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Continuum temperature variability represents the response of the Earth’s climate to
deterministic external forcing. Scaling regimes are observed which range from hours to

millennia with low frequency fluctuations characterizing long-term memory. The presence
of 1/f power spectra in weather and climate is noteworthy: (i) In the tropical atmosphere
1/f scaling ranging from hours to weeks is found for several variables; it emerges as su-
perposition of uncorrelated pulses with individual 1/f spectra. (ii) The daily discharge of
the Yangtze shows 1/f within one week to one year, although the precipitation spectrum
is white. (iii) Beyond one year mid-latitude sea surface temperatures reveal 1/f scaling
in large parts of the global ocean. The spectra can be simulated by complex atmosphere-
ocean general circulation models and understood as a two layer heat diffusion process
forced by an uncorrelated stochastic atmospheric. Long-term memory on time scales up
to millennia are the global sea surface temperatures and the Greenland ice core records
(GISP2, GRIP) with δ18O temperature proxy data during the Holocene. Complex at-
mosphere ocean general circulation models reproduce this behavior quantitatively up to
millennia without solar variability, interacting land-ice and vegetation components.

Keywords: Climate variability; long-term memory, 1/f-noise, detrended fluctuation anal-
ysis.

1. Introduction

In the mid 1970s, Brownian motion has entered climate research as a paradigm

for the Earth’s climate fluctuations. Based on Kutzbach and Bryson’s1 observa-

tion that, in the Holocene, temperature variance density increases with decreasing
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atmosphere-ocean general circulation models (AO-GCM).  

Fig. 1. Sketch of global climate variability (after Ref. 3 and 4). The dashed line indicates long-
term memory scaling with β ≈ 0.3 up to centennial time scales.

frequency (Fig. 1), Hasselmann2 introduced the Brownian motion analog for the

climate system response on white noise atmospheric forcing. This Brownian motion

paradigm implies a Lorentzian variance spectrum whose density or power spectrum

S(f) ∼ f−β increases with β = 2 power law and reaches a white noise plateau,

β = 0, at lower frequencies. Although this does not confirm with the Kutzbach and

Bryson analysis, such simple concepts have stimulated an intensive red noise search

in observed data and simulations of comprehensive coupled atmosphere-ocean gen-

eral circulation models (AO-GCM).

At the same time, observations and modeling of flicker noise or other power-law

scaling regimes emerged5,6 with concepts as close to the climate system’s energy

balance as the Brownian analog. Since then power-law power spectra different from

Brownian motion have been identified in observed records and model simulations

of the climate system. For example, the near surface temperature7,8 shows low-

frequency behavior, which does not, up to very long periods, asymptote towards a

white plateau. Huybers and Curry9 demonstrate that climate variability exists at all

timescales with climate processes being intimately coupled; that is, understanding

variability at any one timescale requires some understanding of the whole. Here,

the power-law relationships of surface temperature variability scale with annual

and Milankovitch cycles (23 k and 41 k years, see Fig. 1).

The temporal variability of dynamical systems like weather or climate is con-

veniently characterized by its memory. Short-term memory shows a finite integral

correlation time-scale which is related to exponentially decaying auto-correlation

between initial and future states. Long-term memory is characterized by an infi-
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nite integral time-scale and has a non-integrable autocorrelation function.10 Most

of the studies are guided by self-affine scaling laws governing the dynamics of a

non-linear system,11 the associated long-range memory or correlation aspect has

been considered for observed temperatures12 and simple GCM simulations.13 In

these studies, the variance spectrum analysis has been determined by detrended

fluctuation analysis14 (DFA). These analyses suggest that the near surface tem-

perature fluctuations are governed by scaling behavior showing long-term memory

correlations up to at least thirty years. More recently, links between power law

scaling of long-term correlations and the statistics of extremes has been formally

established.15,16,17,18

A focus of research during the last years was (i) detection of long-term memory

in compartments of the global climate system, (ii) its reproducibility by simple

and complex models and (iii) its impact on the behavior of trends and extremes.

