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A B S T R A C T
Extremes of the cyclone intensity measures geopotential height (z1000), mean horizontal gradient (∇z), cyclone depth
(D), and relative vorticity (ζ 850), are analysed in re-analysis data (ERA40) and model simulations (ECHAM5/MPI-
OM) in the North Atlantic region for extended winter seasons. Generalized Pareto distributions (GPD) are estimated
for model validation and climate change assessment. Covariates, linear trend and North Atlantic Oscillation (NAO) are
included to analyse the dependancies of the extremes.

In ERA40 no significant linear trend can be detected, while evidence for a NAO impact on z1000, ∇z and ζ 850

extremes is found. Model validation yields good agreement with consistent scale and shape, but a shift to lower values
is notable. Like in ERA40 no trend is found in the simulation. The evidence for an NAO impact on cyclone extremes is
less corroborated in the simulation, pointing to sample size effects.

In the warmer climate scenario (A1BS) extreme value statistics shows an intensification for all variables. Significant
differences in GPD are obtained through testing for lower (higher) parameters. In contrast, considering all cyclones an
increase is only present for z1000, while a decrease is found for ∇z and ζ 850 and no change for D.

1. Introduction

Extratropical cyclones are the major source of intra-annual cli-
mate variability in mid-latitudes. Huge damage is caused by
intense storms and heavy precipitation associated with extraor-
dinary intense baroclinic vortices. The growth and intensity of
these vortices are determined by sea surface temperatures, baro-
clinicity and large-scale teleconnections (for example the North
Atlantic Oscillation, NAO) which might be altered in an anthro-
pogenic climate change (Pinto et al., 2009). Thus, the identifi-
cation of possible changes of extratropical cyclone extremes is
an important issue in the assessment of anthropogenic climate
change.

The dominant mode of variability in the North Atlantic re-
gion is the NAO. During the strong positive phase of the NAO
cyclone tracks tend to have a more northeastward orientation
(Gulev et al., 2001). On the other hand, the variability of
the NAO itself is substantially influenced by extratropical cy-
clones (Löptien and Ruprecht, 2005). However, the cyclone in-
fluence on the NAO typically occurs at different time scales
(>10 d) than the influence of the NAO to cyclone activity itself
(Benedict et al., 2004). Furthermore, suitable growth conditions
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for extreme cyclones occur in wider areas during the positive
phase of the NAO (Pinto et al., 2009).

A common approach to investigate the characteristics of ex-
tratropical cyclones in large data sets is to determine individual
cyclones, their tracks and their life cycles by using numerical
detection and tracking algorithms. Various methods have been
proposed and successfully applied to observations and model
data for present day, palaeoclimate and anthropogenic climate
change scenarios (for example Murray and Simmonds, 1991;
Hodges, 1994; Blender et al., 1997). Evidence for anthropogenic
changes in extratropical cyclone activity and characteristics is
documented in many recent model studies (see Ulbrich et al.,
2009 and references therein).

For the northern hemispheric winter the majority of scenario
simulations show a slight decrease of the total number of cy-
clones (Bengtsson et al., 2009), while, on the other hand, there
are hints that the number of intense cyclones increases (Lambert
and Fyfe, 2006; defining intense cyclones as systems with core
pressure less than 970 hPa). However, models do not agree with
respect to these conclusions, in particular if individual regions
are considered.

The definition of an extreme event and how its been analysed
influences the results. In most studies, extreme cyclones are
defined by a measure of their strength (e.g. the central pressure
or the pressure gradient). A cyclone is considered extreme if its
strength exceeds a subjectively chosen threshold or if it belongs

Tellus (2010) 1

P U B L I S H E D  B Y  T H E  I N T E R N A T I O N A L  M E T E O R O L O G I C A L  I N S T I T U T E  I N  S T O C K H O L M

SERIES A
DYNAMIC 
METEOROLOGY
AND OCEANOGRAPHY



2 F. SIENZ ET AL.

to upper percentiles of the distribution associated with intense
cyclones.

Recently, the assessment of exceptional and rare events by
extreme value statistics has become a widely used technique in
the analysis of observational and model data (Katz et al., 2002;
Kharin and Zwiers, 2005). Methods and concepts like, for ex-
ample, the generalized extreme value (GEV) distribution, return
values and statistical modelling based on maximum likelihood
estimation in presence of covariates contribute substantially to
the understanding of extreme events and to quantify potential
changes of climate extremes due to anthropogenic forcing. An
early application of extreme value statistics for extratropical cy-
clones is the work of Della-Marta and Pinto (2009). Here, their
work is extended through analysing influences of linear trend
and NAO. Further, detection of changes in cyclone parameters
due to greenhouse gas warming are not restricted to return value
analysis: additionally, the changes in the parameters of the GPD
distributions are analysed.

The aim of this paper is to analyse the life cycles of intense
extratropical cyclones using extreme value statistics. Using a
detection and tracking algorithm individual cyclone tracks are
extracted from re-analysis data and coupled model simulations
for present-day (20th century) and a moderate greenhouse warm-
ing scenario (IPCC A1B). Extreme value statistics is applied to
compare cyclone extremes simulated by the model with obser-
vations and to assess possible changes due to anthropogenic
forcing. Furthermore, the relation between the extremes in cy-
clone parameters and the NAO are investigated. The analyses
concentrate on the North Atlantic region during the extended
Northern Hemispheric winter. In Section 2, the data used and
the methodologies are introduced. The results are presented in
Section 3. Conclusions, discussion and an outlook follows in
Section 4.

2. Data and methods

North Atlantic/European cyclones are analysed in the re-analysis
data of the European Center for Medium-Range Weather Fore-
casts (ERA40) and in simulations with the coupled atmosphere
ocean model ECHAM5/MPI-OM. Extreme value statistics is ap-
plied to these data sets for extended winters (October–March).
The relationships between extreme cyclone properties and the
NAO are considered.

2.1. Data

The re-analysis encompasses the last half of the 20th century
from September 1, 1957 to August 31, 2002 (Uppala et al.,
2005). The data are computed at T159 spectral resolution on
60 vertical levels and stored with 6 hourly time steps. Here
they are mapped to a spatial grid corresponding to T63 spectral
resolution to enable an unbiased comparison with the model
simulation.

