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ABSTRACT

The authors describe a statistical analog resampling scheme, similar to the ‘‘intentionally biased bootstrap,’’

for future climate projections whose only constraint is a prescribed linear temperature trend. It provides a large

ensemble of day-to-day time series of single-station weather variables and other climatological observations at

low computational cost. Time series are generated by mapping time sequences from the observed past into the

future. The Yangtze River basin, comprising all climatological subregions of central China, is used as a test bed.

Based on daily station data (1961–2000), the bootstrap scheme is assessed in a cross-validation experiment that

confirms its applicability. Results obtained for the projected future climates (2001–40) include climatological

profiles along the Yangtze, annual cycles, and other weather-related phenomena (e.g., floods, droughts, mon-

soons, typhoons): (i) the annual mean temperature and, associated with that, precipitation increase; (ii) the

annual cycle shows an extension of the Asian summer monsoon season with increasing rainfall, linked to a small

summer temperature reduction in the Yangtze lower reaches; (iii) coupling between monsoon circulation and

monsoon rainfall strengthens; (iv) while drought occurrence is reduced, Yangtze floods do not change con-

siderably; and (v) the number of typhoon days in the East China Sea shows a reduction of about 25%; the

proportion of intense typhoons with landfall increases. GCM scenario simulations produce similar results.

1. Introduction

For future climate projections at a regional scale, a

hierarchy of dynamical models is commonly used to

simulate the physical processes of the climate system at

different spatiotemporal scales and resolutions. In this

hierarchy, the coarse-resolution global scale is covered

by coupled ocean–atmosphere general circulation models

(GCMs). For the regional scale, thanks to an increas-

ing understanding of finescale processes such as cloud

formation and growing computer power, the nesting of

regional climate models (RegCMs) into GCMs has be-

come a standard approach, despite the large computational

costs involved. Regional climate simulations obtained from

such a model hierarchy have improved considerably over

the last 15 years (Solomon et al. 2007, chapter 11; Wang

et al. 2004; Giorgi 2006; Laprise 2008). Such progress is

essential for the study of climate impacts that concern

single regions rather than the entire globe. Since RegCMs

simulate the physical processes entailing regional climate

change, they allow for insights into the interplay between

causes and consequences. This is of particular importance

for simulations of the distant future when climate is ex-

pected to be fundamentally different from present-day

conditions (Solomon et al. 2007, chapter 10).
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However, for certain regions, boundary conditions

such as topography or finescale physical processes such

as convection still have too coarse of a representation

in the RegCMs. In these cases, control simulations from

RegCMs are biased against observations (Giorgi et al.

2004; Kotlarski et al. 2005), which limits their use for

near-future regional climate impact studies requiring

reliable predictive skills. To address this problem, sta-

tistical schemes complementing the RegCMs are used,

which are less affected by the aforementioned bias

problems.

Examples of such statistical schemes are regression

models (not unlike the classical model output statistics

from the 1960s), analog methods (Wilby et al. 1998;

Zorita and von Storch 1999), and stochastic weather

generators (Wilks 1999). Regression models exploit sta-

tistically derived relations between GCM output and re-

gional weather. Analog methods typically search the past

circulation pattern that is most similar to the pattern of

a future date (simulated by a GCM) and assign the re-

gional weather concurrent of that past pattern to the

future pattern date. Thus, the obtained future combi-

nations of regional weather variables are physically con-

sistent at each time step. Both regression and analog

methods downscale GCM output at individual time steps.

This makes the skill of their projections dependent on the

skill of single GCM runs, which is known to be low for

certain regions and variables [see van Oldenborgh et al.

(2009); Vautard et al. (2009) for studies revealing un-

derestimated temperature trends over western Europe in

GCM simulations].

Stochastic weather generators generate time series of

single climate variables conditioned on prescribed general

time series statistics. They are less dependent on GCM

skills but can generate physically inconsistent combina-

tions of regional weather variables since they usually

generate time series for different variables individually. In

general, the application of statistical schemes is confined

to projections of similar climates that do not overstrain

the stationarity assumption implicit in statistical schemes.

This explains their frequent application in regional cli-

mate impact studies since these typically deal with near-

future climate projections only.

Here we use a resampling approach based on weather

analogs. Our statistical analog resampling (STAR) scheme

generates ensembles of daily time series that optimally

fit a prescribed linear temperature trend (mean and long-

term linear increase; see Orlowsky et al. 2008). This tem-

perature trend is the only constraint for the resampling,

which is why STAR is located somewhere in between

classical downscaling techniques and stand-alone climate

modeling approaches. Thus, we try to combine the ad-

vantages of the analog approaches (consistency between

different variables) and the weather generators (inde-

pendence on GCM simulations). From the ensemble

projections, future climate statistics such as long-term

averages or extreme events are estimated. Since these

projections are obtained by resampling from past ob-

servations, STAR can be seen as an extended bootstrap

approach (Efron and Tibshirani 1993) in which the re-

sampling is conditioned on the prescribed temperature

trend.

For demonstration purposes, we select the Yangtze

River basin in central China. The climate of this region is

complex and includes temperate inland, plateau, and

monsoonal climatic regions. They are all transected by

the Yangtze River, which provides a natural cross sec-

tion through central China. Since it is one of the most

important waterways of the world, reliable projections

of its future climate are an important challenge.

In the following, section 2 introduces our bootstrap

extension—the statistical analog resampling scheme. Ob-

servational and GCM data are described in section 3,

together with a cross-validation experiment that dem-

onstrates the applicability of our bootstrapping to the

Yangtze River basin. Section 4 analyzes the observed

present-day climate (training period 1961–2000) along

the Yangtze River at single stations and the adjacent

future projections (2001–40). Both the training period

climate and the future projections are compared with

GCM simulations. Section 5 draws some conclusions on

the applicability of STAR for future regional climate

projections.