There are three aims underlying this presentation: First, the fluctuation analysis

of observed data is extended to all areas where sufficient data has been measured,

to detect the geographical distribution of the scaling-law and its dependence on

the climate compartment atmosphere, ocean, land and ice (Sec. 2). The second

aim addresses the capability of AO-GCMs to reproduce the observed scaling and

memory utilizing a 1000 year simulation in a constant greenhouse gas environment.

To identify the limit of the memory, scaling of Greenland ice core records (for the

Holocene) and temperature fluctuations from ultra-long control simulations of the

present day climate are compared (Sec. 2.3). The third aim is to provide a simple

explanation for the physics underlying the long-term spectral behavior caused by

the complex global oceanic circulation (Sec. 2.4). In Sec. 3 aspects of the long-term

memory in the hydrological cycle are considered and Sec. 4 presents a Summary

and Conclusion. The observational data sets, climate models, and the detrended

fluctuation analysis (DFA) are described in the Appendix.

2. Temperature Variability on Various Time Scales: Air, Land,

Ocean, and Ice

Time variability is conveniently represented by a power spectrum. If the spectrum

follows a power law scaling for low frequencies, S(f) ∼ f−β, long-term memory can

be inferred in the exponent range 0 < β < 1. Flicker or 1/f -noise5 (β = 1) defines

the limit for stationarity of stochastic processes; it is associated with intermittency

and self-organized criticality. The long-term memory is determined by detrended

fluctuation analysis (DFA) which yields β = 2α−1 for scaling fluctuation functions,

F (τ) ∼ τα, with the fluctuation exponent α (see Appendix). In this section we

review work on the variability on instrumental and simulated surface temperature

data in wide ranges of time scales from hours to millennia.

2.1. Atmospheric variability in the tropics: 1/f-noise and pulses

Data analysis in the tropical atmosphere shows that, on short time scales, tropical

surface conditions may be viewed as alternating between a more quiet or passive
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phase of a cloud-topped fair weather boundary layer and pulse-like shallow and deep

convective events (with drying and cooling of the boundary layer due to down-

draughts) embedded in the passive phase. Thus the surface variables need to be

analysed in two steps to determine scaling behavior for boundary layer and free

atmosphere observables: For the original time series, for time series composed of

convective pulses of different duration extracted by wavelets analysis. The data

are taken from a 4-month observational period over the tropical Pacific19 (Tropical

Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment,

TOGA-COARE). Power spectra of surface variables reveal a 1/f -spectrum slope

from the 1-hour (minimum period between 0.5 to 5 hours) to the intra-seasonal

(30 to 60 day) time scale. This also holds for the free-atmosphere CAPE (Convec-

tive Available Potential Energy) which spans the 1–30 day range20,21 (see also the

summarizing Fig. 8).

A concept of continuum 1/f variability is gained by a decomposition of the

time series into individual pulses. The pulse-like events show no lag-correlation

between their recurrence times, that is, individual pulses occur as a Poisson process.

This excludes a 1/f -model, which requires intervals between successive events to

be highly correlated. Instead, by lack of correlation, we conclude that the total

spectrum (of extracted pulse-like events) can be reproduced by a sum of spectra

of individual pulse-like events, which form 1/f -spectra for ranges exceeding their

durations, like cumulus convection with downdraughts, westerly wind bursts of the

Madden-Julian (or 30–60 day) oscillation, and possibly ENSO (El Nino-Southern

Oscillation).

This scaling behavior poses a challenge to the convective quasi-equilibrium hy-

pothesis, which postulates that cumulus convection responses to large scale forcing

in much shorter time than the latter so that convection is almost in equilibrium with

the large scale dynamics. If this hypothesis is indeed physically valid, such a short

response time must be observationally detectable. This scaling range extends from

one hour to beyond ten days for convective and, up to several years, for surface

wind stress. This alternative view of convective processes is part of a continuum

climate variability extending to longer time scales (decades to millennia) demon-

strated in the following subsections by the sea surface temperature (SST) and the

ocean circulation variability in the North Atlantic22 and Greenland ice cores.23

2.2. Decadal atmosphere-ocean variability: Temperature scaling in

observations and climate models

Power-law scaling of near surface air temperature fluctuations and its geographical

distribution is analyzed in 100 years instrumental observations and in a 1000 year

simulation of the present-day climate with a complex coupled atmosphere-ocean

general circulation model22 (AO-GCM).

