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Abstract Soil moisture variability is analysed in the re-
analysis data ERA-40 of the European Centre for Medium-
Range Weather Forecasts (ECMWF) which includes four
layers within 189 cm depth. Short-term correlations are
characterised by an e-folding time scale assuming an
exponential decay, whilst long-term memory is described
by power law decays with exponents determined by
detrended fluctuation analysis. On a global scale, the
short-term variability varies congruently with long-term
memory in the surface layer. Key climatic regions (Europe,
Amazon and Sahara) reveal that soil moisture time series
are non-stationary in arid regions and in deep layers within
the time horizon of ERA-40. The physical processes
leading to soil moisture variability are linear according to
an analysis of volatility (the absolute differences), which is
substantiated by surrogate data analysis preserving the
long-term memory.

1 Introduction

Soil moisture has a key role in the hydrological and the
energy cycles as well as the carbon cycle. The influence of
soil moisture on precipitation and surface temperature has
long been noticed and has been drawing renewed attention

in the recent years (e.g. Delworth and Manabe 1988; Hong
and Kalnay 2000; Koster and Suarez 2003; Conil et al.
2008). The memory of soil moisture is particularly important
to the seasonal prediction of precipitation, temperature and
other meteorological variables, and various modelling studies
(for example, see Dirmeyer 2000) have shown that there is
predictability based on anomalies in land surface moisture.
Delworth and Manabe (1988) pioneered the study of the
temporal variability of soil moisture in the Geophysical Fluid
Dynamics Laboratory (GFDL) general circulation model and
suggested that soil moisture variations can be considered as a
first-order Markov process. The autocorrelation function of
the process decays exponentially:

rðtÞ ¼ expð�ltÞ ð1Þ
where τ is the time lag and l−1 is the e-folding time of the
anomaly correlation in the absence of forcing. The e-folding
time is generally referred to as the temporal scale of soil
moisture at which the soil integrates precipitation into a red
soil moisture process. Here, time scales are considered for
which precipitation is uncorrelated and spectrally white. The
e-folding time was intensively studied from either observa-
tions (Entin et al. 2000) or atmosphere general circulation
models (Wu and Dickinson 2004) since soil moisture may
have the ability to enhance extreme climate events, such as
dry or wet spells in warm seasons.

Manabe and Delworth (1990) suggested that soil
moisture has the potential to contribute substantially to
low-frequency atmospheric variability, as approximately
half of the total variance of soil moisture process resides
beyond a long ‘separation time scale’ in a first-order
Markov model (defined as 2πl−1) implying a long-range
correlation. Little work has been done to address this issue
in more detail. Amenu et al. (2005) reported 17-, 34- and
60-month low-frequency modes in the Illinois soil moisture
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observations corresponding to El Niño southern oscillation
signals; this gave an observational support to longer-term
correlation beyond the classic e-folding time. Several
studies have revealed that geophysical variables exhibit
long-term correlations (equivalent to enhanced low-
frequency variability) (Mandelbrot and Wallis 1969), such
as runoff (Livina et al. 2003; Mudelsee 2007; Wang et al.
2008) and near surface temperature (Fraedrich and Blender
2003; Koscielny-Bunde et al. 1998). However, as the major
driver of hydrological cycle, precipitation is spectrally
white (Kantelhardt et al. 2006). Blender and Fraedrich
(2006) suggest soil moisture as the major source of memory
in the hydrological cycle over land. Observed long-term
correlations do not follow exponential decays but follow
power laws with exponents quantifying the strength of
these correlations. The long-term memory of soil moisture
may be relevant for the clustering of soil moisture
deficiencies (D’Andrea et al. 2006) and the occurrence of
heatwaves (Seneviratne et al. 2006).

Hasselmann (1976) introduced the concept of stochastic
climate modes and stated that climate variability in principle
can be modelled by autoregressive (AR) processes.
Mitchell (1964) also pointed out that ‘…persistence in
meteorological data can ordinarily be described very well
by a first-order linear Markov model’. Based on this
concept, Delworth and Manabe (1988) advanced the
e-folding time model of soil moisture memory. However,
many climatic variables behave non-linearly, e.g. temper-
ature (Bartos and Jánosi 2006), suggesting that linear
models cannot fully capture the statistical properties of
such processes. To fully characterise the statistical prop-
erties of soil moisture and for a better understanding of
the underlying dynamics, it is necessary to determine the
degree of non-linearity in soil moisture process time
series. Linearity may be defined using the Fourier phases
of the time series: if the statistical properties do not depend
on the Fourier phases (this is calculated by randomly
shuffling the phases), the time series is linear; otherwise,
the series is considered to be non-linear. This definition
includes linear AR processes that are used by Delworth and
Manabe (1988).