2. Bootstrapping for climate projections

Estimating distributions of sample parameters (e.g.,

confidence intervals for sample mean, return periods, etc.)

by resampling—‘‘bootstrapping’’—from a given sample

or time series (Efron 1979; 1981) has become a standard

approach. Bootstrapping involves time-consuming com-

putations and is therefore intended for situations where

distributions cannot be derived from theoretical consid-

erations (Efron and Tibshirani 1993). In climate science,

bootstrapping has been used, for example, to estimate the

uncertainty of flood return levels (Mudelsee et al. 2003;

Rust et al. 2010) and of statistically downscaled meteo-

rological variables (Dibike et al. 2008).

Here we want to obtain ensembles of future climate

projections by bootstrapping from a training period sam-

ple of past daily observations. Typically, the future cli-

mate is expected to be warmer than the training period

climate. Since the warming in observations and GCM

simulations is one of the most robust climate signals, and

to reduce the dependency on single GCM runs, our

bootstrap ensemble shall be constrained by a prescribed
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temperature trend (average and long-term linear in-

crease) only. For reference, Fig. 2a shows that the linear

trend in our case gives a good approximation to the

temperature evolution.

If we were interested in temperature alone, the ‘‘in-

tentionally biased bootstrap’’ (Hall and Presnell 1999b)

would be useful, where the probabilities for the resampling

are adapted to given constraints. For example, if a sample

of daily temperature observations was to be drawn from

the training period sample, with a warmer average than

the training period average, the intentionally biased

bootstrap would preferably select warm temperature ob-

servations (Hall and Presnell 1999a). However, since we

are interested not only in the future temperature average

but in any kind of climate statistics (variability, annual

cycles, extremes, persistence, etc.) for any climate variable,

the formulation of all such constraints in the context of

an intentionally biased bootstrap (Davison and Hinkley

1997) is not straightforward. Therefore, instead of directly

prescribing probabilities for the resampling of the training

period observations like in the intentionally biased boot-

strap, we bootstrap according to a set of heuristic rules.

This set ensures that the bootstrapped series comply with

the prescribed trend and, in addition, are physically re-

alistic. This, like in the intentionally biased bootstrap, re-

sults in adapted probabilities for the resampling, which, in

our case, are defined indirectly by the set of heuristic rules.

a. Bootstrapped weather ensembles conditioned on
a future temperature trend

Since our only constraint is a temperature trend, we

start with a bootstrap ensemble of daily temperature

observations resampled from the training period. A set

of heuristic rules for the resampling ensures that the

ensemble members reproduce the prescribed tempera-

ture trend and realistic annual cycles (see Fig. 1). Inspired

by the moving block bootstrap (Efron and Tibshirani

1993; Lahiri 2003), we bootstrap blocks of temperature

observations (of 12-day length) rather than single-day

observations (e.g., Werner and Gerstengarbe 1997). Ex-

periments with different block lengths suggest that 12-day

blocks yield bootstrap series with realistic persistence

behavior (physically associated with large-scale circula-

tion patterns).

Since the bootstrapped temperature observations be-

long to dates from the training period, the temperature

series ensemble can be extended to a bootstrap ensemble

of calendar dates (assume a single-station setting for now,

for regional projections see below). Each ensemble mem-

ber therefore consists of a date-to-date-mapping,

f : future period! training period,

assigning each date of the future period to a date (and its

concurrent weather observations) from the training pe-

riod, which may be selected more than once. A future

temperature series generated by applying f reproduces

the prescribed temperature trend, which means that

linear regression [(T
f (t)

), t ) future period]

5 prescribed trend

holds within a chosen tolerance, which, for this paper, is

set to 0.25 K. Note that trends other than linear ones are

feasible, although this may lead to convergence prob-

lems. For details about how f is constructed, refer to

Orlowsky et al. (2008).

FIG. 1. Bootstrapping 12-day blocks of a training period temperature series (black) for future

temperature series (gray), constrained by a prescribed future temperature trend (black line)

w.r.t. the annual means (black dots). Temperatures of a suitable block i from the training period

and the associated calendar dates (taking all weather observations of block i with them) are

assigned to a block in the future period, conditioned on the temperatures of block i. In this

illustrative example, the 12 future days starting at 29 Apr 2001 are mapped onto the 12 days

starting at 26 Apr 1997.
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By applying f, future series for any kind of observa-

tions available at the dates of the training period can be

obtained, for example, station observations, monsoon

indices, and river runoff and typhoon occurrences. Thus

conserving past weather information in the future

bootstrap series is equivalent to the analog approaches.

For regional multistation projections, a preparatory

step identifies climatological subregions by a hierarchi-

cal cluster analysis based on temperature and precip-

itation. Individual temperature trends are prescribed to

one representative station of each subregion. This re-

duces the complexity and allows for the representation

of spatial patterns of future climate variables in the

constraints. Here, five subregions and representative

stations are identified (see Fig. 3). Note that, besides

determining the representative stations and their trends,

no adaptation or calibration specific to the region of

interest is necessary.

b. Properties of the bootstrapped weather ensembles

The bootstrap/analog approach ensures that at each

time step spatial fields and combinations of variables are

physically consistent since they were once concurrent

real-world observations (no trend elimination or any

other alteration is applied prior to resampling).

Owing to its design, our approach produces conser-

vative projections in the sense that, if the prescribed

future trend continues the training period trend, any

systematic change in the set of observables linked to the

temperature trend of the training period will continue in

the future period. For example, if during the training

period a warming is observed and for the future a further

warming is prescribed, then any trends linked to the

observed warming will be likely to continue in the future

projections. This agrees with the intuition that, on the

near-future time scale (which we are dealing with here),

changes of the physical and statistical relationships

within the climate system are small.

Bootstrapping schemes in general tend to reduce var-

iability and persistence. Although sometimes detectable,

these effects are weak in STAR projections [see the case

study in Orlowsky et al. (2008)].