First, the observed fluctuation functions are presented at two locations in Central

Asia and North Atlantic. The central Asian station [Krasnojarsk, Fig. 2(a)] shows
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shows flicker noise only up to 1-5 years.  

Fig. 2. (Color on line) Temperature fluctuations: in (a) central Asia (90E, 50N) and (b) in the
North Atlantic (30W, 50N), calculated for the station Krasnojarsk (93E, 52N), and corresponding
regions in the observed grid data set, (Obs), ECHAM4/HOPE and ECHAM4/ML simulations.
DFA-1 is used if not indicated otherwise. The exponents are in (a) α = 0.5 (β = 0, solid, white
noise), α = 0.65 (β = 0.3, dashed, transition region) and in (b) α = 0.9 (β = 0.8, solid, flicker
noise), α = 0.65 (β = 0.3, dashed, transition).

a white power-law (α = 0.5, β = 0) ranging from one year to decades and the

interpolated grid data24 (CRU) agrees with this in DFA-1 and DFA-2. In the North

Atlantic [Fig. 2(b)] the observed grid data shows flicker noise in DFA-1 and DFA-2.

The AO-GCM simulation with the complex ocean model (HOPE) reveal a slightly

smaller value which, however, extends to longer time scales. The simulation with

the simplified mixed layer ocean (ML) shows flicker noise only up to 1–5 years.

The global distribution of temperature fluctuation exponents α (determined by

DFA) is derived from the observed monthly near surface temperatures over land and

ocean. Inner continental areas in North America and central Asia [Fig. 3(a)] show

almost white noise whereas parts of the northern and tropical Atlantic, eastern

North-Pacific, and of the Indian Ocean reveal a distinct increase towards flicker

noise. Notable is the general tendency of a power law increase from land to sea. In

the transition regions, that is, coastal areas and land under maritime influence, the

power-law corresponds to α = 0.65 (β = 0.3) found in Ref. 12, as anticipated in the

climate variability sketch in Fig. 1.

A 1000 year AO-GCM simulation (ECHAM4/HOPE) in a present-day constant

greenhouse gas environment [Fig. 3(b)] agrees closely with the observations. Only

in the Indian Ocean and in south-east Asia smaller memory is simulated compared

to the observations. The eastern tropical Pacific inhibits power-law scaling within

the 1–15 years range due to almost periodic El Nino/Southern Oscillation phe-

nomenon with time scales of 3–7 years. The variability of the power-law exponent

α is estimated splitting the 1000 year simulated data in ten non-overlapping 100

year intervals and estimating the exponents in the 1–15 years range. The standard

deviation is < 0.05 in most regions.
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Fig. 3. (Color on line) Fluctuation exponents α: (a) Observed sea surface and near surface air
temperatures over land estimated by DFA-2 in 1–15 years. The analysis is restricted to grid points
with at least 90% data after 1900. (b) 1000 year coupled atmosphere ocean simulation estimated
in 1–15 years (< 0.6 white, 0.6–0.7 blue, > 0.7 green).

On centennial time scales (15 to 150 years) fluctuation exponents are slightly

reduced except for the North Pacific, where the 1/f -spectrum vanishes completely,

and for the North Atlantic and the Southern Ocean, where the 1/f -spectra remain

unaffected. The regions of zero memory expand across the tropical belt and the

transition areas (α = 0.6 to 0.7, β = 0.2 to 0.4) follow these changes.

Simulations with a mixed layer (ML) model up to 5 years reproduce the main

quantitative characteristics of the simulation with a dynamic ocean model (HOPE).

