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ABSTRACT

A parsimonious model is presented, leading to Schreiber’s aridity–runoff relation as equilibrium solution of

the rainfall–runoff chain. The chain commences with a fast stochastic water reservoir of small capacity,

representing interception and wetted ground in short time intervals. It feeds a slow (almost stationary) soil

moisture reservoir of large capacity, balancing its runoff after long-term averaging. Parameterizing the fast

reservoir’s capacity by the water equivalent of net radiation available for evaporation leads to a biased coin-

flip surrogate for its ‘‘full’’ or ‘‘empty’’ states when rainfall is larger or smaller than the capacity. Rainfall

surplus from the fast reservoir’s full state feeds the slow (almost stationary) soil moisture reservoir; with the

residual evaporating the fast reservoir starts anew as empty. Rainfall below capacity evaporates completely

and, leaving the energy surplus for sensible heat, the fast reservoir also starts anew as empty. Employing coin-

flip occurrence probabilities from exponentially distributed precipitation yields Schreiber’s formula.

1. Introduction

More than a century ago, Schreiber (1904) analyzed

data of the annual mean discharge Ro versus the annual

precipitation totals P of continental European river ba-

sins fitted to a polynomial curve. Looking at this curve

lead him to assume that it can be presented by the formula

Ro 5 P exp
�N

P

� �
. (1)

Schreiber noted on ‘‘the physical meaning of the pa-

rameter N [that it] approaches the difference precipi-

tation P minus runoff Ro (5evaporation E) better for

larger precipitation,’’ which suggests N to be the water

equivalent of the available energy, that is, potential

evaporation or net radiation. This formula describes, for

a given region, how runoff and evaporation are gov-

erned by P and N as the two forcing terms of supply and

demand. Two regimes emerge because of the limitations

of the forcing: energy limitation occurs, if available en-

ergy N is low, so that runoff exceeds evaporation for

given precipitation, E ; N; and water limitation occurs,

if available energy is so high that water supplied by

precipitation evaporates, which then exceeds runoff,

E ; P. The ratio D 5 N/P defines the aridity index

(Budyko 1974), which separates the energy- and water-

limited regimes at D 5 1; it is also used as an indicator

for the vegetation types related to climate, such as tun-

dra D , 1/3, forest 1/3 , D , 1, steppe and savanna 1 ,

D , 2.5, semidesert 2.5 , D , 3.5, and desert 3.5 , D.

There are more water–energy balance closures like

Schreiber’s, for example, Ol’dekop (1911; see also Pike

1964; Turc 1954). They are applied in Budyko’s (1974)

climate analysis centered on the aridity parameter and

have been extended to include vegetation explicitly (e.g.,

Zhang et al. 2004). They are the basis of climate change–

related sensitivity studies performed by Dooge (1992;

see also Lettau 1969) and paleoclimatic diagnostics (e.g.,

Kutzbach 1980). Furthermore, they are used to evaluate

high-resolution global climate models (Koster and Suarez

1999; Arora 2002) and are directly compared with more

complex soil–vegetation–atmosphere–transfer models

that, in different climatic zones, find Schreiber’s for-

mula very close to observations and model results (Wang

and Takahashi 1999). These successful applications and

validations of Schreiber’s aridity–runoff relations dem-

onstrate their ongoing relevance in climate analysis, in

particular for water cycle modeling, sensitivity, and feed-

back analyses on the regional scale.

Conceptual models of basins responding to water

supply by precipitation suggest a probabilistic approach
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(Rodriguez-Iturbe et al. 1990; Hosking and Clarke 1990).

From the first concepts (Eagleson 1978; Hosking and

Clarke 1990) to a minimalist approach (Milly 1993), all

these analyses require a parameter set that outnumbers

the three variables entering Schreiber’s Eq. (1) and focus

on the soil water storage. The following note presents a

parsimonious model leading directly to Schreiber’s (1904)

aridity–runoff relation as equilibrium solution of the

rainfall–runoff chain. This chain commences with a fast

stochastic water reservoir of small capacity (like inter-

ception and wetted ground), which feeds a slow (almost

stationary) soil moisture reservoir of large capacity bal-

ancing its runoff at the end.

