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ABSTRACT

Climate forecast skills are evaluated for surface temperature time series at grid points of a millennium

control simulation from a state-of-the-art global circulation model [ECHAM5–Max Planck Institute Ocean

Model (MPI-OM)]. First, climate predictability is diagnosed in terms of potentially predictable variance

fractions and the fluctuation power-law exponent (using detrended fluctuation analysis). Long-term memory

(LTM) with a fluctuation exponent (or Hurst exponent) close to 0.9 occurs mainly in high-latitude oceans,

which are also characterized by high potential predictability. Next, explicit prediction experiments for various

time steps are conducted on a gridpoint basis using an autocorrelation predictor. In regions with LTM,

prediction skills are beyond that expected from red noise persistence—exceptions occur in some areas in the

southern oceans and over the Northern Hemisphere continents. Extending the predictability analysis to the

fully forced simulation shows a large improvement in prediction skills.

1. Introduction

The predictability of a system is closely linked to its

short- and long-term memory (LTM). While short-term

memory is described by an exponentially decreasing auto-

correlation function (ACF) with a finite integral time scale,

LTM is linked to a power-law decay of the ACF of a time

series, C(t) ; t2g, with 0 , g , 1, and it is thus charac-

terized by an infinite integral time scale. This LTM has

been observed in globally and hemispherically averaged

surface air temperature (Bloomfield 1992; Gil-Alana 2005),

station surface air temperature (Pelletier 1997), geo-

potential height at 500 hPa (Tsonis et al. 1999), pale-

oclimate temperature proxies (Pelletier 1997; Huybers

and Curry 2006), sea level (Barbosa et al. 2006), and

many other studies; and it is characterized by enhanced

low-frequency variability and has great implications for

long-term forecast and extreme events (Blender et al.

2008).

Detrended fluctuation analysis (DFA) (Peng et al.

1994) is in wide use for LTM detection, which yields the

fluctuation function F(t) measuring fluctuations within

the time series on a time scale t. For a power law in the

power spectrum S( f) ; f 2b there is the relation F(t) ;

ta, with b 5 2a 2 1 (Havlin et al. 1988), and the correla-

tion exponent is related by b 5 1 2 g. Therefore, DFA

may be seen as a method performed in the time domain
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that is analogous to power spectrum analysis in the fre-

quency domain but with a smoother appearance because

of the inherent segment averaging. Note that a is similar to

the Hurst exponent, except that DFA may also be applied

to the data whose underlying statistics are nonstation-

ary. It has been reported that surface temperature shows

the following characteristics on decadal time scales

(Fraedrich and Blender 2003): (i) a is close to 1 in some

ocean basins suggesting nonstationary LTM; (ii) over

continents, a is close to 0.5 revealing a white noise nature

of the local processes; (iii) and a is around 0.65 within the

transition zones along the coasts indicating weak LTM.

The LTM in the North Atlantic can extend up to cen-

tennial time scales (Fraedrich and Blender 2003). Dis-

crepancies in terms of a have been reported over the inner

continents (Bunde et al. 2004; Rybski et al. 2006) and are

attributed to different spatial coverage of the available

data (Blender and Fraedrich 2004), whereas LTM in high-

latitude oceans, particularly in the North Atlantic, remains

robust and has been suggested to be associated with the

state of the Atlantic meridional overturning circulation

(Blender et al. 2006; Zhu et al. 2006). Loaded with high

potential predictability (Boer 2000), the North Atlantic

has received intensive attention as a test bed for the pre-

diction capability of numerical climate models (e.g.,

Griffies and Bryan 1997; Keenlyside et al. 2008). Promis-

ing skills are achieved in the subpolar North Atlantic (see

Fig. 4 from Griffies and Bryan 1997 and Fig. 1a from

Keenlyside et al. 2008), where LTM is most pronounced,

indicating a close relationship. In fact, key questions re-

lated to predictability, such as whether there is pre-

dictability at all and up to what time scales we can

potentially make forecasts, depend critically on the exis-

tence of LTM; however, the usefulness of LTM for prac-

tical predictions has never been demonstrated. In

particular, while red noise has been introduced as the

paradigm in stochastic climate theory (Hasselmann 1976),

LTM implies predictability beyond that expected from red

noise damped persistence. Here, this additional pre-

dictability is demonstrated explicitly.