However, in 15–150 years, memory in the simulation with the complex ocean fades

away approaching white noise. The simulation with prescribed climatological sea

surface temperature shows no long-term memory at all. Obviously, the power-law

observed in the decadal range can be reproduced by an atmosphere coupled with a

ML model, whereas the centennial memory requires a dynamic ocean model.

The spectral variability of the meridional overturning circulation (MOC) in the

Atlantic Ocean reveals no consistent result in two coupled AO-GCMs25 (GFDL and

ECHAM5/MPIOM). In the inter-annual to decadal frequency range, the spectra

are dominated by scaling, S(f) ∼ f−β, with nontrivial exponents, mostly β ≈ 1, in

agreement with 1/f or flicker noise. For the lowest frequencies, some spectra show

stationary long-term memory, while others reveal spectra increasing with frequency.

None of the spectra can be considered uniquely as red noise explained by an ocean

integrating a white stochastic atmospheric forcing.

These results show that the simulation with constant atmospheric greenhouse

gas concentration reproduces the observed long time memory. Due to the huge

temperature increase of the order of 5 K during the next century in a warmer

climate it is possible that the long-term memory characteristics change. In two

scenario simulations with increasing greenhouse gas concentrations climate models

reveal the same global long-term memory structure as in the present-day climate.26

However, care is needed in the comparison of long-term memory analysis of low

resolution gridded model output and station data since slight deviations in the

locations may lead to wrong conclusions.
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2.3. Millennial variability: Ice cores and ultra-long AO-GCM

simulation

To identify the limit of the memory, an ultra-long control simulation of a coupled

AO-GCM (CSIRO, 10 k years, reduced by a spin-up time) is analyzed and compared

with Greenland ice cores (GRIP, GISP2) during the Holocene.23 The 10,000 year

simulation is performed under present-day conditions. Up to 1000 years DFA-scaling

leads to a spectral exponent β = 0.5 in ice-free sea surface temperature south of

Greenland consistent with the ice core temperature proxy data. The δ18O ice core

records and the sea surface temperatures at nearby model grid points show similar

long-term memory up to 1000 years. Beyond that time scale the climate memory

appears to fade. It is noteworthy that this long-term memory is simulated without

time-dependent external forcings.

The long-term memory (LTM) of the surface temperature is coupled to the

intense low frequency variability of the Atlantic MOC (Fig. 4). In the Pacific and

the Antarctic Ocean LTM is not simulated, the latter result is in agreement with

Antarctic ice core proxy data during the Holocene.

Extending the spectral continuity beyond millennia into the ultra-low frequency

domain is one aim of future research, in particular, its conceptual and numerical

modeling including continental ice sheet dynamics.

2.4. Mechanism of 1/f-noise: Diffusive ocean energy balance

model

The 1/f -spectrum of the ocean surface temperature in the Atlantic and Pacific

mid-latitudes is explained by a vertical diffusion energy balance model consisting of

Fig. 4. (Color on line) Fluctuation exponent α of the zonally averaged stream-function (repre-

sentative for the MOC) in an Atlantic cross section during 100–1000 years (blue: α = 0.6–0.7,
β = 0.2–0.4; green: α > 0.7, β > 0.4).
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Fig. 5. Two-layer diffusion model: (a) Shallow mixed and deep ocean layer (depths h1, h2 and
diffusion coefficients K1, K2) forced by a heat flux F0 at the air-sea interface with determinis-
tic (conductivity g) and stochastic contributions. (b) Sketch of response spectra. The (angular)
frequency band ω2 > ω3 opens a 1/f-scaling regime.

a shallow mixed layer on top of a deep ocean forced by stochastic surface fluxes.27

A 1000 year climate simulation is employed for testing: Given its total surface heat

flux forcing at the air-sea interface, the impact of horizontal surface advection and

the internal thermal diffusivities can be estimated.