The coupled atmosphere ocean model ECHAM5/MPI-OM
uses an atmosphere with T63 spectral resolution on 31 vertical
levels (Roeckner et al., 2003). The ocean MPI-OM model has
a 1.5◦ resolution on 40 vertical levels (Marsland et al., 2003).
The coupling between atmosphere and ocean is implemented
without flux corrections (Jungclaus et al., 2006). The data are
available every 6 h. Three model experiments are analysed which
are part of the IPCC contribution (for further details on the IPCC
scenarios see Nakicenovic et al., 2000):

(i) 20C, 20th century: The 20th century simulation (20C) for
the period from 1957 to 2000 simulated with observed green-
house gas concentrations, aerosols, and solar and volcanic forc-
ing is compared with ERA40 re-analysis data.

(ii) 20CS stabilization: After the year 2000, greenhouse gas
concentrations are fixed at their 2000 level. This commitment
experiment 20CS is analysed during the 2005–2100 period.

(iii) A1BS stabilization: To assess the potential impact of an-
thropogenic greenhouse forcing, the stabilization run of a A1B
scenario is analysed. The A1B scenario describes a climate un-
der gradual CO2 increase from 2000 to 2100. A stabilization
run extends this scenario with fixed greenhouse gas concentra-
tions at the level of 2100. For one ensemble member of the A1B
scenario, the stabilization run is extended about another 100 yr
(2200–2300). To ensure the best stationarity, this extended stabi-
lization time period is chosen for the analysis, beginning at 2205.
However, the stabilization run of the 20th century (20C) ended
in 2100. Therefore, the analysis is based on the stabilization run
for the time period from 2005 to 2100.

The cyclone identification is based on the detection of min-
ima in the 1000 hPa geopotential height field (Blender et al.,
1997). To avoid erroneous detections, the cyclones must exist at
least 2 d with a minimum mean horizontal gradient of 30 gpm/
1000 km. The cyclones are identified in the Northern Hemi-
sphere (20◦N–80◦N) but the extreme value statistics is restricted
to cyclones which attain an extremum in the North Atlantic
sector (30◦N–80◦N, 80◦W–40◦E).

This study focuses on the following cyclone parameters:
geopotential height in the centre of a cyclone (z1000), mean hori-
zontal gradient of the geopotential height in the neighbourhood
(∇z), cyclone depth (D), all measured at 1000 hPa, and relative
vorticity in the cyclone centre at 850hPa (ζ 850). z1000 and ζ 850

are directly extracted from the data sets. ∇z is measured by the
horizontal average of the calculated grid point gradients in a
region corresponding to roughly 1000 km distance (Sickmöller
et al., 2000). By fitting a Gaussian function to the cyclone centre
and the surrounding height field, D is defined as the differ-
ence between a fitted environmental value and the geopotential
height in the cyclone centre (i.e. D is positive). A description
of this method is given in Schneidereit et al. (2010). These
four quantities describe different physical meaning and spatial
characteristics. Although z1000 characterizes the local geopo-
tential height field at the cyclone centre, the variable D imply
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information of the wider environment (roughly 1000 km). ∇z

and ζ 850 characterize the extratropical cyclone on the local scale
in the cyclone centre. The dynamical characteristics ∇z and ζ 850

are in close relationship. The extremum for each cyclone prop-
erty (minima for z1000, maxima for ∇z, D and ζ 850) during their
individual cyclone life cycles is chosen for further analyses. For
convenience, the signs for the z1000 minima are reversed to attain
positive values for all variables considered.

EOF analysis is applied to monthly mean sea level pressure
anomalies and used to determine the NAO by the leading princi-
pal component, in the region 20◦N–80◦N and 80◦W–30◦E. For
ERA40 data the pressure field is interpolated to T63 resolution.

2.2. Extreme value statistics

There are two widely applied approaches to achieve extreme
value distributions for identical and independent distributed ran-
dom samples, X1, X2, . . . , Xn. One is based on division into
blocks of the sample for which the block maxima are used to
estimate the generalized extreme value distribution. The other
method uses all data exceeding some well defined threshold, u.
The resulting distribution function, for y = Xi − u given Xi >

u, is the generalized Pareto distribution (GPD):

H (y) =
{

1 − (
1 + ξy

σ

)−1/ξ
, for ξ �= 0

1 − exp
(− y

σ

)
, for ξ = 0

(1)

with the parameters: scale, σ and shape, ξ . ξ determines the
overall behaviour of the distribution. The three possible ex-
tremal types are: Fréchet ξ > 0 , Gumbel ξ = 0 (achieved
by taking the limit ξ → 0), and Weibull ξ < 0. In this paper,
the threshold method is applied because more values are incor-
porated into distribution estimation than with the block maxima
approach. However, finding an optimal threshold, u is critical.
Two graphical methods exist which are used in the following:
the mean residual life plot and fitting over a range of thresholds
(for details see Coles, 2003).

The estimated distributions are interpreted in terms of their
return levels (quantiles), zN , which are exceeded once every N
years:

zN =
⎧⎨
⎩ u + σ

ξ

[(
Nnyku/n

)ξ − 1
]
, for ξ �= 0

u + σ log
(
Nnyku/n

)
, for ξ = 0

(2)

ny are the number of cyclones per year and the number of values
exceeding u are given by ku. Note that ku/n is the estimate for
the exceedance probability. Plotting zN on a logarithmic scale
gives return level plots guiding the decision which extremal type
is present. That is, return level curves following a straight line
result from Gumbel type distributions; the Fréchet (Weibull)
type shows up with concave (convex) curves.

If data points and confidence intervals are included into the re-
turn level plots goodness of fit can be derived, which are perform-
ing well in the subsequent estimations. The confidence intervals

are calculated with profile-likelihood method (Coles, 2003) and
enable also statements about the significance of return level dif-
ferences. According to Kharin and Zwiers (2000) differences
between two return levels are significant at the 1% level if their
90% confidence intervals do not overlap.

Cyclone life cycles are serial dependant, with increasing (de-
creasing) values before (after) an approached maximum. This
will harm the independence assumption and affects the uncer-
tainty analysis, so that confidence bounds are expected to be too
narrow. Furthermore, GPD estimates on short time spans may be
dominated by few strong and long-lasting cyclones. This prob-
lem is omitted by using one value, that is, the maximum during
the cyclone life cycle. This is similar to standard declustering
schemes but, for the problem at hand, the clusters are physically
defined. Note that, beside serial dependant life-cycles, cyclone
occurrences cluster in time (Mailier et al. 2006). This clustering
may also hold for extreme cyclones, but is not considered in the
following.