The present analysis is based on the millennium con-

trol simulation using the Community System Models

(COSMOS) Earth System Model, which includes atmo-

sphere, ocean, land surface, and biogeochemistry. By an-

alyzing the near-surface temperature in the control

simulation, we first present the spatial distribution of

potentially predictable variance fraction (ppvf) as a

rough approximation of predictability, followed by the

spatial pattern of the DFA-derived power-law scaling

exponent a. Using a first-order autoregressive (AR1)

linear predictor, we further demonstrate that, in areas

with LTM, predictability is beyond that expected from

red noise processes generated by a Monte Carlo

method. Results from the simulation with full external

forcing, including both natural forcing (solar radiation,

orbital change, and volcanic forcing) and anthropogenic

forcing (land-use change and greenhouse gas forcing),

are also presented. This article is arranged as follows:

section 2 introduces the model description; section 3 in-

troduces the methods to describe potential predictability

and memory, ppvf and DFA, respectively; and a detailed

description of the forecast procedure is given in section 4,

followed by the results (section 5), and then the conclu-

sions and discussion (section 6).

2. Model description: Millennium simulation

Our analyses are based on the millennium experi-

ments using the COSMOS Atmosphere–Land–Ocean–

Biogeochemistry Earth System Model, which consists

of the atmosphere model (ECHAM5; Roeckner et al.

2003), Max Planck Institute Ocean Model (MPI-OM;

Marsland et al. 2003), and modules for land vegetation,

Jena Scheme for Biosphere–Atmosphere coupling in

Hamburg (JSBACH; Raddatz et al. 2007), and for ocean

biogeochemistry, Hamburg Model of the ocean carbon

cycle (HAMOCC; Wetzel et al. 2006), which are cou-

pled via the Ocean Atmosphere Sea Ice Soil version 3

(OASIS3) coupler. The model setup enables the in-

teractive simulation of the carbon cycle. ECHAM5 is

run at T31 resolution with 19 vertical levels, and MP-

IOM is at a horizontal grid spacing of about 38 by 38, with

40 vertically uneven–spaced levels.

The model is forced by reconstructions of (i) total solar

irradiance (TSI), (ii) volcanic forcing considering aerosol

optical depth (AOD) and effective radius distribution, (iii)

land-use change, and (iv) anthropogenic greenhouse gases

and aerosols. The TSI reconstruction is based on un-

published data by N. Krivova (2008, unpublished man-

uscript). The volcanic effects are taken into account in

AOD units for 10-day time steps and split into 4 equal area

segments (308–908N, 308N–08, 308S–08, and 308S–908). The

growth and decay time for each eruption are calibrated

and fitted to recent observations. The dataset includes in-

formation about mean particle radius evolution versus

time, a feature particularly important for large eruptions

(for details see Crowley et al. 2008). The land-use change is

considered in terms of crop and pasture fraction, which

extend back in time using a scaling dependent on pop-

ulation density (Pongratz et al. 2008). Here, we analyzed

the unforced control integration in which all external

forcings are kept constant and one experiment forced by

full external forcing. The former is 2000 yr long after

a 3000-yr spinup and the latter is 1206 yr long. The annual-

mean near-surface (2 m) air temperature field is analyzed.

5022 J O U R N A L O F C L I M A T E VOLUME 23



3. Statistical methods: Potentially predictable
variance fractions and DFA

The ppvf is estimated following Boer (2000, 2004) and

Boer and Lambert (2008) to describe potential pre-

dictability. A time series X with length N 5 n 3 m is

decomposed into n nonoverlapping m-yr segments Xi,j,

with i labeling the ith m-member chunk of the data, and

j is the location within the chunk. The variability of the

time series is decomposed into signal and noise according

to Xi,j 5 di 1 «i,j. Here, di is the average of the ith chunk,

di 5 (1/m) �m

j51Xi, j, describing the internally generated

potentially predictable long time-scale component, and «i,j

is the deviation from di, «i,j 5 Xi,j 2 di, representing the

unpredictable short noise component. Given the variance

of the long time-scale component sd
2 and the total vari-

ance of the time series s2, the potentially predictable

variance fraction is estimated by r 5 sd
2/s2 (see Boer and

Lambert 2008 for details).