STAR is implicitly based on the important assumption

that joint statistical properties of the different meteo-

rological observables are the same in the training and

the future period. This is almost certainly not the case

for a changing climate and, in particular, not for the end

of the future period with the strongest warming. How-

ever, cross-validations as in Orlowsky et al. (2008) or in

this study show that the errors resulting from this

shortcoming are acceptable, at least for the long-term

climatological statistics examined here.

To generate climates with warmer average temper-

atures than in the training period, STAR has to pref-

erably select warm blocks (like the intentionally

biased bootstrap would do), in particular for the end of

the future period (with the most elevated tempera-

tures), which can reduce the size of the sample of

blocks considerably. This effect is shown for one rep-

resentative station (Fig. 2b), displaying frequencies at

which temperatures are selected from the training

period as a function of the future year. It is obvious

that the use of high summer temperatures becomes

more and more frequent and that low temperatures are

used less by the end of the future period. The band-

width and the size of the sample from which blocks can

be chosen at the end of the future period is thus nar-

rowed. This leads to a decrease of the amplitude of the

annual cycle and to a reduced variability at the end of

the future period.

Obviously, this limits the applicability of such schemes

to projections of future climates that are ‘‘within the

variability of the training period.’’ This condition can be

evaluated a posteriori by an ‘‘internal variability conser-

vation’’ criterion (see Orlowsky et al. 2008): The vari-

ability of a training sample is large enough to bootstrap

series with a given future temperature trend if the tem-

perature anomalies (i.e., the time series after removing

long-term trend and annual cycle) of the training series

and a future bootstrapped series can be seen as originating

from the same distribution. In this case the imposed trend

does not lead to a statistically visible reduction of vari-

ability. Experiments with different prescribed trends

suggest that according to this criterion the warming in the

training period can continue to the future period with the

same strength (i.e., if a warming of 1 K has been observed,

a further warming of 1 K is feasible). However, from

our experience, even larger prescribed future trends can

yield satisfactory results, particularly compared to the

performance of dynamical models (Orlowsky et al. 2008),

if long-term statistics are considered, for which a re-

duced variability, especially at the end of the future

period, is less important.

3. Data and validation

STAR resamples observational station data to gener-

ate ensembles of future climate projections, which are

constrained by a linear temperature trend. For the future

projections (from 2001 to 2040) of this paper, the trend is

derived from a GCM scenario run (ECHAM5). Both

observational and GCM data are described (section 3a).

A cross-validation experiment that studies the applica-

bility of STAR for the Yangtze River basin is presented

in section 3b.
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a. Data

1) OBSERVATIONAL DATA

Daily time series of the following variables are ana-

lyzed for the present day (training) and subsequent future

climate projection: temperature, precipitation, Yangtze

runoff, a monsoon index, and typhoons in the East China

Sea.

(i) Temperature and precipitation are taken from Feng

et al. (2004). The variables are daily minimum, mean

and maximum temperature, and precipitation. We

use 172 stations along the Yangtze (Fig. 3), where

we have uninterrupted temperature and precipita-

tion time series available from 1961 to 2000. Since

the training dataset ends in 2000, the years from 2001

to 2040 are chosen as the future period. Station

density varies across China, with fewer stations

per area in the mountainous regions compared to

the eastern plains (see Fig. 3).

(ii) Runoff at the stations Cuntan (298379N, 1068369E;

165 m MSL) and Datong (308469N, 1178379E; 9 m

MSL) along the Yangtze supplements the information

about the water cycle (see Wang et al. 2008).

(iii) Monsoon index: The Western North Pacific Mon-

soon Index (WNPMI; see Wang et al. 2001; daily

data from 1961 to 2000 available from the Meteo-

rological Department of the University of Hawaii

at Manoa) is chosen as it captures the circulation

affecting inland rainfall in the Yangtze River catch-

ment. It is defined by the horizontal gradient of lower

tropospheric (850 hPa) zonal wind, which character-

izes the intensity of the North Pacific subtropical

high by its vorticity [WNPMI 5 U850(1) minus

U850(2), averaged over two rectangular areas (1)

and (2); Fig. 3].

(iv) Typhoons: Tropical cyclone track data in the rect-

angular area (208–358N, 1158–1308E; see Fig. 3)

provide information about typhoon occurrence and

intensity (date, position, and wind speed). The da-

taset is available from the Joint Typhoon Warning

Center (available online at http://www.usno.navy.mil/

JTWC; compiled by F. Sielmann 2009, personal

communication). To study the typhoons with land-

fall, we further analyze the tropical cyclone tracks

that reach over land in the rectangular area. For this,

the coast is approximated by the polygon (228N,

1168E; 308N, 1238E; 358N, 1208E), and the region to

its west is considered as land.

2) MODEL DATA

Data from the GCM ECHAM5 (Roeckner et al.

2003), which, compared to other GCMs, performs rela-

tively well over China (Xu et al. 2007), are used twofold

here.

(i) They are compared both with observations from the

training period and with future projections. There-

fore, an ECHAM5 run covering the training period

1961–2000 (Roeckner et al. 2008a) is analyzed jointly

with an ECHAM5 simulation for the future period

2001–40 (Roeckner et al. 2008b), which is driven by

the Special Report on Emissions Scenarios SRES-

A1B scenario (Nakicenovic and Swart 2000). Both

runs come on a Gaussian grid with a resolution of

FIG. 2. (a) ECHAM5 annual temperatures, averaged over the five grid cells containing the representative stations

(see Fig. 3a), illustrating the linearity of the temperature increase (the variance explained by the linear fit is 53%). (b)

Frequencies per future calendar year (grayscale coded) of the bootstrapped temperatures from the representative

station in the middle (Fig. 3a), averaged over the entire ensemble.
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approximately 1.8758. The twentieth-century run is

forced by observed greenhouse gas concentrations;

the last year (2000) serves to initialize the subsequent

A1B run for the twenty-first-century scenario. Hence,

both ECHAM5 simulations represent a continuous

climate evolution from 1961 to 2040.