For observations and transient climate model simulations the
extremes may potentially change in time. Such non-stationarities
are accounted for by including covariates in the scale parameter
and assuming a linear change with time:

σ (t) = α0 + α1t . (3)

For the cyclone intensity measures, the time steps have to ac-
count for discontinuous occurrence of the life cycle maxima.
The method is analogue to generalized linear modelling. Com-
paring stationary and trend models enables conclusions about
trend significance with the test and criteria described below.
This method for trend detection in extremes outperforms other
methods, like linear least squares estimation or even Kendalls
trend test (Zhang, 2004). The main advantage is, that the resid-
uals are not restricted to normal distributed values, which is a
wrong assumption in the extreme value context. In the same way,
the scale parameter dependance of the NAO time series can be
modelled as

σ (t) = β0 + β1NAO(t). (4)

Combining eqs (3) and (4) allows to distinguish between the
two different impacts. Equivalent, the shape parameter can be
modelled with time dependancies as well.

Each of the assumptions increases the number of parameters
to be estimated. Instead of σ , one has to estimate α0 and α1 to
include the linear trend. To avoid overfitting and to test for sig-
nificant improvement of higher dimensional statistical models
log-likelihood ratio tests (LLR-test) are performed (details are
given in Coles, 2003). The significance level is set to α = 0.05
throughout (LLR-tests and other applied tests). This kind of test
is only applicable in the case of nested models, i.e. models with
less parameters have to be in subset of models with more param-
eters. This restriction is overcome by using Akaike’s information
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criterion (AIC, Akaike, 1974)

AIC = −2 log[L(θ̂ |y)] + 2K

(
n

n − K − 1

)
(5)

with maximized Likelihood, L(θ̂ |y), number of estimated pa-
rameters, K, and multiplier, n/(n − K − 1). This is a small
sample size extension of Akaike’s original definition (Burnham
and Anderson, 2002). From a set of models with AICi (i is the
model number), the best model is the one with the minimum
AIC value AICmin. Akaike differences (AICD) are calculated to
rank and compare the models

�i = AICi − AICmin (6)

A guideline for AICD is: �i < 2 gives models with strong, 4 <

�i < 7 considerably less and �i > 10 no support (Burnham and
Anderson, 2002). Further interpretation is achieved with Akaike
weigths (AICW)

wi = exp(−0.5�i)∑J

j=1 exp(−0.5�j )
(7)

which give the probability that model i is the best one for the
given data.

Differences in extremes are commonly analysed in terms of
return levels and respective confidence intervals. Additional, ex-
treme value distributions can be compared in terms of their pa-
rameters by performing tests for increased or decreased scale or
shape parameters. In the following, this is done with the method
of time dependant parameters. The data sets of interest (for
example ERA40 and 20C) are merged and analysed together.
Instead of time t (eq. 3), a step function is included with values
of −1 (1) over the time period of the first (second) data set. The
scale parameter depends on the selected threshold. To simplify
interpretation the higher threshold of the two data sets is applied.

With this concept different statistical models are built, ranging
from the ‘stationary’ model with no difference between the pa-
rameters of the two data sets to the model, where both the scale
and shape parameter are allowed to change. The different models
can then easily be compared and tested employing LLR-test and
AIC. With the best model obtained in this way it is possible to
reconstruct return level plots for each data set separately. Scale
and shape parameters are achieved from the combined model.
According to eq. (2) the number of cyclones per year and the
exceedance probability are also required which, however, are
easily calculated for the corresponding data sets (note: these
quantities do not affect model estimation). Confidence intervals
can be calculated by resampling.

3. Extreme value statistics and cyclone life cycles

In the following, life cycle maxima of the cyclone intensity mea-
sures geopotential height (z1000) mean horizontal gradient (∇z),
cyclone depth (D) and relative vorticity (ζ 850) are analysed. First,
overall density estimates are compared, followed by an investi-
gation of present day extremes and their potential dependance
on covariates. The impact of greenhouse gas warming on the
extreme statistics concludes this section.

3.1. Density estimates

Before analysing extreme values, estimates for the overall dis-
tributions of the variables of interest are evaluated for all data
sets (Fig. 1). All estimates show uniform distribution func-
tions. While the central geopotential height, z1000 is nearest to a
Gaussian distribution, the other quantities are positively skewed
(Fig. 1a). The skewness, an important quantity affecting the ex-
tremes, is reproduced by ECHAM5/MPI-OM. The deviations
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Fig. 1. Kernel density estimates for maximum cyclone life cycle properties of (a) geopotential height, z1000, (b) mean horizontal gradient, ∇z, (c)
cyclon depth, D and (d) relative vorticity, ζ 850. Used are all data sets in this study, re-analysis (ERA40), transient (20C) and the stabilization model
runs (20CS and A1BS).
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between observed (ERA40) and model simulated data (20C) are
small. The densities agree well, with the exception of the relative
vorticity, ζ 850 where the ECHAM5/MPI-OM density is slightly
shifted to lower values (Fig. 1d). Comparing the differences in
the mean underlines this. A t-test shows no significant differ-
ences between ERA40 and 20C in the z1000, ∇z and D. But the
mean ζ 850 in 20C is significantly lower than in ERA40.

The transient (20C) and stabilization (20CS) model runs give
nearly identical results. Despite an assumed higher variability in
20C, probably associated with increasing greenhouse gas forc-
ing, the distributions of the cyclone parameters remain largely
unaffected compared to 20CS. This may be an indication of the
small importance of the forcing during this (relatively short) time
period compared to the natural variability of the system. Larger,
but still small differences are visible, if the two stabilization runs
20CS and A1BS are compared. The tail behaviour shows slight
differences for z1000 and D (Figs. 1a and c). The distributions of
∇z and ζ 850 are shifted to lower values (Figs. 1b and d). Testing
for differences in the mean gives a significant higher z1000 in
A1BS, no change for D, and significantly reduced values for ∇z

and ζ 850.

3.2. Extremes of the present day climate

Extreme value statistics is applied to compare the models (20C)
present-day climate with observations (ERA40) and to access
the dependance on linear trend and NAO.

3.2.1. Return level estimates. Comparing ERA40 and 20C,
Fig. 2 displays return level plots. For return periods below 1 yr
the return values are significantly lower in 20C for z1000, ∇z and
ζ 850. This shift is not present for D.

