05.

τT ∼ 40 days with σRT
∼ 2 × 10−2 K h−1 and the correlation c ∼ −0.1. The damping

time-scale for the divergence is τD ∼ 2 days based on σRD
∼ 4 × 10−7 s−1h−1 and

c ∼ −0.05. Note that due to the variability of the correlation coefficient, a more exact
adjustment is not possible.

(h) Correlation with hyperdiffusion
The residuals represent two fluxes in the wave number range: an upscale flux to the

large scales, which forces the resolved scales, and a downscale flux to smaller scales,
which extracts energy from the resolved variables. This downscale flux is conveniently
parametrized as a diffusion process with an eddy viscosity. In the PUMA model, this
flux is included as hyperdiffusion (6) in the equations for vorticity, temperature and
divergence.

To determine the part of the residuals which can be modelled in terms of hyperdiffu-
sion, we correlate the residual with the hyperdiffusion of the corresponding large-scale
variable. For example, for the vorticity (1) with hyperdiffusion Hζ = −(−1)hK∇2hζ
we determine 〈RζHζ 〉/(〈R2

ζ 〉〈H 2
ζ 〉)1/2 at each grid point and level. Figure 11 shows the

latitude–height zonal-mean cross-sections of this correlation coefficient for (a) vortic-
ity, (b) temperature, and (c) divergence; note that the surface pressure is not subject to
hyperdiffusion.

The residuals of the vorticity (Fig. 11(a)) are positively correlated with the hyper-
diffusion in the largest part of the troposphere, with maximum values around 0.4.
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The correlations for temperature (b) and divergence (c) are substantial only in the lowest
model level. In all variables (a)–(c) negative correlations appear, which are traditionally
denoted as ‘negative viscosity’ (Starr 1968) and describe the accumulation of energy in
large scales. Note, however, that in a strict sense, this is reserved for Laplacian diffusion
proportional to ∇2. Here, the small values indicate that this effect is negligible. A main
outcome is that the contribution of the dynamic subgrid forcing to hyperdiffusion
varies considerably in the troposphere. Note, however, that any modification of the
hyperdiffusion has to respect the numerical requirement for smooth fields and that
small correlations cannot cause the neglect of hyperdiffusion.

5. SUMMARY AND DISCUSSION

The forcing of a large-scale model embedded in a high resolution atmospheric
model is analysed with the atmospheric circulation model PUMA (Portable University
Model of the Atmosphere) based on the primitive equations with Newtonian cooling and
Rayleigh friction. The model is run in T 42 resolution and the embedded model has a
lower T 21 resolution (large-scale model). The subscale forcing due to higher resolution
effects is determined as residual tendencies of the nonlinear terms. The main properties
are as follows:

1. The residuals have zero mean except for a small temperature forcing which
explains the higher global mean temperature in the high resolution model.

2. The variability of the residuals is concentrated in the high total wave number range.
3. The vorticity and divergence residuals are concentrated in the mid-troposphere

whereas temperature is mainly forced in the lowest model level.
4. The probability distribution of the residuals is predominantly Gaussian, but shows

exponential tails for vorticity and temperature.
5. The decorrelation time is of the order of one day; below 6 hours the residuals

remain approximately constant.
6. The correlation between vertical levels is largest for the vorticity and the diver-

gence in the mid-troposphere, but weak for the temperature.
7. The correlations between the residuals and the variables are slightly negative and

hint at damping time-scales of 20 days for vorticity, 40 days for temperature and 2
days for divergence.

8. A minor part of the residuals can be considered as hyperdiffusion (correlation up
to 0.4); for vorticity in the whole troposphere, for temperature and divergence only
in the lowest level.

These results subsume the main statistical properties of the residual tendencies
to be used in stochastic parametrizations. A first hint is the concise structure of the
residuals: they are dominant in the high total wave number space and, in the vertical, at
different heights for each model variable, vorticity, temperature and divergence. Vertical
correlations show weak values for vorticity and divergence, whereas the temperature
forcing is uncorrelated. The temporal behaviour can be reproduced by an autoregressive
process of first order with the decay time of one day. A possible extension of the present
study pertains to the downscale energy flux and hyperdiffusion. Although the correlation
of the residuals with hyperdiffusion is low (below 0.4), this parametrization, which is
common in many atmospheric models, could be improved using the present results (see
also Kaas et al. (1999)).

In a preliminary test we apply a simplified version of stochastic forcing in the T 21
resolution of PUMA. The spatial patterns are determined by the spectral intensities
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(Fig. 6) derived in section 4(c) with coefficients represented by Gaussian random
variables. The random variables are constant up to 6 hours and uncorrelated (white)
above, see section 4(e). The effects on the mean circulation and the variability of the
model (Figs. 1 and 2) are relatively small. A main reason is that the stochastic forcing
(Fig. 6) is located in the spectral range where hyperdiffusion is high (see Fig. 3), which,
however, cannot be reduced without loss of stability. Future applications of stochastic
parametrization in fully physically parametrized climate models (Fraedrich et al. 2005b,
2005c) appear to be more promising, in particular, the prediction of precipitation may
benefit. A further useful application of the present approach is that localized forcing
terms required in simple linear models of the global atmosphere can be quantified
(Zhang and Held 1999).

ACKNOWLEDGEMENTS

Collaboration with Edilbert Kirk and Frank Lunkeit is appreciated. Discussions
while participating (KF) in the ECMWF Workshop on ‘Representation of sub-grid
processes using stochastic-dynamic models’ (June 2005) are gratefully acknowledged.
Financial support was given by the Deutsche Forschungsgemeinschaft (SFB-512 and
FR450/6).

REFERENCES

Bartello, P., Métais, O. and
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