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Abstract. Data with power spectra close toS( f ) ∼ 1/ f is denoted as 1/ f or flicker noise. High resolution
measurements during TOGA/COARE for temperature, humidity, and wind speed (1 min resolution) reveal 1/ f
spectra while precipitation shows no power-law scaling during the same period. However, a binary time series
indicating the precipitation events (1 for precipitation, 0 for no precipitation) shows a clear 1/ f spectrum in
line with the remaining boundary layer data. For extreme events in time series with 1/ f spectra the return
time distribution is well approximated by a Weibull-distribution for short and long return times. The daily
discharge of the Yangtze river shows high volatility which is linked to the intra-annual 1/ f spectrum. The
discharge fluctuations detected in different time windows are represented by a single function (a so-called data
collapse) similar to the universal behavior found for turbulence and various physical systems at criticality. The
collapse is well described by the Gumbel distribution.

1 Introduction

Increasing variability at lower frequencies is ubiquitous in
meteorology and hydrology (Jiang et al., 2005; Yano et al.,
2004; Fraedrich and Blender, 2003). If changes of mea-
surement devices and external impacts can be excluded this
volatility is attributed to the internal variability of weather
and climate. The low frequency part of the power spectra of
these time series can typically be approximated by a power
law,S( f )∼ f −β, with β>0, and is denoted as long term mem-
ory since the correlation function does not decay in a finite
time.

The so-called 1/ f or flicker noise denotes spectra close to
1/ f . An important property of 1/ f noise is that the variance of
running mean time series does not decay, thus statistical anal-
yses and skillful statistical predictions are hampered. Since
exponents in the wide rangeβ = 0.5...1.5 are allowed (see
for example Voss and Clarke, 1975) these spectra are some-
times called “1/ f like”. This definition should not be con-
fused with the mathematically sharp definitionβ= 1 used in
statistics, which is the upper bound for stationarity. In finite
observational datasets 1/ f spectra are limited at low frequen-
cies, hence the process can be considered to be stationary
(see Stoisiek and Wolf (1976) for a discussion of stationarity
of 1/ f processes).

Correspondence to:R. Blender
(richard.blender@zmaw.de)

Data with 1/ f power spectra cover wide ranges of frequen-
cies from minutes to millennia, for example, tropical bound-
ary layer data with 1 min resolution (TOGA/COARE, Yano
et al., 2004) and reconstructed temperatures up to the Mi-
lankovitch cycle (Huybers and Curry, 2006). Updating the
overview by Fraedrich et al. (2009) we present new results
on (a) the variability of binary precipitation events in high
resolution TOGA/COARE measurements and (b) on the uni-
versality of the fluctuations observed in the Yangtze river dis-
charge. Models and the impact of 1/ f spectra on extreme
event distributions are considered briefly.

2 Observing 1/ f variability

Examples for 1/ f spectra are found in wide ranges from min-
utes to millennia: (i) tropical boundary layer observations
(TOGA/COARE, Yano et al., 2004), (ii) the discharge of the
Yangtze river in the intra-annual frequency range (Wang et
al., 2008), (iii) the sea surface temperature in a region of
the North Atlantic and in the southern ocean (reproduced
by models, Fraedrich and Blender, 2003), (iv) reconstructed
near surface temperatures up to the Milankovitch cycle (Huy-
bers and Curry, 2006).

Tropical rainfall at the TOGA/COARE research vessel
Kexue shows no clear power-law scaling in contrast to tem-
perature, humidity, and wind speed which reveal clear 1/ f
spectra. In order to detect a similar behavior in the precipi-
tation time series (Fig. 1a) data transformations are assessed
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Figure 1: (a) Precipitation at the station Kexue (TOGA/COARE), resolution 1min, (b) power 4 

spectra (10 window averages) for precipitation and the binary event time series. The slopes 5 

are guides for the eye. 6 
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Figure 2. Return time distribution for extremes in 1/f (solid, Weibull) compared to the 9 

exponential distribution for uncorrelated data (dashed). 10 

Figure 1. (a) Precipitation at the station Kexue (TOGA/COARE),
resolution 1 min,(b) power spectra (10 window averages) for pre-
cipitation and the binary event time series. The slopes are guides
for the eye.

providing the following result: precipitationevents, i.e. the
binary sequence defined by 1 for nonvanishing precipitation
and 0 otherwise, show a clear 1/ f spectrum (Fig. 1b). A pos-
sible explanation for this feature is that precipitation events
are coupled to boundary layer processes (e.g. instability),
while the rainfall amount at single stations is determined by
other processes.