For the local measures z1000, ∇z and ζ 850, the results indicate
Weibull-type distributions for both data sets with comparable
shapes. The estimated shape parameters, ξ̂ , together with scales,
σ̂ and thresholds, u are given in Tables 1 and 2. For these two
parameters the model exhibits longer return times (lower return
levels) compared to the observations. For the integral (large-
scale) measure D virtually no difference occur for return periods
up to about 10 yr. However, while the shape hints to a Weibull-
type distribution for ERA40, a Gumbel-type distribution is plau-
sible for the model (ξ̂ = −0.003; see Table 2), though this might
be caused by sampling errors for long return periods.

To clarify the observed differences in return levels, the GPD
are investigated. Return levels are controlled by scale and shape.
For z1000 the estimated parameters, σ̂ and ξ̂ are similar for 20C
and ERA40 (Tables 1 and 2). Larger differences occur for the
other quantities, where the scale, the shape or both are affected.
One example is the shape parameter for the depth, D, which
is consistent with ξ = 0 in 20C, but not in ERA40. To decide
whether the extreme value distributions are significantly differ-
ent between the two data sets or, if one distribution could be
found that fits the quantities from both data sets equally well
combined estimates are calculated (see Section 2). The statisti-
cal model set consists of four models: (i) ‘stationary’, no time
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Fig. 2. Return level plots for (a) geopotential height, z1000, (b) mean horizontal gradient, ∇z, (c) cyclon depth, D and (d) relative vorticity, ζ 850. The
empirical (points) and estimated return levels (lines) have the same colors for ERA40 (blue) and 20C (red). 95% confidence intervals are shown for
ERA40 (grey shaded) and 20C (dashed lines).
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Table 1. Estimated parameters scale, σ̂ and shape, ξ̂ as well as determined thresholds, u for the selected cyclone
properties: geopotential height, z1000, mean horizontal gradient, ∇z, cyclon depth, D and relative vorticity, ζ 850 for
observations (ERA40)

ERA40 u σ̂ ξ̂ �stat �trend �NAO β̂1

z1000 380 58.39 (4.33) −0.089 (0.052) 6.5 (0.037) 7.7 (0.02) 0.0 (0.943) 7.42 (2.34)
∇z 360 53.31 (3.42) −0.095 (0.043) 1.7 (0.273) 3.7 (0.099) 0.0 (0.628) 3.9 (1.97)
D 320 64.38 (2.66) −0.046 (0.029) 0.0 (0.554) 2.0 (0.203) 1.7 (0.243) 1.08 (1.8)
ζ 850 20 3.08 (0.16) −0.191 (0.033) 1.9 (0.255) 3.9 (0.094) 0.0 (0.651) 0.171 (0.085)

Notes: AICD for the ‘stationary’ (�stat), linear trend (�trend) and NAO model (�NAO) are given with AICW in parentheses,
as well as estimated slope, β̂1 for the NAO model. The standard deviation for estimated parameters is given in parentheses.

Table 2. Like Table 1, but for the transient climate model simulation (20C)

20C u σ̂ ξ̂ �stat �trend �NAO β̂1

z1000 360 56.8 (4.17) −0.088 (0.051) 0.0 (0.415) 1.1 (0.243) 0.4 (0.342) 3.435 (2.678)
∇z 350 48 (3.33) −0.054 (0.048) 0.9 (0.335) 2.6 (0.143) 0.0 (0.522) 3.906 (2.235)
D 350 62.23 (3.51) −0.003 (0.042) 1.8 (0.251) 2.9 (0.141) 0.0 (0.608) 4.599 (2.308)
ζ 850 20.5 2.55 (0.17) −0.118 (0.045) 0.0 (0.528) 2.0 (0.199) 1.3 (0.273) 0.088 (0.103)

dependance, i.e. the same parameters in ERA40 and 20C, (ii)
σ (t), (iii) ξ (t) and (vi) σ (t) and ξ (t). In (ii)–(iv) the parameters
are allowed to be different in ERA40 and 20C.

Applying LLR-test to the statistical models reveals no signif-
icant differences in the parameters between ERA40 and 20C for
all four cyclone properties (all p-values are higher than 0.15).
Furthermore, the AIC minimum is reached with the ‘station-
ary’ model, with just one exception (not shown). The vorticity
reaches the AIC minimum with the σ (t) model. However, the
‘stationary’ model is very near to this minimum (with AICD =
0.003) and is preferred due to lower number of parameters. Note
that from the combined models reconstructed return levels (not
shown) are similar to the curves in Fig. 2. However, the crossing
between 20C and ERA40 curves in Fig. 2b (∇z) and Fig. 2d
(ζ 850) vanishes as an effect of the similar extreme value distri-
butions.

Since, the estimated parameters agree in both data sets, the
differences in the return levels result solely from a shift in
the location of the distributions. If the thresholds agree, this
shift is expressed through differing exceedance probabilities
(eq. 2). For ∇z the exceedance probabilities are 0.044 (0.033)
in ERA40 (20C). The same argument holds for z1000 (ζ 850)
with probabilities 0.036 (0.067) in ERA40 and 0.026 (0.052)
in 20C, respectively. The exceedance probabilities for D reach
the same rounded value of 0.073 in ERA40 and 20C. The ef-
fect of consistent parameters and exceedance probabilities leads
to identical return levels from combined model approach (not
shown).

To summarize, GPD with the same scale and shape parame-
ters are found in ERA40 and 20C for each cyclone quantity. Re-
duced return levels in 20C (z1000, ∇z and ζ 850) result from lower

locations of the GPD, which are expressed through smaller ex-
ceedance probabilities for agreeing thresholds. A smaller num-
ber of threshold crossings may be a direct effect of the lower
resolution in 20C, since higher resolution also results in strength-
ening of cyclones on larger scales as show by Jung (2006) for
the ECMWF model.

3.2.2. Trend and NAO dependance of extremes. There is ev-
idence, that cyclone properties have changed in the recent past
(Ulbrich et al., 2009 and references therein). However, trend
analysis using a generalized linear models approach with ex-
treme value distributions has not been undertaken so far. Im-
pacts on the extremes by the covariates, linear trend and NAO,
are investigated in ERA40.

LLR-tests applied for the trend model yield p-values higher
than 0.3 for each cyclone property. This excludes an influence
on the extremes by a linear trend. This is further confirmed by
the AICD, where the ranking gives the weakest support for the
model with linear trend (Table 1). So that, the trend component
(eq. 3) does not improve model fits and the stationary model
would be preferred, if this two models are considered.