The ppvf r quantifies the potentially predictable con-

tribution at the time scale of m yr. If the long-term

variability signal rises above its noise counterpart with

appreciable magnitude, it is presumed that this signal,

most likely, results from physical processes that can be

predicted given sufficient knowledge and information.

DFA has been developed to detect long-range power-

law correlations (Peng et al. 1994) and is used to analyze

time series with superimposed trends of any polynomial

shape (e.g., Govindan et al. 2002; Fraedrich and Blender

2003). The method is implemented as follows: the anoma-

lies X9k are integrated to the profile, Y
i

5 �i

k51X9
k
, for i 5

1, . . . , N. The profile time series is partitioned into segments

of duration t, where linear trends or high-order polynomials

with degree N are fitted (DFA-N). After the fit is removed

from each segment, the variance of the residuals is com-

puted, and the fluctuations F(t) are given by the means of

the variances over all segments. Higher-order DFA-N is

applied when trends or higher-order polynomial growth

types are present in the time series. In a typical time series

obtained from a complex system, F(t) obeys a power-law

function F(t) ; ta. The scaling exponent a, obtained from

the slope of the linear regression of F(t) versus t on a log–log

scale, quantifies the long-range correlations in the time

series. For stationary processes with LTM, a lies between

white noise (a 5 0.5) and flicker noise (a ’ 1); and for

Brownian noise, a is close to 1.5. It is important to note that,

because a depends upon line fitting to the DFA fluctua-

tion function in a log–log plot, appearances of strong peri-

odicity will deteriorate the scaling behavior by lifting up the

fluctuation function (as periodic signals appear in a power

spectrum) and make it difficult to estimate a. Therefore, in

tropical regions where ENSO dominates, a should be in-

terpreted with caution. To maximize the utilization of the

data, we allow 30% overlapping during segment parti-

tioning, and the maximum segment length is restricted to

one-quarter of the data length—that is, 500 data points for

the 2000-yr control simulation and around 300 points for

the 1206-yr full forcing simulation. In this study, DFA-2 is

applied, which removes linear trends in the data.

4. Forecast procedures

We first introduce the forecast procedure followed by

an example forecast of a temperature time series to

demonstrate the method.

a. Forecast method and confidence test

Forecasts are performed using an AR1 predictor at each

grid point. Our aim is to forecast the m-yr average; thus,

the data is binned and averaged over m (in years), the time

scale of interest. The method is described in detail as fol-

lows (take forecasts of 5-yr averages as an example):

1) The annual time series Xk, k 5 1, . . . , N (N 5 2000) is

divided into n 5 400 chunks, each containing m mem-

bers, where m is given by N/n 5 5; the average

over each chunk forms the target time series, d
i

5

(1/m)�m

j51X
i, j

, i 5 1, . . . . , n.

2) An AR1 process is fitted to the target time series di.

With the derived AR1 parameter, a forecast (de-

noted by *) is made at each data point d*i .

3) Skills are evaluated by the correlation coefficients

between the target time series di and the forecast d*i .

4) To assess the forecast skill at longer time scales, we

increase the length of m and repeat steps 1–3.