3 Modeling 1/ f variability

Whereas red noise is modeled by autoregressive processes
(AR), for example with an AR-1 where the coefficient a
determines the threshold frequency, there is no simple or
generic model for 1/ f spectra. An increase of the AR-1 coef-
ficient a towardsa→ 1 increases memory and variance, but
does not alter the low frequency plateau of the red noise spec-
trum. Long term memory and 1/ f can be mimicked by au-
toregressive processes in two ways: (i) superposition of AR-
1 processes with a continuous band of threshold frequencies
and (ii) extension to an infinite number of coefficients defin-
ing a fractional AR process (FAR).

A physical model for 1/ f behavior is given by diffusion in
two adjacent compartments with two distinctly different dif-
fusion coefficients (Fraedrich et al., 2004). An upper mixed
layer is driven by an uncorrelated atmospheric heat flux and
coupled to a deep abyssal ocean with lower diffusivity. This
model enables the simulation of the observed spectrum of sea
surface temperatures in the North Atlantic and the southern
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Figure 1: (a) Precipitation at the station Kexue (TOGA/COARE), resolution 1min, (b) power 4 

spectra (10 window averages) for precipitation and the binary event time series. The slopes 5 

are guides for the eye. 6 
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Figure 2. Return time distribution for extremes in 1/f (solid, Weibull) compared to the 9 

exponential distribution for uncorrelated data (dashed). 10 

Figure 2. Return time distribution for extremes in 1/ f (solid,
Weibull) compared to the exponential distribution for uncorrelated
data (dashed).

ocean. Based on this model the abyssal diffusivity can be
estimated if long term observations of the surface variability
are available.

4 Extremes and 1/ f variability

For long term memory processes the statistical properties
of extreme event return times are altered. While the re-
turn times are exponentially distributed for uncorrelated data,
Bunde et al. (2005) suggested a so-called stretched expo-
nential, exp(−(t/λ)k), for large return times. Blender et
al. (2008) observed that the return time distribution for 1/ f
spectra is well described by a Weibull distribution,f (t) =
(k/λ)(t/λ)k−1exp(−(t/λ)k), which includes a power-law for
small return times and an asymptotic stretched exponential
for large times (occurring as first and second factors). A main
finding is the long term predictability of successive return
times.

Employing a surrogate 1/ f data (simulated by a fractional
autoregressive process, FAR) the parameters of the Weibull
distribution are estimated (parameters shapes=0.2 and scale
λ = 0.3) leading to a distinctly different behavior of the re-
turn times compared to the exponential (Poisson) distribu-
tion (Fig. 2). The responsible mechanism is, given a posi-
tive threshold, the presence of long term positive (negative)
anomalies, which favor long periods of enhanced (reduced)
threshold crossings and hence short (long) return times.

5 Universality and 1/ f variability

The daily Yangtze river discharge measured at the station
Yichang (since 1892, located downstream the Three Gorges
Project) reveals high intra-annual and inter-annual variabil-
ity (Fig. 3a). For time scales between two weeks and 1 yr the
spectrum follows a 1/ f power-law (Fig. 3b), which hampers
the calculation of a mean annual cycle. Due to this extreme
variability the hydrological conditions along the Yangtze
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Figure 3. Yangtze river discharge at the station Yichang, (a) snapshot of 9 years, (b) power 3 

spectrum (1892-2004, 6 segment average), slopes indicate the power-law exponent β. 4 
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Figure 4. Rescaled frequency distribution of variances in the Yangtze river discharge at 7 

Yichang for different segment lengths (in days, see also Figure 3), the solid line represents the 8 

Gumbel distribution (for parameters see text). 9 

 10 

Figure 3. Yangtze river discharge at the station Yichang,(a) snap-
shot of 9 yr,(b) power spectrum (1892–2004, 6 segment average),
slopes indicate the power-law exponentβ.

river were characterized by extreme floods before the con-
struction of the dam in the year 2006. Precipitation can be
excluded as a source for this type of variability since it is less
correlated. On interannual time scales the discharge reveals
weaker long term memory (β≈0.3, see Wang et al., 2008).