2. Stochastic water storage model

The basin model consists of two reservoirs of different

residence times and capacities: a fast (and shallow) and a

slow (and deep) water reservoir. In the idealized con-

ceptual limit, the fast reservoir acts instantaneously with

small capacity, whereas the slow or soil water reservoir

has very large capacity and response time:

(i) The fast water reservoir represents ‘‘the first pro-

cesses in the chain of interlinked rainfall-runoff

processes’’ (Savenije 2004) and plays the role of

water in transit before reaching the soil. It is char-

acterized by small capacity, which corresponds to

the water equivalent of net radiation available for

evaporation in a short (day to week) time interval

and an analogously short water residence time. The

capacity comprises interception in canopies, her-

baceous vegetation, and near the ground in mulch,

in wetted ground, and soil layers drying out within

the short residence time; even sand without vege-

tation can intercept water. That is, rainfall exceeding

net radiation is a water surplus, which is considered

as the fast reservoir’s overflow. Therefore, the res-

ervoir is defined as ‘‘full’’ if the rainfall input, which

cannot be evaporated during the short time in-

terval, leaves as overflow. Otherwise, it is ‘‘empty’’

with the smaller rainfall being evaporated by the

water demanding net radiation. The surplus pro-

duced during the full state enters the slow soil

moisture reservoir in the same time interval.

(ii) The slow soil water reservoir represents the last

processes in the rainfall–runoff link and, as the

moisture capacity is much larger than any fluxes of

water during the short time interval, it is considered

stationary compared to the effect of these fluxes.

Thus, in the climate average, the fast reservoir’s

surplus balances the slow soil water reservoir’s

discharge.

(iii) Two closures connect the fluxes of both reservoirs

comprising the catchment: the meteorological clo-

sure links atmospheric demand with the fast reser-

voir’s maximum capacity to provide overflow once

random water supply by precipitation exceeds net

radiative demand (or draft); and the hydrological

closure parameterizes the slow soil moisture reser-

voir’s supply by the fast reservoir’s overflow (or

surplus), which, in the long term mean, compensates

the catchment’s discharge.

a. Fast reservoir

The fast reservoir is represented by a parsimonious

stochastic storage model evolving at short time intervals

that is, for example, on a day-to-day basis. Storage

change is forced by random water input from daily to

weekly precipitation pk $ 0 for k 5 0, 1, . . . , K, which is

reduced by a constant water demand (draft) N 5 nk

determined by the net radiation as the energy flux

available for evaporation. The storage is measured by

a water level Z(t), which is limited by an upper-bound N

separating an empty (0 # Z , N) from a full (N # Z)

state. This limit is defined by the water demand (maxi-

mum possible evaporation or water equivalent of net

radiation), which characterizes the basin’s thermal cli-

mate. The empty state does not produce a water surplus,

whereas the full state generates surplus and, therefore,

overflow. The occurrence of a full (empty) reservoir

corresponds to intervals with (without) water surplus,

(pk 2 N) . 0 (,0). The associated probabilities are

q
0

5 prob(0 # Z , N), q
1

5 prob(N # Z). (2)

The surplus at full state is assumed to leave the fast

reservoir instantaneously to provide the water supply

for the slow soil moisture reservoir while the remaining

amount evaporates, using up the energy demand. Thus,

after the time interval, the full reservoir starts anew as

empty. Rainfall less than the energy demand is associ-

ated with the reservoir to be empty; there is no surplus,

because water evaporates with the remaining net en-

ergy, providing the sensible heat flux. Thus, after this

time interval, the empty reservoir starts also anew as

empty. In the long term mean, the surplus (or overflow)

balances the slow soil moisture reservoir’s discharge

(runoff). In this sense the fast water reservoir’s full and

empty states evolve like a biased coin flip experiment

with interval occurrence probabilities (2), q0 and q1 with

q0 1 q1 5 1, which are parameterized as follows.

b. Meteorological closure

The stochastic forcing of the fast reservoir com-

prises the short (daily to weekly) interval water supply by
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precipitation pk . 0 for k 5 0, 1, . . . , K, and the related

constant energy demand N 5 nk. To a good approxi-

mation, the short interval precipitation intensities are

exponentially distributed and assumed to occur in-

dependently,

prob(p
k

# p*) 5 1� exp
�p*

p

� �
. (3)

Here, the interval mean precipitation P is deduced from

the total water input of K intervals S(K) 5 kSKpk, so that

the mean is estimated to be P 5 S(K)/K. For coupling

with the parsimonious water storage scheme, the con-

tinuous exponential distribution function is approximated

by a discrete binary distribution with two complementary

probabilities. They are associated with two mutually ex-

clusive classes of precipitation: smaller–equal or larger

than the threshold p* 5 N prescribed by the net radiation:

prob(p
k

# N) 5 1� exp
�N

P

� �
,

prob(p
k

. N) 5 exp
�N

P

� �
, (4)

with prob(pk # N) 1 prob(pk . N) 5 1. Note that given

the thresholding (4), the effect of zero precipitation does

not render relevant, as rainfall is only important if P . N,

and so very small rainfall amounts can effectively be

considered zero.