The spectra of the observed and simulated temperature variability of the large

ocean basins may be explained by a simple two-layer vertical diffusion model of

temperature anomalies in a shallow mixed layer on top of a deep ocean character-

ized with (not necessarily) different diffusion coefficients [Fig. 5(a)]. Typical values

are for the mixed layer and deep ocean depths, h1 = 50 m, h2 = 1000 m, and

the respective diffusivities, K1 = 10−3 m2 s−1, K2 = 10−5 m2 s−1 (Ref. 28). The

surface heat flux drives the fluctuations by a linear plus random contribution,29

F0 = gT0 − ζ; conductance g ∼ 10−6 ms−1 and residual noise are determined by

regression analysis from the millennium simulation. At the layer-interface tempera-

ture and fluxes are continuous; at the bottom, the anomalous heat flux vanishes. The

response —R—2 is schematically presented in Fig. 5(b): A 1/f -regime emerges in

the frequency range, ω2 ∼ K2/h2

1
and ω3 ∼ g2/K2, with larger (smaller) frequencies

following a Lorentzian (white) scaling.6 In this interval, the 1/f -spectral band opens

as a distinct scaling region. Long-term correlations in the mixed layer commence

beyond its diffusive time scale, h2
1/K1, when it is fully affected by the deep ocean

diffusive flux with time scale h2
1/K2. They decay at time scales beyond K2/g2, when

a mixed layer temperature change due to the surface heat flux exceeds deep ocean

diffusive flux. The other frequencies are ω0 ∼ g/h1, ω00 ∼ g/(h1 +h2), ω1 ∼ K2/h2

2.

Representative comparison with measurements is obscured by the relatively short

observational period, so that a millennium simulation is used to provide a consistent

data set, which yields the surface conductance g by regression, the power spectra

of the mean mixed layer temperature S and of the residual heat flux S∗. This leads

to a consistent verification of the mixed layer response |R|2 = g2S/S∗, which is

demonstrated for regions in the ocean basins. This concept is in line with the issue
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that the general circulation of the oceans and its meridional overturning is linked

with small scale mixing processes, instead of being a heat engine.30

3. The Hydrological Cycle: Rain, Rivers, and Moisture

The long-term memory of the surface temperature and runoff is outstanding since

other prominent key variables like pressure and precipitation31 indicate much less

memory. Long-term memory analysis of the components of the hydrological cycle in

East Asia in a high resolution GCM simulation reveals specific differences between

the variables that describe processes (precipitation, evaporation, and local runoff)

and those describing storage32 (soil wetness, soil temperature, and, similar, atmo-

spheric near-surface temperature). The simulated river flows of the Yangtze reveal

LTM with scaling exponents β = 0.3 · · · 0.4 extending beyond the decadal time scale

(similar to observations, and that of the rivers Nile and Huang He.33

3.1. Yangtze runoff, floods, and droughts

The Yangtze Delta is located in Eastern China and characterized by the subtropical

monsoon climate. The mean annual precipitation is 1235 mm with summer rainfall

(June-August) accounting for 40% of the total and only 11% occur during winter

months (December-February). This area is densely populated and climate variability

is documented for more than 1000 years.

The daily Yangtze discharge variability reveals distinct 1/f variability within

the weekly to the annual timescale.34 The origin of this variability in the upper,

mountainous reaches of the catchment is not known since precipitation is uncorre-

lated in this area. The extreme variability leads to severe ecological stresses and, on

the other hand, hampers discharge forecasts. In the lower reaches the high frequency

variability is reduced, probably due to river-lake exchange and subsurface flows.

The hydrological conditions in the Yangtze delta are characterized by floods

and droughts. In our analysis33 we use historical documents to derive decadal time

series of flood and drought occurrence in the middle Yangtze and the Yangtze Delta

for the period 1000 to 1950 [Fig. 6(a)]. The long-term memory in these time series

is determined by DFA and reveals scaling power-spectra with a spectral exponent

β ≈ 0.3 up to centennial time scales [Fig. 6(b)].

The long-term memory of reconstructed floods and droughts agrees with the

long-term memory in discharge measurements and runoff simulations in an AO-

GCM simulation (300 years present-day control run).32

3.2. Extreme event return times in high resolution mixing ratio

data with 1/f spectrum

The distribution of extreme event return times and their correlations are analyzed

in observed and simulated long-term memory16,17 (LTM) time series with 1/f power

spectra.18 The analysis is based on tropical temperature and mixing ratio (specific
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scales (Fig. 6b). 