(ii) The temperature trend, which is prescribed for the

future projections, is determined from the ECHAM5–

A1B run: The linear temperature increases of the

annual mean temperatures from 2001 to 2040 are

calculated for the grid cells that embed the represen-

tative stations. They range from 0.7 to 1.7 K. These

increases are much stronger than the ones observed in

the training period (ranging between 0.1 and 0.9 K)

and are thus likely to yield climates lying outside the

training period variability (cf. section 2b). Further,

note that in GCM simulations, temperature averages

often deviate from observations, while temperature

changes are more realistic. The GCM-simulated in-

creases of temperature from 2001 to 2040 are there-

fore assumed to start from the temperature levels

observed at the representative stations, instead of

the respective GCM-simulated temperature levels,

of the year 2000. Underlying this procedure is the

assumption that the temperature bias of the GCM is

time independent, which could be problematic since

GCMs are known to have drifts. However, these

drifts are of a smaller order of magnitude over our

40-yr period than the bias itself and should, there-

fore, not compromise our results.

b. Validation

The performance of STAR in the Yangtze River

catchment is evaluated in a cross-validation experiment

that supplements a model cross-validation for the North

Atlantic European sector (Orlowsky and Fraedrich 2009).

It is set up to generate the climate of a validation period

(from 1981 to 2000) from the independent preceding time

span 1961 to 1980. The same five representative stations

are used as for the future projections (Fig. 3). The pre-

scribed linear temperature trend for the validation period

is determined by a regression analysis of the annual mean

temperature series at the five representative stations from

1981 to 2000; 100 ensemble members are created. Gen-

erally, these projections do not fulfill the a posteriori

variability conservation criterion from section 2b, which

means that the climate of the validation period lies out-

side of the training period variability. A successful cross-

validation in spite of this demanding setting gives strong

evidence of the robustness of the projections, at least for

the long-term statistics considered here. The comparison

of the ‘‘true’’ (observed) validation climate with the

STAR projections shows the following results (Table 1):

(i) The agreement between validation period observa-

tions and projections is close for all statistics ana-

lyzed: annual mean temperature and precipitation,

monsoon/precipitation correlation, lengths of dry

spells, 90% quantile of Yangtze runoffs as flood in-

dicators, average summer [June–August (JJA)] mon-

soon strength, and annual occurrences of typhoons.

(ii) The spread of the ensemble is narrow and always

includes the observed validation period statistics. This

hints at the robustness of the results, despite the short

length of 20 yr of the projected time series. Note that in

a similar cross-validation for the Elbe River catchment

(Orlowsky et al. 2008), the ensemble spread is larger

for several statistics, showing that the narrow spread

found here is not a methodological artifact.

These results suggest that STAR is a suitable tool for

future climate projections of the Yangtze River catchment,

FIG. 3. (a) Stations of the Yangtze River catchment (gray points),

Yangtze River (black), and stripes by which the station data is

grouped (gray parallel lines); topography (grayscale coded, the

Tibetan Plateau in white), representative stations (cluster centroids)

for the bootstrapped future projections (black circles), areas for cal-

culating the WNPMI (solid rectangles), and for analyzing typhoons

(dashed rectangle). (b) The elevation profile along the Yangtze rep-

resents an average altitude of the stripes; the vertical line marks the

boundary between upper and lower reaches of the Yangtze River.
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despite the variability conservation criterion (section 2b)

not being fully satisfied.

4. Application to the Yangtze: Present and future
climates

The Yangtze River runs approximately 6300 km from

its origins in the eastern Tibetan Plateau at 4000 m to

the East China Sea. It transects different climate types—

such as plateau, temperate inland, and monsoonal

climates—which are controlled by (i) topography, (ii)

latitude characterizing radiative forcing and seasonality,

and (iii) monsoonal systems induced by the land–sea

contrast [e.g., Domrös and Peng (1988); for comparison,

see the moisture-based climate classification (Wu et al.

2006) or the widely used Köppen classification (Fraedrich

et al. 2001)]. This climatological complexity is challenging

for statistical climate projections.

The present-day and future Yangtze climates are ana-

lyzed in ECHAM5 simulations and in station observations/

future projections. For ECHAM5, the grid cells covering

the upper reaches (i.e., 238–378N, 908–1028E) and those

covering the lower reaches (258–358N, 1018–1208E) are

averaged. For the analysis of the observations and boot-

strap projections, the course of the Yangtze is approxi-

mated by two straight lines (see Fig. 3a): one characterizes

the upper reaches ranging from the sources in the high

elevations to the eastern part of the Tibetan Plateau

(above ;2000 m); the other line describes the lower

reaches continuing eastward. The two lines cross ap-

proximately at the main bend of the Yangtze River near

Panzhihua. Upper (lower) reaches are represented by

8 (19) stripes perpendicular to the two lines; station data

within each stripe is averaged, leading to a single time

series of daily meteorological observations per stripe; the

double width of the first stripe is due to station scarcity.

Climate statistics of these averaged time series are pre-

sented as profiles (see Fig. 3b, where upper and lower

reaches are separated by a vertical line).

The future bootstrap ensemble contains 100 projections.

None of these comply with the a posteriori variability

conservation criterion from section 2b. Strictly speaking,

the climatological variability of the training period is,

therefore, overstretched by the ECHAM5-derived tem-

perature trends. However, since our analysis is restricted

to long-term statistics and because of the encouraging

cross-validation experiment (which also does not satisfy

the a posteriori variability conservation criterion from

section 2b), we assume that the results presented now are

not critically affected by this drawback. Before the future

projections along the Yangtze are discussed in detail, the

averages of the upper and lower reaches are summarized

(Table 2).