Now the random atmospheric water supply and de-

mand are combined with the occurrences of the reser-

voir’s states, quantifying their probabilities:

q
0

5 prob(p
k

# N) 5 1� exp
�N

P

� �
,

q
1

5 prob(p
k

. N) 5 exp
�N

P

� �
. (5)

In summary, the biased coin flip is introduced as a sur-

rogate of the fast water reservoir to simulate the oc-

currence probabilities of binary water storage states

empty or full, that is, with or without water surplus. The

capacity N, which separates the two states, is prescribed

by the reservoir’s climatological embedding in terms of

the exponentially distributed precipitation reduced by

net radiation. This quantifies the coin flip’s bias in terms

of the aridity index D 5 N/P, which characterizes water-

and energy-limited conditions (at D 5 1) and, sub-

sequently, the climate and vegetation properties of the

basin. In this sense the available energy N provides a

natural upper bound of the fast reservoir’s storage.

3. Schreiber’s equation

The climate mean water budget components of the

basin can now be expressed in terms of the occurrence

probabilities of the full or empty intervals determined

by the biased coin-flip trial, which represents the evo-

lution of the fast reservoir. The discharge of the sta-

tionary or slow reservoir is linked to the occurrence

probability of the fast reservoir’s full state and its corre-

sponding water surplus which, entering the slow reservoir

at the same time interval, balances its mean runoff Ro:

Ro 5 Pq
1

5 P exp
�N

P

� �
. (6)

This result is easily demonstrated: The climate mean

runoff Ro is determined by the occurrence probability of

the full state, which, in the climate mean h�i, yields

Ro 5 hp
k
ij

full
� hN

k
ij

full

5

ð‘

N

p
k

exp(�p
k
/P) dp

k

P
�
ð‘

N

N exp(�p
k
/P) dp

k

P

5 (P 1 N) exp
�N

P

� �
�N exp

�N

P

� �

5 P exp
�N

P

� �
5 Pq

1
. (7)

The basin’s equilibrium water balance Ro 5 P – E can

be analogously formulated in terms of the fast reser-

voir’s equilibrium state probability of emptiness:

E 5 Pq
0

5 P(1� q
1
). (8)

Thus, introducing the evaporation ratio E/P as a func-

tion of D 5 N/P yields the more common way to write

Schreiber’s Eq. (1) using the basin’s aridity index and

thus the catchments climatological setting:

E

P
5 1� exp(�D) 5 q

0
. (9)

In this sense Schreiber’s formula can also be interpreted

in probabilistic terms as an equation of state, describ-

ing the evaporation ratio as an occurrence probability of

(short) time intervals of ‘‘emptiness,’’ which depends on

the aridity index D. For example, at the border between

energy- and water-limited climate conditions, D 5 1, the

fast reservoir attains an empty state interval on 63% of

the biased coin flips.

Furthermore, the biased coin flip as a surrogate for the

fast reservoir can also be interpreted as a two-state Markov

chain evolving not unlike the truncated multistate Moran

dam (Moran 1959; see also Gani 1955; Langbein 1961;

Lloyd 1963; Prabhu 1980). If the transitions (i) are pre-

scribed by coin-flip state probabilities (2), and (ii) impose

an empty (full) reservoir state when a decrease (increase)
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in water content is impossible, then an equilibrium two-

state Markov chain is obtained, predicting future in terms

of the mean occurrence probabilities.

4. Concluding remarks and outlook

A parsimonious stochastic water storage model of the

rainfall–runoff chain leads to the first empirically deduced

aridity–runoff relations as an equilibrium or climate mean

solution. Combining only three climate variables—runoff,

precipitation, and net radiation—it is known as the evap-

oration ratio curve or Schreiber’s (1904) formula and is

applicable in many climates of the earth.

For the stochastic model to be parsimonious, the fol-

lowing four simplifications are made. (i) A two-time scale

approach separates a fast stochastic water reservoir of

small capacity from the slow (stationary) soil moisture

reservoir balancing the runoff. (ii) A biased coin flip

represents the fast reservoir generating water surplus (or

overflow) on short time intervals. (iii) A meteorological

closure links the likelihood of water surplus to the fast

reservoir’s small capacity, which is parameterized in

terms of the water equivalent of energy available for

evaporating the exponentially distributed precipitation

input, which is accumulated during a short time interval.

(iv) The slow reservoir has a large capacity, so that it can

be assumed stationary. Thus, the input of the fast reser-

voir’s surplus is balanced by the mean runoff.

Schreiber’s formula is interpreted in terms of a fast

biased coin flip (or Markov-equilibrium state) approach

for various kinds of vegetation covering slow soil water

reservoirs. The slow reservoir’s response to the random

input is considered as an averaging process for the

rainfall–runoff chain providing the climate mean runoff.

Deviations from the climate mean are not considered

here, although low-frequency variability, long-term mem-

ory, and scaling in river runoff or moisture storage are

important ingredients of the rainfall–runoff chain. The

Ansatz presented here may be extended to generate

long-term memory.
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