Using the NAO as covariate (eq. 4) leads to differing findings.
For the geopotential height, z1000, the applied LLR-test gives high
significance for the NAO outperforming the stationary model
(p-value lower than 0.005). The LLR-test is passed too, if the
vorticity, ζ 850, is considered. The depth, D, fails the test. The p-
value for the gradient, ∇z, is just slightly higher than the chosen
α (p-value = 0.054). The AIC best model is achieved with the
NAO as a covariate with ∇z, as for z1000 and ζ 850. Furthermore
the estimated β̂1 is high enough to exclude β1 = 0 compared
to the given range by the standard deviation. Giving weight to
the conclusion that the NAO improves model fits also for ∇z.
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However, the strength of support is lower as for z1000 and reaches
nearly the same probability as ζ 850.

The observed NAO exhibits decadal-like trends, being up-
ward directed from the sixties until the end of the eighties.
This together with an assumed increase in the cyclone quantities
through greenhouse gas warming might be interpreted as the
NAO just reflecting this upward trend. This possibility however,
could be excluded through the given trend analysis, stating no
significant trend.

In summary, strong support is found that the NAO has an im-
pact on the geopotential height, z1000, extremes. The same holds
also for ∇z and ζ 850, but with restrictions on the strength of
evidence. This is consistent with results found by Pinto et al.
(2009), that is, higher cyclone intensities (∇2p) and deeper
cores are related to the daily projected positive NAO phases.
Here we extend this finding to the gradient, ∇z. Furthermore
covariate modelling with the monthly NAO leads to the prob-
abilistic interpretation that, in months with positive (negative)
NAO, the probability of extreme intense cyclones is increased
(decreased).

In agreement with ERA40 no significant trend could be found
in 20C in none of the cyclones quantities (p-values higher than
0.3). With AIC decision making is hampered because all AICD
are smaller than 3, demonstrating plausibility for each model.
But the trend model gives highest AICD and the estimated slope,
α̂1, is smaller than the corresponding standard deviation (not
shown). Therefore, the trend exclusion with AIC is not as strong
as in ERA40.

With the NAO-model an improvement is only present for
depth, D, with an achieved p-value near the significance level
(p-value: 0.052). Most striking is the strongly reduced evidence
of the NAO impact on z1000 extremes in 20C, which is clearly
present in ERA40 (see AICW values in Table 2). The small
AICD however, indicates an improvement of the model fit, con-
firmed by β̂1 with smaller standard deviation than parameter
estimate. But the improvement is to weak to separate it from the
stationary model on the basis of AICD alone.

Further differences are found for the NAO influence on D
and ζ 850 extremes: AICD gives weak support for D in 20C

(probability around 60%), which is not present in ERA40. The
weak support for ζ 850 in ERA40 is vanished in 20C showed
by the parameter estimate, β̂1, including 0 if referred to the
standard deviation. The dependance of ∇z on the NAO is the
same in ERA40 and 20C, with slightly reduced probability.

To summarize, the differences between observed (ERA40)
and modelled (20C) cyclone dependancies consist mainly in the
strength of support for the statistical models chosen. Differing
findings may not necessarily result from a dynamic response
missing in the model. Another possibility is the time evolution of
the observed NAO in the ERA40 period, which exhibits decadal
trends. A phase shift of these trends in the model could be an
explanation. Note that the overall agreement with ERA40 is
higher in 20CS (see below) reflecting a strong sensitivity to the
sampling size (which is, of course, also true for ERA40).

3.2.3. Excursion, NAO and z1000 extremes in ERA40. The
impact of the NAO on the z1000 return levels is illustrated in
Fig. 3a. The lines correspond to ‘NAO-worlds’, i.e. the NAO is
hold fixed on the selected levels from −2 to 2 and are calculated
with the determined parameters from the covariate model. Using
eq. (4) with estimated β̂1 from Table 1 results in a scale parameter
difference of almost 30 gpm between NAO = −2 and NAO =
2. This difference has a large impact on the calculated return
levels. The return level which is exceeded once every 100 yr
with NAO = −2 is roughly 570 gpm (lower horizontal grey
line). The return period is largely reduced with NAO = 2, the
same level is now exceeded every 3–4 yr or, on the other hand,
the 100 yr return level is increased up to more than 700 gpm
(upper horizontal grey line).

Note that the stationary model (grey line in Fig. 3a) gives
similar results as NAO = 1 and not, as one might expect the
neutral NAO = 0 case. The reason for this departure is the
disproportional occurrence of threshold exceedances, as there
are 73.9% (26.1%) threshold crossings in the positive (negative)
NAO phase. This difference in number affects the maximization
procedure, which is dominated by the majority of values.

Figure 3b confirms the results with another method. Here,
composting extremes is applied to achieve GPD for the case
where the NAO is greater (less) than 0.5 (−0.5). The grey line
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Fig. 3. NAO impact on geopotential height, z1000 extremes. (a) Return levels for given NAO value from −2 to 2, influencing the GPD scale
parameter. (b) Histograms, as well as estimated density for GPD, for composites of z1000 extremes, where NAO exceeding (falling below) 0.5 (−0.5)
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Fig. 4. The five most extreme life cycles in respect of z1000 centred about the extremum for (a) geopotential height, z1000, (b) mean horizontal
gradient, ∇z, (c) cyclone depth, D and d) relative vorticity, ζ 850 for ERA40 (solid) and 20C (dashed). Ninety percent of the data (confined by the 5
and the 95 quantile) are presented by shaded (framed) region for ERA40 (20C).

gives the resulting distribution of the stationary fit (using all
values above the threshold). The estimated distributions agree
well with the corresponding histograms. The impact of the NAO
on the extremes gives higher (lower) densities for NAO < −0.5
(NAO > 0.5) for small values. This relation is reversed for
values exceeding ≈425 gpm. The deviations of the NAO > 0.5
(NAO < −0.5) distributions, compared to the fit with all values,
are small (large).

3.2.4. Life cycles and spatial occurrence of extremes. The
mean life cycles of the four cyclone parameters are shown
in Fig. 4 for all cyclones in ERA40 and 20C, as well as the
95 and 5% quantiles. Additionally, the individual life cycles
of the five most extreme cyclones are included, whereas ex-
treme is related to z1000. For all parameters, the mean life cy-
cles are in good agreement between ERA40 and 20C. If the
life cycles of the five most extreme cyclones in the respec-
tive parameter are considered, the good agreement is confirmed
(not shown). An extreme cyclone in z1000 may not naturally
belong to an extreme cyclone in the other variables. However,
nearly all extreme cyclones with respect to z1000 belong to the
most extreme upper 5% in the other variables for ERA40. The
same holds if another reference parameter is chosen. Similar
results but with reduced absolute values in terms of z1000 occur
in 20C.

