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Abstract. The distribution of extreme event return times
and their correlations are analyzed in observed and simu-
lated long-term memory (LTM) time series with 1/f power
spectra. The analysis is based on tropical temperature and
mixing ratio (specific humidity) time series from TOGA
COARE with 1 min resolution and an approximate 1/f

power spectrum. Extreme events are determined by Peak-
Over-Threshold (POT) crossing. The Weibull distribution
represents a reasonable fit to the return time distributions
while the power-law predicted by the stretched exponential
for 1/f deviates considerably.

For a comparison and an analysis of the return time pre-
dictability, a very long simulated time series with an approx-
imate 1/f spectrum is produced by a fractionally differenced
(FD) process. This simulated data confirms the Weibull dis-
tribution (a power law can be excluded). The return time se-
quences show distinctly weaker long-term correlations than
the original time series (correlation exponentγ̄≈0.56).

1 Introduction

Long-term memory (LTM) is a ubiquitous phenomenon in
natural time series and mainly identified by power-laws char-
acterized by a single correlation exponentγ in the correla-
tion function,C(t)∼t−γ (Fraedrich and Blender, 2003). In
many observed time series, predominantly sea surface tem-
peratures, 1/f power spectra are found related to smallγ

(Weissman, 1988; Monetti et al., 2003). In the current dis-
cussion on anthropogenic climate change, the simulation of
LTM becomes relevant since anthropogenic trends may be
masked by low frequency internal variability (Blender and
Fraedrich, 2003).
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Even weak LTM (withγ slightly below 1) has consid-
erable impacts on return times of extreme events (Altmann
and Kantz, 2005; Eichner et al., 2007). An obvious reason
for this effect is the clustering of threshold crossings dur-
ing periods with high averages (Bunde et al., 2005). The
distribution of return timestr in the presence of LTM is ap-
proximately given by a stretched exponential,p∼ exp(−t

γ
r ),

where the exponent is assumed to be identical to the corre-
lation exponentγ . The stretched exponential is motivated
by the study of Newell and Rosenblatt (1962) who derived
an upper bound for the probability of no zero crossings in
power-law correlated Gaussian processes. Olla (2007) ap-
plied anε-expansion forγ=1−ε and obtained a stretched
exponential distribution with exponentγ . Stretched expo-
nential distributions are found for linear systems with LTM
(Altmann and Kantz, 2005). There are classes of nonlinear
dynamical systems which show algebraic (power-law) dis-
tributions (Zaslavsky, 2002). For inter-event distributions of
earth quakes Corral (2004) suggests a gamma distribution.
The long-term memory does not only alter the distribution of
return times but also their temporal correlations which are the
basis for the return time predictability (Bunde et al., 2004;
Altmann and Kantz, 2005).

The present study is motivated by the abundance of ob-
served nonstationary 1/f time series which are at the border
of stationarity. The aim of this paper is to analyse extreme
event return time statistics in high resolution observations
of tropical boundary layer temperature and humidity which
both reveal a 1/f -spectrum. The results are compared with a
simulated time series obtained by a long simulation of a sta-
tionary fractionally differenced process (FD) with a power
spectrum in the vicinity of the 1/f . To evaluate potential
predictability, long-term correlations of return times in this
time series are estimated.
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The paper is organized as follows: In Sect.2 LTM is de-
fined and available results on return time distributions are
summarized. The long term memory properties and the re-
turn time distributions of the observational data are deter-
mined in Sect.3. In Sect.4 simulated time series are com-
pared and the correlation properties of the extreme event in-
tervals are analyzed. The Sect.5 concludes with a summary
and discussion.

2 Estimating long-term memory and extreme event re-
turn time statistics

For the estimation of long-term memory (LTM, Beran, 1994)
several methods are available. We compare results of the De-
trended Fluctuation Analysis (DFA, Peng et al., 1994) with
fits of FARIMA (p, d, 0) processes (Hosking, 1981). The
FARIMA processes are able to assess the contributions of
short- and long-term components. The distribution of the ex-
treme event return times is altered in the presence of LTM
since long periods with anomalous low or high persistent de-
viations occur. The correlations between successive extreme
event return times are useful for the prediction of extreme
event return times.

2.1 Long-term memory analysis

A time series has long-term memory (LTM, also denoted as
long-term persistence) if the correlation functionC(t) is not
integrable (Beran, 1994). For a long-term power-law decay,
C(t)∼t−γ , LTM is equivalent toγ>0. Empirical time series
have LTM if the autocorrelation follows a power-law with
exponent 0<γ<1 for the largest time scales present. LTM
is ubiquitous in nature and shows up mainly in temperature
records (Fraedrich and Blender, 2003; Huybers and Curry,
2006). The exponentβ of the power spectrum,S(f )∼f −β ,
and the correlation exponent are related byβ=1 − γ , hence
the power spectrum increases with decreasing frequency for
γ<1.

To determine LTM properties two methods are applied
(see Sect. 2.1): Detrended fluctuation analysis (DFA, Peng et
al., 1994), and an estimation of the parameters in FARIMA
(p, d, 0) processes (Hosking, 1981).

The two methods are independent complements for the
analysis of our data and inhibit an erroneous detection of
LTM: While there is a known LTM detection problem in the
DFA in short term memory time series (Maraun et al., 2004),
this method does not require any model assumption (for ex-
ample normality of the data). The FARIMA process is ideal
for the detection of short- and long-term memory, in addi-
tion, it allows a significance test for the number of parame-
ters, however, normality of the data is required.