Fig. 6. (a) Floods and droughts in the Yangtze Delta reconstructed by historical documents
(number of events per decade). (b) Fluctuation functions obtained by DFA of floods and droughts;
slopes indicate long-term memory power-law exponents α in the fluctuation function.

Fig. 7. Return time distribution for the observed mixing ratio (Kexue) for the mean return time
Rq = 100. The blue curve is a power law fit with slope s = −1.51.

humidity) time series from TOGA COARE19 with 1 min resolution and an approxi-

mate 1/f power spectrum. Extreme events are determined by Peak-Over-Threshold

(POT) crossing. The Weibull distribution represents a reasonable fit to the return

time distributions. The mixing ratio measured at research vessel (R/V) Kexue has

sufficiently many time steps (≈ 105) to allow an extreme event analysis. The return

time distribution Pq(tr) for the mixing ratio is determined using the mean return

time Rq = 100. The distribution in Fig. 7 can be represented by a power law with

the slope s = −1.51 in a wide range of the ratios r/Rq .

For a comparison and an analysis of the return time predictability, a very long

simulated time series with an approximate 1/f spectrum is produced by a fraction-

ally differenced (FD) process.35 This simulated data confirms the Weibull distri-

bution (a power law can be excluded). The return time sequences show distinctly

weaker long-term correlations than the original time series (correlation exponent

γ ≈ 0.56).
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Fig. 8. Climate variability in (a) tropical data (CAPE, TOGA-COARE) in the short-term range
of days to months, (b) mid-latitude sea surface temperature (SST) in the North Atlantic in the an-
nual to decadal time range (observed and simulated) , and (c) in Greenland ice core and simulated
SST in the decadal to millennial time range. The panels show the DFA fluctuation functions; its
power law scaling is marked by slopes α corresponding to spectral power law scaling β = 2α − 1.

4. Summary and Conclusion

In summarizing, these analyses demonstrate that the variability of the near surface

temperature shows a continuum of long-term memory which can be modeled by

complex state-of-the-art climate models. The spectral behavior of global fields of

observed and simulated surface temperatures is analyzed using detrended fluctua-

tion analysis. Some of the main results for the scaling of the climate variability are

combined in Fig. 8:

• In the atmosphere, the high frequency range is assessed by observations in the

tropical western Pacific [Fig. 8(a)]. Here Convective Available Potential Energy

(CAPE) shows a 1/f spectrum (obtained by DFA) within 1 to 30 days,20 while

temperature, wind speed, and moisture show this spectrum within 1 hour to 10

days. Modeling of variability on shortest time scales is still unsatisfactory, for

example, tropical convective processes in the time domain of hours to weeks and,

not independently, river discharges on daily time scales. In these applications

subscale processes are involved, which need to be parameterized even in high

resolution climate models.

• The observed sea surface temperature in the North Atlantic shows a 1/f spectrum

on intra-annual time scales22 [Fig. 8(b)]. AO-GCM simulations predict centennial

1/f variability also in extended regions also in the Southern Ocean. In the inner

continents, memory is absent (white noise). In coastal regions and areas under

maritime influence a transition between white and flicker noise is observed. The

scaling variability is estimated by ten 100 year intervals of the simulation, lies

within 0.025–0.05. According to the simulation, the power-law extends up to 15–

150 years. Since this correlation is found only if the atmosphere is coupled to

the complex ocean model, the origin of the memory can be traced back to the

internal long time memory of ocean dynamics.
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• Greenland ice cores present a proxy for temperature variability revealing scaling

long-term memory on millennial time scales which is simulated by an ultra-long

AO-GCM simulation23 [Fig. 8(c)]. It is remarkable that the AO-GCM CSIRO used

in this study is neither forced externally nor coupled to interacting vegetation and

land-ice components.