As we are particularly interested to know LTM-related

predictability, we will test our prediction skills against

the forecast from AR1 processes generated by a Monte

Carlo method by using the lag-1 autocorrelation co-

efficient of the original time series: at each grid point, we

fit the original yearly time series Xk51...N to an AR1

model; with the obtained AR1 parameters, 100 red noise

ensembles (R1, . . . , R100) are generated with variance

equal to that of Xk51,...,N. Subsequently, steps 1–4 are

followed for each ensemble. The 95% quartile is taken

as the 95% confidence level. In this manner, the dem-

onstrated predictability should be interpreted in refer-

ence to that derived from red noise processes.

b. A forecast example

For demonstration, we present an example forecast

with a temperature time series taken from the North At-

lantic (the location is marked as 1 in Fig. 2d). The original

time series is presented in Fig. 1a. It shows scaling between

100.8–101.8 yr ;(6–60) yr with a ’ 1 (1/f noise or flicker
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noise) and white noise characteristics at longer time scales

with a ’ 0.5 (Fig. 1b) as supported by the power spectrum

(Fig. 1c). Skillful predictions are obtained for up to 10-yr

time scales (black circled line in Fig. 1d)—that is, up to this

time scale, the example time series has predictability be-

yond that derived from pure red noise processes.

Strictly speaking, the previous result shows only a

‘‘hindcast’’ instead of a forecast because the AR1

parameters are derived considering all data points. To

further validate the forecast method, we perform a

‘‘leave-one-out’’ validation; in step 2 of the forecast

procedures (section 4a), one point di is not considered for

estimating AR1 parameters. With the derived AR1 pa-

rameters and the knowledge of the data point one step

ahead di21, a forecast d*i is performed. The forecast

scores are evaluated by the correlation coefficients be-

tween di and d*i , with i 5 2, . . . , n. The leave-one-out

forecast correlation score (black crossed line in Fig. 1d) is

almost identical to the hindcast for up to 10-yr-average

predictions and underestimated at longer time scales

(Fig. 1d). In subsequent sections, results from hindcast

practices, that is, AR1 parameters derived considering all

data points, are presented and named as forecast.

5. Spatial structure of potential predictability and
memory

In this section, we present spatial characteristics of

potential predictability and memory in the near-surface

temperature field, followed by results from the prediction

experiments at various time scales. Promising prediction

skills are obtained at decadal time scales (decadal-mean

average predictions) in areas with LTM, which are

characterized by high potential predictability. Exceptions

are found in some parts of the southern oceans.

a. Potential predictability

The ppvf r decreases slowly with increasing time scales,

with negligible values (smaller than 10%) over continents

FIG. 1. An example forecast: (a) 2000-yr near-surface temperature time series (the location is marked as 1 in

Fig. 2d); (b) DFA-2 fluctuation function; (c) power spectrum; (d) and correlation scores at 2-, 4-, 6-, . . . , 20-yr scales.

In (b), the scaling exponent a is estimated between 100.8–101.8 yr (;6–60 yr) as the slope of this function in a log–log

plot. The mean of the entire time series is removed in (c), and the dashed line denotes b 5 l. In (d), black circled and

open circled lines denote the hindcast and the leave-one-out forecast, respectively. Gray lines are hindcasts of red

noise processes generated using the lag-1 autocorrelation coefficient of the original time series (Fig. 1a), and the

dash–dotted line denotes the 95% confidence level. Here, ‘‘*’’ denotes the mean of the correlation scores of all

ensembles. Hindcast results are shown in later figures if not otherwise specified.
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and tropical regions, and with higher values (between

20% and 60%) in high-latitude oceans (Figs. 2a,b); some

incursion into North America, the Mediterranean re-

gions, and Eurasia is also observed, with modest load-

ings of r (Fig. 2a). Considerable potential predictability

is still observed on a 30-yr scale, with r between 20% and

40% in the subpolar North Atlantic, the Drake Passage,

the southern Indian Ocean, and the North Pacific (not

shown).

b. Distribution of memory

DFA-2 fluctuation exponent a shows the following fea-

tures: (i) over equatorial oceans, a is smaller than 0.5 be-

cause of the masking of the periodic ENSO; (ii) over

continents and large areas in the Southern Ocean, a is

between 0.5–0.6; (iii) in high-latitude oceans of the North-

ern Hemisphere—namely, in the North Atlantic, the

Norwegian Sea, and the North Pacific—a is between 0.8

and 1, suggesting the presence of LTM; (iv) and LTM also

occurs along the path of the Antarctic Circumpolar Current

(ACC), with a between 0.6 and 0.9. This spatial pattern

agrees well with previous studies (Fraedrich and Blender

2003), except that the area coverage in the Southern Ocean

with LTM is smaller in this millennium run.