Ashkenazy et al. (2003) suggested a method to assess the
non-linearity in geophysical time series based on an
analysis of the volatility time series which is given by the
absolute values of the increments. The main observation is
that time series with long-term memory based on linear
processes are characterised by an absence of long-term
memory in the volatility time series, whereas for non-linear
processes, the long-term memory in the volatility is
preserved. Volatility correlation is found, for example, in
river fluxes (Livina et al. 2003) and land surface temper-
atures (Bartos and Jánosi 2006; Govindan et al. 2003).
Similar properties of temperature are detected on in proxy

records (Ashkenazy et al. 2003) and in the abyssal
equatorial Pacific (Kalisky et al. 2005). These studies
suggest considerable non-linearity and ‘clustering’ of
magnitudes in these geophysical variables; that is, a large
magnitude tends to follow a large magnitude whilst small
magnitudes follow small volatilities.

The aim of this paper is to determine the temporal
correlation properties of soil moisture on short and long
time scales and to find possible relationships between both
regimes. The degree of non-linearity is addressed by a long-
term memory analysis of the volatility time series. Since
global high-quality observations of soil moisture are
sparse in space and time, we use the European Centre for
Medium-Range Weather Forecasts (ECMWF) re-analysis
product ERA-40 in 1957 to 2002. This paper is organised as
follows: in Section 2, the dataset and the analysis methods
are described. In Section 3, global results on the short-
term and long-term memory properties are presented and
Section 4 includes a non-linearity analysis based on the
volatility correlation properties. Section 5 concludes with
a brief summary and discussion.

2 Data and methods

The variability analysis of soil moisture is based on global
daily fields in the ECMWF re-analysis product ERA-40. To
determine the short-term and long-term variability correla-
tions (which are related to memory), we use the detrended
fluctuation analysis (DFA). Non-linearity of the underlying
processes is determined by an analysis of the volatility of
the soil moisture time series.

2.1 ERA-40 re-analysis data

We use land surface soil moisture data in the ERA-40 global re-
analysis, produced by the ECMWF (Uppala et al. 2005). The
land surface parameterisation of ERA-40 (van den Hurk et al.
2000) models the soil–atmosphere and soil–vegetation inter-
actions and delivers a daily surface water and energy balance
at each grid cell on four prognostic layers for soil moisture
with layer thicknesses of 7, 21, 72 and 189 cm during the
entire period of 1957 to 2002. Both daily data and monthly
averages are used in this study. The seasonal cycle is removed
at each grid point by subtracting the respective monthly and
daily climatological means. Trends are not removed.

2.2 Detrended fluctuation analysis and power spectra

The DFA (Peng et al. 1994) is a spectral method developed
to detect long-term memory in stationary time series. First,
the anomaly time series are determined by removing the
climatological means from the original time series. As the
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first step of DFA, the anomaly series are integrated to the
so-called profile. To determine the fluctuation function
F(τ), the profile time series is partitioned into segments of
duration τ, and linear fits are calculated separately for each
segment. The fluctuation function F(τ) is the mean of the
variances of the profile with respect to fits at the time scale
τ. To obtain robust estimates, overlapping windows are
used. When the original time series shows a polynomial
trend of order k−1, polynomials of order k are fitted and
subtracted in the segments (denoted as DFAk, note that the
above-mentioned DFA does not eliminate trends, Bunde et
al. 2000). In this work, DFA is determined using the
software matlab. Both DFA1 and DFA2 are performed in
this work, and only the DFA1 results are reported since
DFA2 produces the same results.

In the case of the power law in the power spectrum,
S(f)∼ f−β, the fluctuation function F(τ) obeys a power law,
F(τ)∼τα, where α is the DFA exponent. This exponent α
can be determined by the slope relating log F(τ) to log τ.
The exponents are related by β=2α−1. A long-term
memory process is characterised by fluctuation exponents
α>0.5 (β>0, for low frequencies). An uncorrelated
process (white noise) is given for α=0.5 (β=0), and an
anti-persistent process has α<0.5 (β<0). Specifically, α=
1.5 (β=2) corresponds to Brownian noise, which can be
regarded as the integration of white noise. Stationarity is
violated for α>1 (β>1), the threshold being given by 1/f
(or flicker) noise.