(i) The GCM simulation by ECHAM5 for the present-

day period (1961–2000) and the future A1B scenario

(2001–40) show an overall temperature increase of

about 0.7 K (the weighted average of upper and

lower reaches); the increase is larger in the upper

reaches of the Yangtze. Note that STAR projects

a higher temperature increase from training to future

period than ECHAM5. This is because the prescribed

temperature increase is taken from ECHAM5, but

the prescribed average is based on the training

period observations (see section 3a), which leads

to different increases of the average temperatures

TABLE 1. STAR validation: Observations (Obs) and projections, both for the validation period from 1981 to 2000. For both upper and

lower reaches (see Fig. 3 and section 4 for their definition): mean annual temperature and precipitation, monsoon/precipitation corre-

lation, mean dry spells, and Yangtze runoffs (the Cuntan and Datong gauges for the upper and lower reach, respectively). Concerning the

adjacent Pacific: summer monsoon, measured by the average JJA WNPMI, and typhoon days yr21 (see Fig. 3). Both ensemble average and

ensemble spread (in parentheses) are given.

Validation Period 1981–2000

Upper reach Lower reach

Obs STAR Obs STAR

Mean temperature (8C) 5.85 5.88 15.55 15.55

(5.84 to 5.95) (15.49 to 15.60)

Annual precipitation (mm yr21) 712 696 1204 1199

(680 to 714) (1168 to 1243)

Correlation monsoon/precipitation 0.00 20.03 20.11 20.09

(20.06 to 0.01) (20.11 to 20.04)

Mean dry spell (days) 5.65 5.97 3.36 3.25

(5.54 to 6.38) (3.04 to 3.42)

90% quantile runoff (m3 s21) 24 300 24 517 50 100 49 403

(23 700 to 25 400) (47 900 to 51 060)

Monsoon (JJA) 4.24 4.97

(4.12 to 5.63)

Annual typhoon days yr21 33.25 33.70

(30.60 to 35.80)
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from the training to the future period in observa-

tions/STAR and ECHAM5, respectively.

(ii) The bootstrap ensemble indicates a precipitation

increase that is more pronounced in the lower

reaches. Climate model precipitation (ECHAM5,

simulated for the training period) is much higher

than observed, and its spatial distribution does not

coincide with station data: the upper reaches in the

observations are significantly drier than the lower

reaches, whereas ECHAM5 data indicate slightly

wetter upper reaches. This mismatch is supported

by Hagemann et al. (2006), who note that Yangtze

River catchment precipitation is overestimated by

ECHAM5 due to excessive monsoon precipitation,

reaching from the southern slopes of the Himalayas

into the Yangtze River basin. Thus, ECHAM5 pre-

cipitation does not serve as a good reference in this

region. Another GCM (Gao et al. 2006) shows ex-

aggerated precipitation east of the Tibetan Plateau,

at least in part because of the too-coarse horizontal

resolution (see also Gao et al. 2001).

(iii) The influence of the daily monsoon (WNPMI) on

precipitation is measured by a rank-based correlation

coefficient. Significant correlations exist only in the

lower reaches (see Fig. 6 and the monsoon paragraph

in section 2b), which become stronger in the future

ensemble, whereas correlations in ECHAM5 hardly

change. For the training period, ECHAM5 over-

estimates the correlation strength in the upper reaches.

a. Temperature and precipitation: Annual cycles
and profiles

The future temperature and precipitation climates

(2001–40) are compared with the training period (1961–

2000): First, the annual cycles averaged over the upper

and lower reaches are shown (Figs. 4a and 4b), with

annual cycles of Yangtze runoffs completing the water

cycle information (Fig. 4c). Second, the annual mean

profiles of temperature and precipitation following the

Yangtze (Figs. 5a and 5b) are analyzed.

1) ANNUAL CYCLES

The bootstrapped future annual temperature cycle av-

eraged over upper and lower Yangtze reaches (Fig. 4a)

shows warming in winter, spring, and autumn, while the

summer season experiences a moderate cooling. The

summer cooling is weaker in the upper reaches, where

the ensemble spread of the future summer temperature

(i.e., the range of all summer temperatures from the boot-

strap ensemble) shows an overlap with the training period.

The lower reaches show a stronger summer cooling. This

coincides with the projected 90% quantile of daily maxi-

mum temperatures in the lower Yangtze reaches (not

shown), which also decreases. This summer cooling has

already been observed at the end of the past century

(1971–2000; Wu et al. 2006).

The bootstrapped future annual precipitation cycle

(Fig. 4b) of upper and lower reaches precipitation shows

an increase in summer. This coincides with the projected

cooling from June to August. The summer monsoon sea-

son is extended to autumn in both upper and, even more

pronounced, lower reaches; in the upper reaches the pre-

monsoon rainfall also increases. The observed decrease of

the rainfall amount in spring and autumn (from 1971 to

2000), Wu et al. (2006) is not continued in the future en-

sembles. The differences between the training and the

future periods are stronger for the summer months (com-

pared to the winter months), and the strongest differences

occur in the lower reaches; if relative differences are con-

sidered, the upper reaches reveal the strongest increase in

late fall/winter, while the lower reaches show increases

mainly in late summer and autumn. This agrees with the

observation that rainfall variability is greater in summer

than in winter and that this difference is more pronounced

for the eastern parts of China (Domrös and Peng 1988).

The bootstrapped future annual runoff cycle (Fig. 4c)

corresponds to the one of precipitation: For example, in

the upper reaches April and May precipitation increases

in the future. This increase is also found in the spring

runoff of the upper reaches and, consequently, in the

spring runoff of the lower reaches. The lower reach

precipitation has its most pronounced rise in August and

TABLE 2. Annual means of (a) temperature (8C), (b) annual

precipitation (mm yr21), and (c) monsoon/precipitation correla-

tion: Upper and lower Yangtze reaches during training (1961–

2000) and future (2001–40) period based on observations, STAR

projections, and climate model simulations (ECHAM5). The re-

sults of the future period are given as entire-ensemble averages

and, in parentheses, as spread of the ensemble.