It is noteworthy that there is a close correspondence

between the spatial patterns of the ppvf r and the DFA

fluctuation exponent a; particularly in the high-latitude

oceans, where LTM occurs with a between 0.8 and 1 (up to

60 yr) and the potentially predictable component accounts

for around 20% of the total variance on a 15-yr scale.

c. Predictability

Prediction results from the control simulation are noted

as follows: (i) high predictability is obtained in high-

latitude oceans where LTM is observed, more distinctly

represented in the Northern Hemisphere, in particular

the subpolar Atlantic and the subpolar Pacific, where

the predictability is still significant at 10-yr time scales

(Fig. 3b); (ii) forecast scores decrease with increasing time

scales, for example, in both the subpolar Atlantic and the

subpolar Pacific, the AR1 predictor loses skills for 15-yr-

average predictions (Fig. 3c); (iii) and one noteworthy area

is near 508S in the South Atlantic, where high scores persist

even on a 15-yr time scale (Figs. 3a–c). As an exception to

the previously mentioned close correspondence between

LTM and predictability, skillful predictions are also

obtained in 1) the equatorial Pacific and Indian Oceans

at the 5-yr scale and 2) in North America, the Mediterra-

nean region, and central Asia at up to the 10-yr scale

(Figs. 3a–b), although there is no LTM detected (Fig. 2d).

The entire analysis has also been applied to the simu-

lation forced by the full forcing, which covers the years

FIG. 2. (a)–(c) Ppvf r for the 5-, 10-, and 15-yr averages (values ,0.1 are not colored). Panels (a)–(c) share the top

colorbar. (d) DFA-2 fluctuation exponent a for 2000-yr near-surface temperature estimated between 100.8–101.8 yr

[;(6–60 yr)]; values ,0.5 are not colored. The cross sign in (d) denotes the location of the selected time series

analyzed in Fig. 1.
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800–2005. Large-scale improvement in prediction is ob-

tained in the subpolar Atlantic, the Mediterranean region,

the tropical Indian Ocean, and central Eurasia (Fig. 4).

Interestingly, in most of the previously mentioned regions

and in the western tropical Atlantic, skills remain signifi-

cant at the 15-yr time scale (Fig. 4c). Meanwhile, reduced

skills are observed in the equatorial Pacific at the 5- and

10-yr time scale, but additional skills are obtained in

the tropical Atlantic and persist up to 10-yr time scales

(Fig. 4b).

To investigate whether the anthropogenic warming

during the recent decades contributes to the improvement

in predictability shown in Fig. 4, a linear warming trend,

derived from the last 30 yr, is removed at each grid point

prior to prediction practices. The prediction scores are

shown in Fig. 5. The improvement of the predictions skills

in the western tropical Atlantic, the Mediterranean re-

gion, the tropical Indian Ocean, and central Eurasia in the

full forcing experiment (Fig. 4) remains (Fig. 5); therefore,

they cannot be directly attributed to the warming. On the

other hand, when the linear warming trend is removed,

prediction skills are reduced in the eastern tropical Pacific,

the subtropical South Atlantic (108–458S), the western

tropical Indian Ocean, and central Asia at 5-yr time scales

(Fig. 5), implying that in the previously mentioned re-

gions, the recent warming tends to enhance predictability.

6. Conclusions and discussion

In this article, based on a state-of-the-art millennium

control simulation, we have demonstrated the existence

of LTM in the near-surface temperature field in high-

latitude oceans, which is most pronounced in the North

Atlantic and North Pacific with DFA-2 fluctuation

exponent a close to 1—these regions bear also high

potential predictability at time scales of more than

a decade. Forecast experiments based on an AR1 linear

predictor are employed at different time scales. We find

that in areas with LTM, the prediction skills are beyond

those expected from pure red noises.