2.3 Volatility analysis and non-linearity

An empirical relationship between non-linearity and vola-
tility series was suggested by Ashkenazy et al. (2001).

For a given a time series u(i) with increments Δu(i)=
u(i+1)−u(i), the volatility series is defined as the absolute
value of increments vol(i)=|Δu(i)|. It was found that long-
range correlated linear series have uncorrelated volatility
series, whilst long-range correlated non-linear series have
correlated volatility series. The detection of non-linearity
in time series is rather involved and requires long time
series.

3 Temporal variability in soil moisture layers

The e-folding time is used to estimate the memory time
scale of soil moisture assuming an exponential decay of the
autocorrelation function of the time series. Using Eq. 1, we
use the 1-month lag autocorrelation values r=0.8, 0.6, 0.4
and 0.2 to determine the e-folding times l−1 of 4.5, 2.0, 1.1
and 0.6 months, respectively. The 1-month lag autocorre-
lation of global soil moisture for the top surface layer (7 cm
depth) in ERA-40 data is shown in Fig. 1. This result is
based on monthly anomalies at each gird cell which are
calculated by removing the monthly climatological mean in
the monthly time series. The substantial spatial variability
of the e-folding times in the top surface layer is consistent
with previous studies (e.g. Delworth and Manabe 1988; Wu
and Dickinson 2004). We find short values of the e-folding
times in the Tropics and an increase with latitude as well as
relatively higher values in arid and broadleaf forest regions.
The processes involved in the dynamics of soil moisture
(mainly precipitation, evapotranspiration and runoff) con-
tribute to the variability, but the precise mechanisms are
model-dependent and still not clearly understood (Delworth
and Manabe 1988; Wu and Dickinson 2004).
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To examine the fluctuation regimes, three regions are
selected for the DFA: a mid-latitude region in Europe
marked as region I with an e-folding time of 2–3 months,
an evergreen broadleaf forest region marked as region II
and an arid region marked as region III, both with an e-
folding time of approximately 1 year. These three regions
represent different types of fluctuations in global soil
moisture. In these analyses, daily soil moisture data are
used. First, the daily values are averaged in each of the four
layers for the whole re-analysis period in each selected
region (this yields 12 time series in total). The DFA is
performed to the anomalies obtained by removing the
climatology means from daily soil moisture time series. The
DFA in the three regions I, II and III shows the following
results:

Region I (Europe) A strong seasonality is present in the top
three layers, whilst it is weak in the bottom layer (not
shown). The DFA fluctuation functions show two distinct
power law regimes (Fig. 2, I) with a crossover around
3 months. The regimes corresponding to the power spectra,
S(f)∼ f−β, based on the relationship β=2α−1 between the
spectral exponent β and the fluctuation exponent α. In the
first regime, the DFA fluctuation exponents in 1–90 days
increase according to α≈1.42, 1.54, 1.70 and 1.82 from
surface to bottom layer. Thus, in the two upper layers, the
first regime (for shorter time) shows β≈2, which is
consistent with the e-folding time scale obtained within
the Markovian framework. The exact value β=2 is found in
the high-frequency limit of the Lorentzian power spectrum
S(f)∼1/(l2+f2) which is obtained for an exponential decay,
exp(−lτ), of the autocorrelation function. In the deepest
layer, α≈1.8 is found, which is related to β≈2.6; such
‘redder’ spectra have been found in previous studies (Wu
and Dickinson 2004). The increase of α and β captures ‘the
redder spectra in deeper layers’ related to an increasing
memory. In the second regime, beyond 3 months, the
exponents of the fluctuation functions of the four layers
converge to the same value α≈0.8 (β≈0.6). At such long
time scales, the exchange between the soil layers is
complete and the variability is coherent. Note that values
0<β<1 indicate stationary long-term memory time series.