Period

Upper reach Lower reach

Obs/STAR EH5 Obs/STAR EH5

(a) Temperature

1961–2000 5.71 5.12 15.49 14.19

2001–40 6.87 6.07 16.30 14.75

(6.80 to 6.93) (16.24 to 16.35)

(b) Precipitation

1961–2000 698.46 1576.81 1198.52 1374.99

2001–40 767.56 1576.55 1307.70 1386.35

(747.21 to

796.95)

(1264.78 to

1346.89)

(c) Correlation monsoon/precipitation

1961–2000 20.01 20.08 20.09 20.05

2001–40 20.04 20.05 20.16 20.06

(20.07 to

20.01)

(20.19 to

20.14)
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FIG. 4. (top) Annual cycles (monthly means/sums) of (a) temperature, (b) precipitation, and (c) runoff (at

Cuntan and Datong) for the (left) upper and (right) lower reach of the Yangtze: annual cycles from the observed

station data 1961–2000 (full line); spread (light gray shading), interquartile range (dark gray shading), and

median (dashed black line) of the STAR ensemble projections (2001–40). (bottom) Differences of future

projections minus training period observations, shading and lines as in the top panels.
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September, thus increasing autumn and early winter

runoff in the lower reaches.

Comparing these observations and future projections to

climate model simulations, the following is noted: (i) The

future (2001–40) annual temperature cycle in ECHAM5

is not the same as in the STAR projections (not shown).

Although winter and spring experience a slightly stronger

warming than the rest of the year in the ECHAM5 data,

the summer cooling from the bootstrap ensemble is not

found. (ii) Analyzing East Asian summer monsoon under

climate change [for the twenty-first century, see Kripalani

et al. (2007)] reveals that many GCMs extend the summer

monsoon season into spring and autumn, together with an

overall increase of monsoon precipitation. The bootstrap

projections are in agreement with this finding. However,

neither the GCMs studied in Kripalani et al. (2007) nor

the ECHAM5 data used here show the asymmetry of the

extension toward the autumn months projected by STAR.

2) PROFILES

The profile of average temperature shows a clear de-

pendence on topography, decreasing with increasing el-

evation (see Fig. 5a). The future projections span a very

narrow band of warmer temperatures according to the

prescribed temperature trend. Temperature increase is

most pronounced for the upper reaches of the Yangtze

River basin.

The profile of annual precipitation also corresponds to

the inverted elevation profile (see Fig. 5b). The future

ensemble indicates higher annual mean precipitation,

with particularly pronounced increases in the lower reaches

where precipitation is also highest. Note that observations

(from 1971 to 2000, Wu et al. 2006) reveal a detectable

positive trend in precipitation for most of the Yangtze.

The only parts that show negative trends (although sta-

tistically not significant) are the source region and stripes

10–13. In these parts, STAR projects only very small

changes, whereas the other parts see a continuation of

the precipitation increases from the training period.

Also for annual precipitation, the range of the ensemble

is narrow, which hints at a robust projection. The 90%

quantile of daily precipitation increases in the future en-

semble, corresponding to episodes of higher precipitation

in the future (not shown).

As a note, we add that these future trends do not lead

to changing climate classes according to the Köppen

classification (Fraedrich et al. 2001, not shown).

b. Climate impacts and extremes

Central China and especially the Yangtze are regu-

larly affected by droughts and floods. Near the end of the

training period (1961–2000), several big flood events

occurred with devastating economic and human losses.

Typhoons also frequently affect the shore of the China

FIG. 5. (top) Annual mean (a) temperature and (b) precipitation along the Yangtze: profiles from the observed

station data 1961–2000 (solid black line); spread (light gray shading), interquartile range (dark grayshading), and

median (dashed black line) of the STAR ensemble projections (2001–40). Averages are taken on stripes perpen-

dicular to the two Yangtze River segments (see Fig. 3, upper and lower reaches are separated by a vertical line). The

stripes are numbered along the x axis. (bottom) Differences of future projections minus training period observations;

shades and lines as in the top panel.
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Sea. This section analyzes the future STAR projections

with respect to some climate phenomena that have im-

pacts on society, namely, heat and cold waves, droughts/

dryness, floods, monsoons, and typhoons.

1) HEAT WAVES, FROST, AND DRY SPELLS

Heat waves (average period lengths of consecutive

days with Tmax $ 258C) at the Yangtze estuary (stripes

20–27) increase from about 13.7 days (training) to 15.6

(ensemble mean, ensemble spread: 13.6–17.9 days), while

there is only little change in stripes 1–19 (not shown). On

the other hand, cold waves (average period lengths of

days with Tmin # 08C) decrease, in the averaged upper

reaches from 15.4 days (training) to 13.1 (ensemble mean,

ensemble spread: 12.5–14.1 days) and in the lower rea-

ches from 3.5 days (training) to 3.0 (ensemble mean,

ensemble spread: 2.7–3.2 days).

In STAR projections, persistence statistics can differ

from those of the training period. Here, ‘‘warm’’ blocks

are preferably selected for the prescribed warming, which

leads to increasing heat wave lengths and decreasing cold

wave lengths.

Dry spells (average period lengths of consecutive days

without precipitation) follow the elevation profile, with

lengths of more than six days in the Tibetan plateau and

less than four days in the eastern lower plains (see Fig. 6a).

Consistent with the increasing precipitation, averages of

the projected dry spells decrease (compared to present-

day climate) strongest in the upper reaches. The ensemble

spread of dry spells is also consistent with the ensemble

spread of precipitation (Fig. 5b) and the reduced proba-

bility of moderate-to-extreme standardized precipitation

index (SPI) dry states (see the next paragraph and Fig. 7b).

According to the future projections, dry spells become

less relevant in the Yangtze River catchment.

2) WETNESS AND DRYNESS

The SPI (McKee et al. 1993) is introduced to monitor

dryness and wetness using precipitation only. Based on an

‘‘equal probability transformation’’ (Bordi and Sutera

2001; Bordi et al. 2004), it gives a uniform measure for

dryness and wetness in climatically differing regions. The

monthly SPI chosen here is representative for the mete-

orological drought time scale. A gamma distribution is

fitted for the precipitation time series of a given calendar

month, its cumulation determined, and the SPI appointed

following the standard normal distribution by conserving

the cumulative probability. Dryness and wetness are then

classified as follows: moderate-to-severe wetness (dry-

ness): 1 # SPI , 2 (21 $ SPI . 22); extreme wet (dry)

conditions SPI $ 2 (SPI # 22).