The spatial density estimates of the locations where the life
cycle maxima occur are shown in Fig. 5 for the selected quan-

tities geopotential height, z1000 and the relative vorticity, ζ 850.
Only cyclones are included whose maxima pass the according
threshold (see Tables 1 and 2). Comparing the density maxima of
z1000 and ζ 850 for ERA40 (Figs. 5a and c, respectively) yield two
different positions of the centres. The spatial density estimates
with respect to the gradient (not shown) indicate a maximum
in between the maxima of ζ 850 and z1000. Note that, the spa-
tial density estimates consider the maxima of extreme cyclones
in the accordant parameter only. Therefore, the number of the
considered cyclones varies.

For example, a spatial large cyclone with very deep core pres-
sure does not necessarily exhibit a strong wind field and high
vorticity values. This circumstance could be responsible for the
different cyclone extreme behaviour. Considering only cyclones
belonging to the intersection of extreme events in both cyclone
variables, z1000 and ζ 850, the spatial density maxima of z1000

is shifted to lower latitudes (not shown) overlapping with the
maxima in ζ 850. The determined cross correlation function (not
shown) of the extreme cyclone life cycles suggest to a time shift
(roughly 6 hours) between the vorticity and central geopotential
height. This is consistent with Bengtsson et al. (2009) show-
ing that vorticity reaches the maximum before surface pressure.
From the geostrophic adjustment it would follow that the mass
field leads the wind field if the considered scale is greater than
the Rossby radius of deformation. Note that our results indicate
the opposite case.
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Fig. 5. Spatial density estimates of the most extreme cyclones (values above thresholds) in the centred geopotential height, z1000 (upper panels) and
the relative vorticity, ζ 850 (lower panels) for ERA40 (left) and 20C (right).

In 20C, the spatial density estimates of the four parameters
correspond to the densities of ERA40. Due to a coarser resolution
the spatial variability is smaller in the simulation.

3.3. Extremes changing with greenhouse warming

The stabilization model runs 20CS (present-day) and A1BS
(greenhouse warming scenario) are investigated for changing
cyclone extremes.

3.3.1. Return level estimates. Changes of the return periods
(levels) are displayed in Fig. 6 comparing 20CS and A1BS. For
a better comparison, the stabilization run 20CS is used instead
of the transient run 20C. It should be noted that a compari-
son between 20C and 20CS yields differences in the estimated
parameters (Table 2 and 3). For all four cyclone properties a
higher scale and lower shape parameter is found in 20CS. The
20CS return level curves, however, are located inside the 20C
confidence bounds over the full range of return periods (not
shown). An explanation for the differences is the smaller sam-
ple size in 20C, resulting in large variability from sample to
sample, together with sensitive shape parameter estimation and
compensating effects between the two parameters.

The return levels show qualitatively consistent results for all
variables which, however, vary in detail. In the A1BS climate,
a significant shift towards higher return levels (shorter peri-
ods) is only found for z1000 up to return periods of about 10 yr.
The tendency to stronger cyclones is still present but less no-
table for ∇z and ζ 850. For D a consistent shift can be seen for
longer (>6 yr) and shorter (<1 yr) periods while medium pe-
riods show only a very week signal. Remarkable is the change
from Weibull to Gumble type distribution, indicated by the ap-
proximate straight return level curve for D in A1BS. This is con-

firmed through the estimated shape parameter, where ξ = 0 is in-
cluded in the interval given by the standard deviation. However,
changes in terms of return levels are not significant for ∇z, ζ 850

and D.
Deeper insight into the observed return level changes can

be achieved by analysing the GPD parameters. In 20CS and
A1BS similar shape parameters are found for z1000, ∇z and ζ 850

(Tables 3 and 4), while the scale parameters are increased in
A1BS. Different behaviour is found for depth, D with lower scale
and higher shape parameter in A1BS. Combined estimates are
calculated and LLR-tests are applied in two steps: first, σ (t)- and
ξ (t)-models are compared to the ‘stationary’ model (LRT-test 1)
and second, the model allowing for different σ and ξ parameters
in the data sets is compared to all lower dimensional models
(LRT-test 2). For z1000, ∇z and ζ 850 the ‘stationary’ model with
the same parameters in 20CS and A1BS is implausible (Ta-
ble 5): LLR-test1 favours the σ (t)-model against the stationary
model since the p-values are all lower than 0.01. Also, the ξ (t)-
model shows an improvement, but the reason for this seems to
be a compensating effect. This is demonstrated by LLR-test2,
because the combined model (σ and ξ are allowed to change;
Table 5) out performs the ξ (t)-, but not the σ (t)-model, demon-
strating that a change in the scale is sufficient to describe the
changes that occur in A1BS. Accordingly the AIC minimum is
achieved by the σ (t)-model with AICW above 0.5. Interestingly,
for ζ 850 extremes, where the smallest differences in the return
levels are obtained, the highest confidence is found for different
scale parameters (AICW; wζ = 0.726). For D, a single time de-
pendant model does not give an improvement compared to the
‘stationary’ model, but allowing for changes in both parameters
outperforms all other models.

Tellus (2010)



10 F. SIENZ ET AL.

Return Period [season]

−
z

1
0

0
0
  [

g
p

m
]

350

400

450

500

550

600

650

0.1 1.0 10.0 100.0

20CS
A1BS

a) Geopotential

Return Period [season]

∇
z
  [

g
p

m
/1

0
0

0
k
m

]

350

400

450

500

550

600

650

0.1 1.0 10.0 100.0

20CS
A1BS

b) Gradient

Return Period [season]

D
  [

g
p

m
]

400

500

600

700

800

900

0.1 1.0 10.0 100.0

20CS

A1BS

c) Depth

Return Period [season]

ζ 8
5

0
  [

1
/d

]

20

25

30

35

0.1 1.0 10.0 100.0

20CS

A1BS

d) Vorticity

Fig. 6. Like Fig. 2, for the 21th (22th) stabilization run 20CS (A1BS).