Region II (Amazon) This broadleaf forest region shows
intense seasonality of soil moisture in all layers. The
crossover time scale is higher than in region I (Europe)
and reaches roughly 1 year (Fig. 2, II). Below 1 year, the
fluctuation function exponent α, in 1–300 days, increase
with depth, α=1.20, 1.26, 1.42 and 1.65 from top to
bottom. Hence, the power spectra S(f)∼ f−β scale with the
exponents β=1.4, 1.52, 1.84 and 2.3 and the increase of
the memory with depth is similar to Europe. However, the
short-term memory is slightly weaker in this region than in

Europe. In the long-term regime above 1 year, α
converges to α=1.28 (β=1.56). This value indicates non-
stationarity of the anomaly time series up to the maximum
time scale given by the duration of the ERA-40 data.
Therefore, averages determined in this data should be
considered carefully; for climatological means, longer
time periods are necessary.
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Fig. 2 Log–log plots of DFA fluctuation functions F(τ)∼τα from
daily soil moisture anomalies in the three regions (I Europe, II
Amazon and III Sahara) and the four layers from top to bottom [7 cm
(filled circles), 21 cm (x), 72 cm (open diamonds) and 189 cm (open
circles)]. Crossover time scales are indicated by a vertical bar. The
exponent α for short time scales is indicated (determined in 1–90 days
in I and in 1–300 days in II and III)
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Region III (Sahara) In this region, seasonality is present
only in the top two layers, and throughout the year, the top
layer is wetter than the second layer. Besides the rare
rainfall events, evaporation is the dominant process in the
dynamics of soil moisture. Due to the small amounts
involved and due to subsequent fast evaporation, rapidly
varying precipitation does not reach the deeper layers. The
crossover times extend up to 1 year in the top two layers
(Fig. 2, III), beyond which DFA fluctuations converge to
α=1.54 (β=2.08) determined in 1–300 days. The two
bottom layers, which are not impacted by the high-
frequency components of the precipitation variability,
show a unique variability for all time scales, with the
same exponent, which is the limit of the two top layers for
large time scales. Thus, all spectra are red (β=2) in the
whole frequency range accessible in the data set. The non-
stationarity involved is even more vigorous than in the
Amazon region.

A global view of the inter-annual long-term memory is
determined for the top 7-cm layer by a fit of the fluctuation
exponent α in the time interval of 2–10 years (Fig. 3). Since
all of the four layers at each location have identical long-
term correlation properties (see Fig. 2), this map shows the
long-term memory of the total soil moisture content. The
similar spatial structure of the autocorrelation coefficients
in Fig. 1 and the fluctuation exponents in Fig. 3 suggests a
relationship between the short-range and the long-range
correlations. Such a relationship is also found in the land
surface temperature anomalies (Kiraly et al. 2006). The
physical mechanisms leading to this interdependence need
to be further clarified, possibly by simulations with coupled
land–atmosphere climate models.

4 Volatility correlations

Non-linear geophysical processes can lead to a clustering of
volatility which appears mainly as seasonality and long-
range correlations (see Section 2.3). To determine the
degree of non-linearity involved in the dynamics of soil
moisture, a long-term memory analysis is applied to the
volatility time series vol(i)=|u(i+1)−u(i)| (Ashkenazy et al.
2001). In the volatility time series, the seasonal cycle is
removed. The main observation is that time series with
long-term memory based on linear processes are charac-
terised by an absence of long-term memory in the volatility
time series, whereas for non-linear processes, the long-term
memory in the volatility is preserved. The numerical
differentiation used to produce volatility series is known
to strongly enhance the noise level inherent in the data
(Bartos and Jánosi 2006), and the typical volatility of
fluctuations around local trends is extremely small, espe-
cially in arid regions, leading to noisy results.

In order to substantiate the analysis, we apply a further
test which is based on surrogate data for the soil moisture
time series where the non-linearity is destroyed whilst other
statistical properties are preserved. To produce such
surrogate data, Schreiber and Schmitz (2000) suggest the
iterative amplitude-adjusted Fourier transform (iAAFT)
method which preserves both the power spectrum and
probability distribution of the series. The method proceeds
as follows: (1) first, the sequence of the original time series
is shuffled, (2) the shuffled series is Fourier-transformed,
(3) the power spectrum is adjusted to the power spectrum of
the original series and (4) the inverse transform is applied to
adjust the histogram to the histogram of the original series.
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Steps (2)–(4) are repeated until the result converges. This
surrogate series has random Fourier phases and the non-
linearities stored in the phases are destroyed. By means
of comparing the correlation properties of volatility series
obtained from the original increment soil moisture series
and the surrogate series, we can conclude whether the
correlation in the volatility series is an indication of
non-linearity.