Changes of wetness or dryness can be quantified in

SPI terms (Sienz et al. 2007) using the same distribution

for the present-day training period and the future en-

sembles. The overall increase in precipitation leads to

the following results:

(i) The number of moderate-to-extreme wet classes

(SPI $ 1) increases by about 7.5 percentage points

(Fig. 7a) in the lower reaches. Thus, about 35 (out of

40 yr 3 12 5 480 months) more wet months (from

moderate to extreme) are expected in the projected

future period compared to the training period. This

increase is even more pronounced in the upper

reaches. Especially, the extreme wet months occur

more frequently in the upper reaches (not shown).

In contrast, the 90% quantile of daily precipitation

(not shown) increases primarily in the lower reaches.

(ii) The number of moderate-to-extreme dry classes

(SPI # 21, Fig. 7b) decreases by about 3 percentage

points (corresponding to 14 dry months less), but the

extreme drought events (SPI # 22, not shown) hardly

change. Thus, the decrease in dry conditions is over-

balanced by a significantly larger number of wet events.

3) FLOODS

Ensembles of future daily runoff series are generated

by rearranging runoffs from the training period follow-

ing the STAR date-to-date-mappings. As an indicator for

floods, the 90% quantile is computed at the two gauges—

Cuntan and Datong—that are representative of the upper

and the lower reaches, respectively. For the upper reaches,

the future ensemble gives an unchanged 90% quantile:

observed training period average of 24 400 m3 s21, future

ensemble average of 24 038 m3 s21, and future ensemble

spread between 23 100 and 24 800 m3 s21. For the lower

reaches, a slight increase is noted: observed training pe-

riod average of 49 100 m3 s21, future ensemble average

of 51 538 m3 s21, and future ensemble spread between

49 700 and 54 300 m3 s21. The higher 90% quantile is in

agreement with the larger runoffs in the future period of

the lower reaches (Fig. 4c).

4) MONSOON

The Yangtze summer monsoon depends on the summer

easterlies emerging from the North Pacific (Wang et al.

2001) and thus on the shape and position of the North

Pacific subtropical high (Kripalani et al. 2007), which is

represented by WNPMI. The future monsoon index series

are obtained adopting the date-to-date-mapping. Table 3

summarizes the monsoon index analysis for the present

climate and its future projection.

(i) The annual averages hardly differ between training

observations and the future ensemble. However,

the future ensemble shows a strong decrease of the
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WNPMI in summer (JJA), thereby continuing the

negative trend observed during the training period

(derived from Wang et al. 2001). The mean summer

WNPMI in the ECHAM5 simulations remains

almost unchanged from the training to the future

period. The annual mean, however, decreases. Note

that for the training period, the positive annual

mean WNPMI of ECHAM5 contrasts the observed

negative one.

(ii) The variability, measured by the standard deviation

of the annual and the summer averages, decreases in

the future ensemble. This, however, might partly be

a model artifact since resampling procedures tend to

underestimate variabilities. ECHAM5 variability of

both the annual and the summer averages increases

from training to the future period.

To analyze the influence of the monsoon on precip-

itation along the Yangtze, a rank-based correlation

coefficient (Spearman’s r) between daily WNPMI

and daily rainfall, of which the long-term trend and

annual cycle are removed (see Cleveland et al. 1990),

is shown in Fig. 6b. It reveals a weak but significant

negative correlation at the Yangtze estuary. In the

upper reaches, the correlation vanishes. Apparently,

the distance from the sea and possibly the barrier of the

Tibetan Plateau reduces the influence of the monsoon

on precipitation. Despite the low absolute values of the

correlation, the decrease of the correlation strength

from the estuary to the Himalayas is systematic. The

future ensemble indicates a stronger negative corre-

lation, that is, a stronger monsoon control on Yangtze

precipitation for the future period.

The ECHAM5 simulations of training and future

period do not show this trend in the WNPMI/rainfall

correlation. The correlation contrast between upper

and lower reaches in the observations and the boot-

strap ensemble is not reproduced in the ECHAM5

data either, which may be a consequence of the over-

estimated upper reach precipitation (see Table 2).

5) TYPHOONS

The frequency of typhoon days in the East China Sea

(Fig. 3a) decreases by approximately 25% in the future

projections: in the observed training period there is an

average of 33.1 typhoon days yr21, in the future ensemble

an average of 25.3, and the ensemble range is between

21.8 and 30.4. This corresponds to a decrease of approx-

imately 3.3 typhoons yr21 for the future period since an

average typhoon lasts for about 2.4 days (in this area). For

the subset of typhoon days with landfall (see observa-

tional data, section 3), a decrease of about 35% is noted:

In the observed training period, there is an average of

5.3 typhoon days yr21 in the future ensemble an average

FIG. 6. (top) (a) Average dry spell lengths and (b) correlation between monsoon strength (WNPMI) and daily

precipitation along the Yangtze: profiles from the observation period (solid black line); spread (light gray shading),

interquartile range (dark gray shading), and median (dashed black line) of the STAR ensemble projections. The

dashed–dotted lines in the upper right panel indicate the 90% confidence interval for the null hypothesis (Spearman’s

r 5 0, serial correlation taken into account). (bottom) Differences of future projections minus training period

observations; shading and lines as in the top panel.
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of 3.4, and the ensemble range is between 2.7 and 4.4.

Note that a negative trend of the same order of magni-

tude is observed during the training period (Ho et al.

2004; Chan 2005; Webster et al. 2005), which continues in

the future ensemble. This is supported by some GCMs

(e.g., ECHAM5), which also simulate a decreasing future

typhoon activity in the northwest Pacific (Bengtsson et al.