Table 3. Like Table 1, for the 21th-century stabilization run (20CS)

20CS u σ̂ ξ̂ �stat �NAO β̂1

z1000 360 61.37 (2.98) −0.169 (0.034) 17.1 (0) 0 (1) 7.32 (1.543)
∇z 350 54.33 (2.37) −0.146 (0.028) 5.2 (0.068) 0 (0.932) 4.19 (1.509)
D 400 75.31 (4) −0.124 (0.038) 0 (0.687) 1.6 (0.313) 1.771 (2.674)
ζ 850 21 2.75 (0.13) −0.151 (0.031) 0 (0.712) 1.8 (0.288) 0.034 (0.076)

Table 4. Like Table 1 for the 22th-century stabilization run (A1BS)

A1BS u σ̂ ξ̂ �stat �NAO β̂1

z1000 360 72.43 (2.8) −0.21 (0.024) 3.9 (0.122) 0 (0.878) 4.497 (1.737)
∇z 300 66.27 (2.04) −0.138 (0.02) 0 (0.664) 1.4 (0.336) 1.091 (1.356)
D 450 62.75 (4.04) −0.013 (0.044) 0 (0.712) 1.8 (0.288) 1.26 (2.71)
ζ 850 19 3.26 (0.11) −0.149 (0.02) 0.5 (0.438) 0 (0.562) −0.111 (0.071)

Table 5. Statistical model building to test for differences between 20CS and A1BS. Estimated p-values according to
log-likelihood ratio tests (LLR-test)

20CS-A1BS LLR-test 1 LLR-test 2 AICD (AICW)

σ (t) ξ (t) Stat. σ (t) ξ (t) Stat. σ (t) ξ (t) σ (t); ξ (t)

z1000 0.002 0.057 0.001 0.329 0.008 7.7 (0.013) 0 (0.603) 6.1 (0.028) 1.1 (0.356)
∇z 0.006 0.025 0.006 0.78 0.114 5.4 (0.038) 0 (0.573) 2.4 (0.171) 1.9 (0.218)
D 0.259 0.635 0.025 0.053 0.029 1 (0.268) 1.7 (0.185) 2.8 (0.11) 0 (0.437)
ζ 850 0 0.001 0 0.966 0.003 18.6 (0) 0 (0.726) 9 (0.008) 2 (0.266)

Notes: LLR-test1 tests for significant improvement of the time dependant models [σ (t) or ξ (t)] against the ‘stationary’ model,
while LLR-test2 tests the combined model (σ (t) and ξ (t) are time dependant) against the lower dimensional models [‘stationary’,
σ (t) or ξ (t)]. Further, AIC differences (AICD) are given with corresponding AIC weights (AICW) in parentheses for all models in
the set.
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3.3.2. NAO dependance of extremes. For both runs (20CS and
A1BS) strong support is found for a link to the NAO for z1000,
but with reduced strength in A1BS (β̂1 reaches 7.3 gpm in 20CS,
but only 4.5 gpm in A1BS). That is, other parameters controlling
z1000 are more important in A1BS than in 20CS. The results may
suggest that the increased return levels in A1BS do not result
from changed NAO regimes.

For D both data sets do not support a link. Differences are
found for ∇z and ζ 850: While for ∇z a link is supported in 20CS
only, the opposite is true for ζ 850. Note that the results for 20CS
and 20C differ with respect to the NAO link, which is most
probably due to the different sample size.

In contrast to the trend analysis (Section 3.1), differences are
found between 20CS and A1BS cyclone extremes, indicating
that a linear trend should be present in 20C. The trend on the
chosen ERA40 time period, however, is too small to be de-
tectable. Trend detection is further hampered through the pres-
ence of NAO, which increases the variability, but this problem
is minimized through the method of statistical model building,
which is able to separate different impacts on the extremes.

3.3.3. Lifecycles and spatial occurrence of extremes. Similar
to Fig. 4, the five most extreme life cycles with respect to z1000

in the four parameters and the mean life cycles are shown in
Fig. 7 for 20CS and A1BS. If the mean life cycles in z1000 are
considered, a deepening of the cyclones is found in A1BS. Addi-
tionally, the variability in z1000 increases. The five most extreme
life cycles corroborate this finding by showing a decrease in the
central geopotential height (higher z1000 values). Considering the

mean life cycles in the gradient, ∇z, the relative vorticity, ζ 850,
and the depth, D, yields opposite conclusions. While the max-
ima in the gradient and the vorticity decrease, the maxima in the
depth are unchanged. Note that the life cycles with respect to
z1000 in ∇z, ζ 850 and D belong to the upper 5% of the cyclones.

Indicated by Fig. 6 the extreme cyclones intensify in the
warmer climate. Ensuring that this strengthening is not a con-
sequence of a northward displacement of the cyclone tracks,
spatial density estimates of the extreme cyclones are compared
in Fig. 8. The comparison between the density maxima in the
geopotential height reveal no appreciable northward shift of the
extreme cyclones between 20CS and A1BS. This is confirmed
by spatial density differences yielding no systematic, but rather
small and noisy departures (not shown). The density estimates
of the other three parameters (ζ 850, ∇z and D) indicate a slight
increase of the affected area with no northward displacement in
connection with a smaller density maximum. Therefore, the in-
tensification of the extreme cyclones found in a warmer climate
scenario is supported.

4. Summary, conclusion and discussion

Extreme value statistics is applied to extremes of four param-
eters characterizing cyclone life cycles: central geopotential
height (z1000), mean geopotential height gradient (∇z), cyclone
depth (D) and relative vorticity (ζ 850). The present-day climate
of the coupled atmosphere ocean model ECHAM5/MPI-OM is
compared with ERA40 re-analysis and with a global warming
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Fig. 8. Spatial density estimates of the most extreme cyclones (values above thresholds) in the centred geopotential height, z1000 for 20CS (left) and
A1BS (right).

scenario (A1BS). The study focuses on extreme mid-latitude
cyclones in the North Atlantic during extended boreal winters
(October-March). Additionally, the present-day data (ERA40,
20C) is analysed with respect to a possible trend and a potential
link to the NAO is investigated.

In general, the model results are similar in terms of distri-
butions, trends, life cycles and density estimates compared to
ERA40. The extreme value statistics (return level plots) for z1000,
∇z and ζ 850 indicate reversed Weibull-type distributions, imply-
ing an upper bound. When analysing the relatively short ERA40
time period, no significant linear trend is detected for ERA40
and 20C simulation. The use of a linear trend model is question-
able under the assumption of a non-linear forcing, but higher
order polynomial or exponential trends can be approximated
through linear models on short time spans. Life cycles of ex-
treme cyclones respective to one cyclone parameter show that
these cyclones also belong to the upper tails of the distributions
in the other parameters for both, ERA40 and 20C. Density esti-
mates of extreme cyclones in the four cyclone variables of 20C
show similar spatial distributions as ERA40. For both data sets,
the maximum density in vorticity is located more south than the
maxima of the geopotential height.