Data with a 1/ f spectrum are associated with an extreme
value distribution (Antal et al., 2001). For a time seriesh(t),

fluctuationswT = [h(t)−h(t)]2 for different segmentsT (time
windows) are determined;µ is the mean andσ the stan-
dard deviation of the fluctuationswT . The distributionP(wT)
of the fluctuations is transformed to a rescaled function
Φ(x) = σP(wT) depending on the standardized fluctuation
x= (wT −µ)/σ. Employing this transformation (Bramwell
et al., 1998) leads to a remarkable overlapping of the data
(a so-called data collapse) for a large number of physical
systems including fluid turbulence. The data forΦ(x) ob-
tained for the daily Yangtze river discharge versus the stan-
dardized fluctuationsx collapses for different time segments
(Fig. 4). As found by Antal et al. (2001) the result is
well represented by the extreme value (Gumbel) distribution
Φ(x) = a exp(−(ax+ γ)− e−(ax+γ)), with a= π/

√
6≈ 1.282,

and the constantγ ≈ 0.5772, capturing the skewness of the
non-Gaussian distribution (note that there is no fit applied).

6 Conclusions

Power spectra close to 1/ f variability are ubiquitous in mete-
orological and hydrological time series. We present new re-
sults obtained for precipitation data with 1 min resolution and
for the daily Yangtze river discharge. The frequency range of
1/ f spectra is limited: at low frequencies either by the dura-
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Figure 3. Yangtze river discharge at the station Yichang, (a) snapshot of 9 years, (b) power 3 

spectrum (1892-2004, 6 segment average), slopes indicate the power-law exponent β. 4 

 5 

10-3

10-2

10-1

100

-2 0 2 4 6

28

29

2
10

211

212

x

Φ

 6 

Figure 4. Rescaled frequency distribution of variances in the Yangtze river discharge at 7 

Yichang for different segment lengths (in days, see also Figure 3), the solid line represents the 8 

Gumbel distribution (for parameters see text). 9 
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Figure 4. Rescaled frequency distribution of variances in the
Yangtze river discharge at Yichang for different segment lengths (in
days, see also Fig. 3), the solid line represents the Gumbel distribu-
tion (for parameters see text).

tion of the time series or by a regime with less memory, and
at high frequencies by the Nyquist frequency or a short term
memory regime (for exampleS( f ) ∼ f −2 or steeper). Since
1/ f noise is close to nonstationarity, statistical analyses have
to be applied carefully because the mean cannot be estimated
using averages in finite intervals.

High resolution precipitation data from TOGA/COARE
shows no power-law scaling while temperature, humidity and
wind speed follow a 1/ f spectrum for the same measure-
ment period. A binary time series obtained for precipitation
events, however, shows a clear 1/ f power-law scaling. This
new finding hints to a coupling of the precipitation events
with boundary layer processes, while the rainfall amount is
controlled by an independent process.

The exponential distribution of extreme event return times
is altered for data with 1/ f spectra since the low frequency
variability can lead to long periods below the threshold (de-
pressions) associated with large return time intervals. Short
return times are favored during periods, whose longer term
mean is high. We have demonstrated how the Weibull distri-
bution captures both effects.

The daily Yangtze river discharge shows a 1/ f spectrum on
intra-annual time scales. After an adequate rescaling, the dis-
charge fluctuations for different time scales are represented
by a single function which is well described by the Gumbel
distribution. Thus the fluctuations of the Yangtze river dis-
charge follow a universal distribution known from turbulence
and critical phenomena. The physical mechanisms relevant
for 1/ f behavior are still unclear. The ubiquity hints to a gen-
eral (“universal”) or generic property of complex systems,
and the absence of characteristic time scales is explained by
the scale invariance due to many degrees of freedom. The re-
sult for the Yangtze river discharge might be associated with
the multitude of time scales involved.
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