2007), whereas others simulate unchanging typhoon oc-

currences (Stowasser et al. 2007).

Many GCM scenarios show more intense typhoons for

a future warmer climate (Bengtsson et al. 2007; Stowasser

et al. 2007), which is in agreement with an observed in-

tensification of typhoons in the past decades (Webster

et al. 2005). The bootstrap projections show this inten-

sification for the typhoons with landfall, but not for the

East China Sea in general (Figs. 8a and 8b): Frequencies

of all wind speeds decrease by a similar proportion in

Fig. 8a. For the landfall typhoons (Fig. 8b), however, the

frequencies of lower wind speeds decrease more than

the frequencies of higher speeds, which tend to increase.

This results in a higher proportion of intense typhoons.

5. Conclusions

A statistical analog resampling (STAR) is employed

to obtain future climate profiles along the course of the

Yangtze, which transects all of the major climate zones

of central China. A validation experiment confirms

the applicability of STAR for future Yangtze climate

projections. Based on the observed present-day climate

along the Yangtze (training period 1961–2000), an en-

semble of future climate projections from 2001 to 2040 is

generated, constrained by a linear temperature trend

that, in our case, is taken from a GCM scenario simu-

lation (ECHAM5). The future climate projections are

compared with ECHAM5 simulations for both training

and future periods. The following results are noted.

(i) Temperature shows a significant increase that is

especially noticeable in the upper reaches of the

Yangtze River and in the winter half-year. In summer,

the projected temperature is reduced. This summer

cooling may be related to enhanced precipitation.

TABLE 3. The monsoon index WNPMI of the training and the

future period in observations (Obs), STAR projections (ensemble

average and spread), and ECHAM5 simulations (m s21). (a) An-

nual means and summer (JJA) means and (b) the respective

standard deviations (std dev) are shown.

Period Obs/STAR EH5 Obs/STAR EH5

Annual mean JJA mean

1961–2000 21.71 1.04 4.49 8.99

2001–40 21.79 0.79 2.44 8.96

(22.04 to 21.43) (1.93 to 3.48)

Interannual std dev JJA std dev

1961–2000 0.82 0.95 1.85 2.54

2001–40 0.72 1.16 1.73 2.78

(0.43 to 0.90) (1.30 to 2.12)

FIG. 7. Changes of moderate-to-extreme (a) wetness and (b) dryness classes of the SPI given as differences (in

percentage points) of STAR future projections (2001–40) minus training period observations (1961–2000) along the

Yangtze River: spread (light gray shading), interquartile range (dark gray shading), and median (dashed black line)

of projected differences. The zero line corresponds to the probability of the training period SPI (16%).
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(ii) Precipitation increases in the future projections,

occurring particularly in summer and autumn; it

is notable along the entire Yangtze profile with a

more pronounced increase closer to the estuary.

This corresponds to the projected summer cooling,

which is physically plausible because of enhanced

evaporation. It is supported by an increase (de-

crease) of SPI wetness (dryness) and decreasing

lengths of dry spells. The overall precipitation in-

crease is partly due to an extension of the summer

monsoon, which especially in the lower reaches is

prolonged into autumn. For comparison, ECHAM5

precipitation shows hardly any change.

(iii) Monsoon: Summer (JJA) averages of the Western

North Pacific Monsoon Index (WNPMI) decrease

in the future projections. Furthermore, a stronger

negative correlation between the WNPMI and

precipitation in the lower reaches—that is, a

stronger monsoon control on the Yangtze basin

precipitation—is found in the future bootstrap en-

semble; ECHAM5 simulates an almost unchanging

WNPMI.

(iv) The annual runoff cycles of Yangtze stations follow

precipitation. The projected 90% quantile, which is

a measure for floods, increases slightly in the lower

reaches.

(v) Typhoon occurrence decreases by 25% in the future

projections, in agreement with several GCM studies.

Intensification of typhoons is found in GCM sce-

narios and in the ensemble of typhoons with landfall.

(vi) Many trends in the projections continue the trends

already present in the training period, which sup-

ports the plausibility of STAR.

(vii) Profiles along the Yangtze from observations and

projections are remarkably ‘‘parallel.’’ This is be-

cause, at every station, the projected future series

are assembled from observations at that very sta-

tion, thus taking all local characteristics like to-

pography into account. The spatial structure of the

climate is therefore highly detailed in the projec-

tions and is also meteorologically consistent. Ow-

ing to their coarse spatial resolution, GCMs cannot

provide this detailed representation of local condi-

tions. This accounts, for example, for the misrepre-

sentation of the annual precipitation contrast between

the upper and lower reaches of the Yangtze River

in ECHAM5, which overestimates the upper reach

precipitation. The missing WNPMI/precipitation cor-

relation contrast between upper and lower reaches

in the ECHAM5 simulations may be another con-

sequence.

The systematic errors in GCM simulations of regional

climates and their computational costs (compared to

STAR: the 100 3 40 yr projections analyzed in this paper

have been generated on a common personal computer in

FIG. 8. (a) Frequency distribution (typhoon days yr21) of typhoon intensity wind speed (m s21) in the East China

Sea and (b) frequency distribution of the typhoon days with landfall. (top) Distribution from the observation period

1961–2000 (solid black line); spread (light gray shading), interquartile range (dark gray shading), and median (dashed

black line) of the STAR ensemble projections (2001–40). (bottom) Relative differences of future projections minus

training period distribution.
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less than a day) recommend the application of statistical

analog resampling for future regional climate projections

as a complement to GCM simulations. Also, the possibility

to obtain large ensembles of future projections is a feature

reserved to statistical approaches, which allows uncer-

tainty to be evaluated on a stronger basis.

Station data becoming available from China (Xie et al.

2007; Xu et al. 2009) make future climate projections by

the statistical analog resampling feasible in this region.

Both further developments of STAR and future applica-

tions to other parts of China and Eurasia—and their

comparison to future RegCM simulations—are envisaged.
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