Before we perform a global analysis, we consider the
volatility anomalies series in the first two regions, Europe
and Amazon (marked as I and II in Fig. 1). The long-term
memory is determined by DFA (see Fig. 4). The results of
the analysis of the surrogate data and the volatility reveal
that (see Table 1):

1. the soil moisture time series show long-term mem-
ory (α=0.8 in Europe, α=1.28 in the Amazon
region),

2. the surrogate data (with non-linearities eliminated)
show the same long-term memory (this confirms the
application of the iAAFT-method; Schreiber and
Schmitz 2000),

3. the volatility time series of soil moisture and of the
surrogate time series show no long-term memory
(α=0.5).

The global distribution of the fluctuation exponent
reveals no clear spatial pattern (not shown); therefore, we
present scatter plots of the fluctuation exponent α obtained
in the data grid points (Fig. 5). This figure confirms that the
surrogate data has the same long-term memory as the soil
moisture time series (see αoriginal vs. αsurro) with a wide
distribution ranging from 0.3 to 1.8. The long-term memory
is lost in the transformation to the volatility time series
(αoriginal vs. αvol) leading to the conclusion of linearity. The
exponents of the volatility time series, αvol vs. αsurro_vol,
show a narrow distribution in α=0.4 to 0.6 centred at 0.5.
Therefore, we conclude that the soil moisture time series is
based on a linear physical process; the long-term memory is
the same as in the linear surrogate data.
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Table 1 The decision process for the assessment of non-linearity in
long-term memory (LTM) data by volatility analysis and the
comparison with linear surrogate data (the result in the present
analysis is italicised)

LTM data Observations non-linear? Surrogate data linearised

Volatility LTM No LTM LTM No LTM

Result Non-linear Linear – Linear
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Since the link between non-linearity of the time series
and the long-range volatility correlation is empirical
(Ashkenazy et al. 2001), Kalisky et al. (2005) studied
theoretical predictions of the relationship between the
correlation exponent of a time series and its volatility. For
a linear process obeying a power law, up to the value α=
0.75, the volatility exponent is practically constant αvol=0.5
and then changes to an approximately linear increase.
Unfortunately, this result is not confirmed in our analysis
(see αoriginal vs. αvol, for αoriginal>0.75 in Fig. 5).

5 Summary and discussion

Soil moisture is an important agent in land–atmosphere
interactions since it couples rapid precipitation fluctuations
to storage with memory of the order of month to years. The
memory time scale of soil moisture is widely characterised
by an e-folding time within a Markovian framework. We
study the power law fluctuations of soil moisture and find
that there are two regimes, with either short-range or long-
range correlations. The short-range correlation is equivalent
to an e-folding time that is considered as the time scale at
which soil moisture is integrated from uncorrelated precip-
itation. Beyond this time scale, the long-range correlations
of soil moisture may contribute to low-frequency climate
variability. Within the short-range correlation regime, deep
layers show a red spectrum, whilst within the long-range
correlation regime, soil moisture shows an identical
spectrum at different layers. There is a clear correspondence
between the e-folding time and long-range correlations
modified by local conditions. Whereas the e-folding time is
easily interpreted by a simple first-order autoregressive
process, a simple model and the interpretation of the long-
term power law correlations are less clear and may originate
in the complex interactions within the hydrological cycle
(Blender and Fraedrich 2006). In very dry and very wet as
well as highly elevated regions, the fluctuation exponent for
large inter-annual time scales is α>1; this shows the non-
stationarity of soil moisture process at very large time scale
and hampers the prediction by traditional statistics.

The volatility correlation of soil moisture, which is
considered as an empirical indicator for non-linearity,
reveals that soil moisture exhibits a white volatility spec-
trum. This suggests that the underlying processes of soil
moisture in ERA-40 are linear and that the statistical
properties of soil moisture may be well-approximated by
linear models such as the Markovian model used by
Delworth and Manabe (1988). This conclusion is substan-
tiated by a surrogate data test. Further work is needed to
clarify the physical processes and whether this corresponds
to real linearity or it is in fact an artefact of the model used
in the re-analysis.

The linearity found in the soil moisture time series does
not necessarily imply a conflict with the expected ‘non-
linear’ interactions between soil moisture and other land
surface water budget components, since the latter falls into
a different definition of non-linearity with respect to the
dynamical equation (for a review on the definition of non-
linearity, see Ashkenazy et al. 2003), and actually, there is
no proven evidence between the non-linearity found in the
data and the non-linearity in the governing dynamical
equations (e.g. Hsieh 2001).
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