High loadings of the potentially predictable variance

fractions occur where LTM is found (Figs. 2a–d), partic-

ularly over high-latitude oceans where the DFA fluctua-

tion exponent a is close to 1. This close correspondence

indicates that high potential predictability in the high-

latitude oceans may be attributed to the LTM, which is

likely of an oceanic origin (Zhu et al. 2006). It implies that

improvement in prediction skills may be more attainable

in areas with LTM, provided more sophisticated pre-

diction methods are available, than in places showing no

memory—for example, over the inner continents. Note

that in comparison to previous studies from multimodel

approaches (see Fig. 4 from Boer and Lambert 2008),

FIG. 3. Correlation scores of forecasts for (a) 5-, (b) 10-, and (c) 15-yr-average near-surface temperature from the

control simulation. Values passing the 95% confidence test are shown.
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potential long time predictability is less pronounced in the

southern Atlantic in the current millennium simulation.

Despite the close tie between LTM and predictability

in the high-latitude oceans of the Northern Hemisphere,

exceptions are found in the southern Indian Ocean and

the southern Pacific, where the DFA-2 fluctuation ex-

ponent a shows values between 0.6 and 0.9, which

indicates the presence of LTM (Fig. 2d), and potential

FIG. 4. As in Fig. 3, but for the 1206-yr full forcing experiment.

FIG. 5. As in Fig. 4, but with the linear warming trend (derived from the last 30 yr) removed.
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predictability r accounts for up to 40% of the total

variance at 10-yr intervals (Fig. 2b), but the AR1 linear

predicator shows almost no skills (Figs. 3a–c). A closer

look reveals that, in these two regions, scaling with a

close to 1 extends only up to 25 yr (instead of ;60 yr, Fig.

2d). With such a short scaling, the LTM time series can

be simulated by red noise processes as well, so that both

can hardly be distinguished in terms of predictability.

Another exception is observed over some parts of North

America, the Mediterranean region, and northeast Asia,

where prediction skills are obtained even at 10-yr time

scales (Fig. 3b): while in these cases a is between 0.5–0.6

(Fig. 2d) suggesting a white noise nature, or if any, weak

memory, considerable ppvf loadings are observed in

these areas (Figs. 2a,b). In this case, DFA-revealed

LTM and the potential predictability supplement each

other in locating regions where prediction practices may

gain success.

Another noteworthy feature is that in the central

southern Atlantic, a patch of area shows high predictability

(correlations scores between 0.2 and 0.6) persistent

through all the time scales considered (Figs. 3a–c). This

high predictability results from the local strong decadal and

bicentennial fluctuations, which enhance the predictable

component by AR1 processes but deteriorate the scaling

properties in DFA analysis. Their origin is not clear.

It is important to stress that the prediction skill dem-

onstrated in this article defines only the predictability

beyond that expected from an AR1 damping process;

therefore, if not significant, it does not mean ‘‘lost skill,’’

instead, it means that the LTM does not play a role sig-

nificantly different from that expected from a red noise

process. On the other hand, even if it is beyond the pre-

dictability of red noise processes, care should be taken

when the correlation skills are considered for future cli-

mate forecast—even in regions where LTM dominates—

because, for instance, a correlation score of 0.2 means

that the predictable variability explains only 0.2 3 0.2 5

4% of the total variance.

When extending the forecast experiment to the simu-

lation with full forcing, predictability is improved con-

siderably, in particular, in the western tropical Atlantic,

the Mediterranean region, the tropical Indian Ocean, and

central Eurasia (Fig. 4). Furthermore, the improvement

remains within most of the previously mentioned areas

when the warming influence is linearly removed (Fig. 5);

therefore, it is less likely contributed by the anthropo-

genic warming. As it is still under debate whether, and

to what extent, individual forcing may contribute to scal-

ing properties in climate variables (e.g., Blender and

Fraedrich 2004; Vyushin et al. 2004a,b), it is of special

importance in the near future to explore the possible ef-

fect of each individual forcing on LTM and predictability.
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