Conceptual diagnostics and models have been developed for the high frequency

tropical boundary layer variability and for the low frequency sea surface temperature

1/f scaling:

• For the tropical atmospheric variability a conceptual approach is based on random

pulses affecting a boundary layer recharge-discharge mechanism.20 The surprising

outcome of this reasoning is that individual pulses are not correlated. The overall

1/f spectrum is generated by individual pulses given by 1/f -noise in a range

exceeding the duration of the pulses’ life-time.

• The 1/f variability in parts of the global ocean22 (North Atlantic and the South-

ern Ocean) can be modeled by stochastically forced two-layer heat diffusion.27

The main results are (i) the theoretical model requires two layers with extremely

different diffusivities, representing a mixed layer on top of an deep abyssal ocean,

(ii) the atmospheric forcing needs to be white, and (iii) the model predicts ranges

of the diffusivity of the deep ocean, which is extremely hard to measure.
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Appendix A. Data, Models, and Analysis

Data : In the analyses we use three main data sets: (i) The observed global near

surface temperature data is a combination of near surface air temperatures over

land and sea surface temperatures (SST) interpolated to a 5◦ × 5◦-grid (CRU, Cli-

mate Research Unit, East Anglia.24 Monthly data is available since 1856, however,

the predominance of missing values in the global data set limits the correlation

analysis to a belt from North America to Europe (including the North Atlantic),

India and south-east Asia, and small areas in the southern hemisphere. We restrict

the application of the DFA to those grid points with less than 10% missing data

after 1900. (ii) The central Asian station data at Krasnojarsk (93E, 52N; 1915–

1999) is compared with the corresponding grid data. (iii) High frequency variability

is analyzed in data measured during the Tropical Ocean and Global Atmosphere

Coupled Ocean-Atmosphere Response Experiment19 (TOGA COARE, November

1992 — February 1993) at the research vessel Kexue with 1 min resolution (specific

humidity).

Models : The simulations are based on several atmosphere ocean general circulation

models (AO-GCMs), all simulations are present-day control-runs: (i) A 1000 years
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simulation with ECHAM4/HOPE.36 ECHAM4 has a horizontal resolution of 3.75◦×

3.75◦ and 19 vertical levels. The ocean is simulated by the comprehensive dynamic

model HOPE (resolution 2.8◦×2.8◦ and 20 vertical levels including sea ice dynamics.

The mixed layer (ML) model is restricted to the uppermost ocean layer. (ii) A 350

years control run with the updated version ECHAM5 coupled to MPIOM (formerly

HOPE). (iii) The 10,000 years simulation with the model CSIRO Mark 2 (horizontal

resolution 5.2◦ × 3.2◦) which includes a dynamic ocean and thermodynamic sea ice

model; land ice and vegetation are fixed.23 (iv) The Planet Simulator (University

of Hamburg) is an Ocean-Atmosphere General Circulation Model built to perform

numerical experiments for understanding the dynamics of the climates of the Earth,

Earth-like planets, and moons of the solar system.37 (v) A 500 years simulation with

the GFDL model38 version CM2.1 (2◦ × 2◦ resolution and 24 levels) coupled to an

ocean model (1◦ × 1◦ resolution and 50 vertical levels).

Analysis : The long-term correlations are deduced by the detrended fluctuation

analysis (DFA).14 The DFA determines time scale dependent fluctuations in sta-

tionary anomaly sequences with long time correlation. First, the anomaly time series

is integrated to the so-called profile. In time segments of length τ , the fluctuation

F(?) of the profile with respect to linear fits in each segment is determined and then

averaged over all segments. Polynomial trends of order N − 1 in the time series are

eliminated by the DFA-N, which subtracts polynomial fits of order N from the pro-

file in each segment (linear trends will be subtracted by DFA-2). For power-laws in

the correlation function, C(τ) ∼ τ−γ , the fluctuation function is F (τ) ∼ τα and the

power (or variance) spectrum is S(f) ∼ f−β with β = 2α− 1 and α = 1− γ/2. The

power-law exponents for stationary processes with long-term memory are between

white noise (α = 0.5, β = 0) and flicker or 1/f -noise (α = β = 1).
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