Apart from these similarities, some differences between the
data sets can be noted: The depth, D, shows a Gumbel-type dis-
tribution for 20C, while a Weibull-type is obtained for ERA40.
In addition, 20C shows lower return levels. The threshold is
rarely exceeded, which might be a direct consequence of the
lower resolution. In 20C the link between NAO and z1000 is less
evident than in ERA40. However, much stronger evidence is
found in 20CS which may indicate that 40 yr of data are not
enough to give robust results.

The comparison between the two stabilization runs (20CS,
A1BS) using extreme value statistics yields an intensification of
the extreme cyclones in the North Atlantic region. The return
levels show an increase for all parameters under consideration,
but different in strength: smaller changes for gradient and vortic-
ity and stronger for geopotential and depth. This intensification
results in increased scale parameters for z1000, ∇z and ζ 850. Ad-
ditionally, the exceedance probability increases for z1000. For D a
decreased scale and increased shape parameter is found. Further

analysis indicates that the deepening in z1000 is not a consequence
of a northward shift, but could be attributed to changes in the
mean sea level pressure (Fink et al., 2009).

Comparing this results with the findings of Della-Marta and
Pinto (2009), some differences can be identified. In contrast to
their work z1000 return values increase for return periods up to
10 yr. However, the results of the vorticity agree. The difference
could be attributed to the distinct analysed time period (transient
instead of stabilization model run) or the applied tracking algo-
rithm. An extension is the analysis of GPD parameters. With the
exception of D, each cyclone quantity (z1000, ∇z and ζ 850) shows
a higher scale parameter in A1BS. Demonstrating that signifi-
cant different parameters do not necessarily yield a significant
difference in return values.

Extreme cyclones and their trends have been analysed in both
model simulations and observations (re-analyses). However, a
comparison with the results presented here is hampered by (i)
different cyclone identification and tracking, (ii) different def-
initions of cyclone extremes and intensity measures and (iii)
different methodology to assess there statistics. Although for
the entire Hemisphere, Ulbrich et al. (2009) already noted that
dependant on the definition of extreme cyclones both an increase
and a decrease in extreme cyclones can be found for the Northern
Hemisphere: analysing extreme cyclones in the upper percent-
age of extremely low sea level pressure they detect an increase
of extreme cyclones in a A1B greenhouse warming scenario,
while the definition of extremes by high values in the pressures
Laplacian yields a decrease.

Despite the limited comparability the following similarities
and differences with regard to recent studies might be noted: A
link to NAO is confirmed by Pinto et al. (2009) showing that the
number of extreme cyclones is enhanced in positive NAO phase
in the NCEP/NCAR re-analyses. The absence of a significant
trend in the cyclone parameters for the whole North Atlantic
is consistent with the findings of Raible et al. (2008) (using
NCEP/NCAR and ERA40 re-analyses). But, dividing the North
Atlantic region in a high latitude and a mid-latitude part, similar
to the defined regions of Wang et al. (2008), Raible et al. (2008)
find a dipol-like trend pattern in cyclone activity (in agreement
with Wang et al., 2008) and intensity.
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Based on a multimodel perspective, there is a reduction in the
total number of cyclones on the hemisphere in warmer climate
simulations, whereas an increase is found in intense systems
(Lambert and Fyfe, 2006). The decrease of the total number
of cyclones in the Northern Hemisphere is supported by several
other studies (Bengtsson et al., 2006; Finnis et al., 2007; Löptien
et al., 2008; Pinto et al., 2009). Comparing 20th century to
warmer climate simulations, a northward shift of all detected
cyclones is found. Cyclone density increases near the British
Isles during the transient A1B scenario, while this increase is
absent in the stabilization runs (not shown).

Consistent with the results presented here, Löptien et al.
(2008) observe stronger deepening rates. However, they do not
find significant changes in cyclone intensity (minimum central
pressure during the cyclone life cycle). Deeper central core pres-
sures of the 100 most intense cyclones were found in scenario
A1B, but interpreted as a result of a northward shift of cyclone
tracks (Bengtsson et al., 2009).

An increased track density and intensity of extratropical cy-
clones is found near the British Isles in warmer climate scenarios
(Ulbrich et al., 2009 and references therein). The same holds for
extreme cyclones (Pinto et al., 2009) and is detected in multi-
model analysis (Leckebusch et al., 2006).

Evaluating the present study concerning a possible change
it is interesting to note that if all detected cyclones are used a
strengthening can only be found for z1000. The other parameters
would indicate no change (D) or a weakening (∇z, ζ 850). This
demonstrates potential advantages of analysing the extremes
directly. As presented here, extreme value statistics appears to
be an appropriate and powerful method. In addition, accounting
every cyclone only once to avoid intense and long living cyclones
to be disproportionately weighted and to ensure independent data
is preferable.

To supplement this study it may be useful to analyse and com-
pare cyclones detected from the vorticity field and to ascertain
the causes of the different positions of the density maxima found
for the different cyclone parameters. Regarding the cyclone vari-
able D, one can only speculate why D differs in general for the
other results. Here, further analyses are needed, for example,
regarding the sensitivity to the particular definition of D.

Furthermore, possible links between North Atlantic cyclone
extremes and variability modes other than NAO may be de-
tectable (for example, El Niño/Southern Oscillation (ENSO) or
the stratospheric circulation). Since it is possible to identify a
significant change of extreme cyclones analysing the A1BS sta-
bilization run, but not within the ERA40 period, the question
arises how sufficiently large the sample size should be for trend
identification.

Considering the North Atlantic basin the determining factors
for a cyclone to belong to an extreme event changes in A1B.
Due to an enhanced low-level temperature gradient in the central
North Atlantic, the low-level baroclinicity increase (Bengtsson
et al., 2006). This region is also characterize by an eastward

shift of the polar jet stream into Europe and increased upper
air baroclinity (Pinto et al., 2007), which are related to extreme
cyclones.

The present work can be integrated in the context of statistical
analysis of cyclone extremes in re-analysis, present-day and fu-
ture scenarios. Understanding the physical mechanisms behind
the changes on cyclone extremes and the different behaviour of
cyclone variables on NAO are part of further analysis.
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