(i) The DFA determines fluctuationsF(τ) on time scalesτ
in stationary anomaly sequences with LTM. Trends in
the time series can be eliminated by extensions of the
DFA (Fraedrich and Blender, 2003).

(ii) To assess the contributions of short- and long term
memory components, fits of autoregressive processes
(AR) and fractionally integrated autoregressive process
are considered. In the following, FAR is used as a short
notation for FARIMA (p, d, 0) (Hosking, 1981) which
includes an autoregressive (AR) process of orderp and
a fractionally differenced (FD) process with dimension
d.

The AR process is defined by

φ(B)xt = εt (1)

whereB is the backshift operator defined byBxt=xt−1, and
εt is white noise. Using the coefficientsan, the polynomial
φ(B) is

φ(B)xt = xt −

p∑
n=1

anxt−n (2)

The FD process (Hosking, 1981) is derived from

(1 − B)dxt = εt (3)

and leads to an AR process of infinite order

xt =

∞∑
n=1

anxt−n + εt , an = −
0(n − d)

0(−d)0(n + 1)
(4)

For low frequencies the FD process shows a scaling power
spectrumS(f )∼f −β with spectral exponentβ=2d and cor-
relation exponentγ=1−2d.

The FAR process is given by the combination

φ(B)(1 − B)dxt = εt (5)

and is determined byp coefficients in the AR and the dimen-
siond.

2.2 Extreme event return distributions

An extreme event in a time seriesxi , i=1, . . . , N , crosses
a given thresholdq with xi>q. The return timetr between
two extreme events is the time interval between two events
with xi>q andxi+tr >q and lower valuesxj<q in between,
i<j<i+tr . The mean return timeRq depends on the thresh-
old q and is approximated by the probability distribution
function (pdf)D(x) of the time series

R−1
q =

∫
∞

q

D(x)dx (6)

In the present paper, the thresholdq is determined to obtain a
specific value ofRq . For uncorrelated data, the return times
are exponentially distributed following a Poisson process

pq(tr) =
1

Rq

exp(−tr/Rq) (7)
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LTM leads to periods with anomalous persistent low or high
deviations. During such periods extreme high values are ei-
ther rare (for low anomalies) or frequent (during high anoma-
lies). Thus return time statistics shows clustering which is
not observed in time series without memory.

For LTM time series stretched exponential return time dis-
tributions are suggested (Bunde et al., 2004; Altmann and
Kantz, 2005; Eichner et al., 2007)

pq(tr) ≈
aγ

Rq

exp[−(bγ tr/Rq)γ ] (8)

Note that the scaling exponentγ is conjectured to be equal to
the correlation exponent which characterizes LTM. The co-
efficientsaγ =γ0(2/γ )/02(1/γ ) andbγ =0(2/γ )/0(1/γ )

are determined by normalisation ofpq and the condition for
the mean,Rq=<tr>; 0 is the gamma-function.

In the limit γ→0, the stretched exponential approaches a
power law

logpq(tr) ∼ −s log tr + const (9)

with the exponent

s = lim
γ→0

γ bγ
γ = 1.5 (10)

Altmann and Kantz (2005) and Eichner et al. (2007) con-
sider the correlation exponents 0.05<γ<1 that is, between
almost 1/f and white noise. Eichner et al. (2007) show that
the stretched exponential is valid for several types of distri-
butionsD.

For small return times,tr�Rq , the observed distribution
deviates from the stretched exponential (8) and scales as (see
Eq. (10) in Eichner et al., 2007).

Rqpq(tr) ∼

(
tr

Rq

)s′

(11)

with the proposed values′
=γ ′

− 1, γ ′
≈γ for Gaussian den-

sity. For large return times (tr�Rq ) the limit of the distribu-
tion (8) is

Rqpq(tr) ∼ exp[−(btr/Rq)γ ] (12)

The stretched exponential is accepted as an approximate rep-
resentation for linear LTM processes (Altmann and Kantz,
2005; Eichner et al., 2007).

An alternative to the stretched exponential distribution (8)
is the Weibull distribution (Sornette, 2006; Abaimov et al.,
2007) with the scale parameterτ and the shape parameterγ

pW (tr) =
γ

τ

(
tr

τ

)γ−1

exp[−(tr/τ)γ ] (13)

Note that the Weibull distribution forγ<1 is frequently de-
noted stretched exponential distribution; this, however, dif-
fers from (8) by the prefactor∼tγ−1. Without reference
to Weibull, the power-law (11) is suggested by Eichner et

al. (2007) in their Eq. (10) to correct the pure stretched expo-
nential,∼ exp(−tγ ), for small return times.

The advantages of the Weibull distribution for the charac-
terization of extreme event return times are:

(i) The Weibull distribution (13) combines (8) and the short
time limit (11) and describes the observed distribution
in a wide range of return times.

(ii) The cumulative distribution function is known,
FW (tr)=1− exp[−(tr/τ)γ ], and the mean recurrence
time is determined byR=τ0(1+1/γ ). This cumulative
distribution function is useful for statistical analyses.

(iii) According to Sornette (2006) power-laws can be ap-
proximated by the Weibull distribution in arbitrary in-
tervals to any prescribed accuracy.

The fit of the discrete power-law and Weibull distribution
to the return time series is performed following Clausset et
al. (2007). The approach fits the parameters of the distribu-
tions (exponents for power-laws; shape and scale parameters
for Weibull) using Maximum Likelihood estimation and de-
termines an optimal range (restricted by a minimum return
time cutoff) by minimizing the Kolmogorov-Smirnov dis-
tance.

The correlations between successive extreme event return
times are one of the most useful aspects in practical ap-
plications of extreme value theory. Given time series with
weak LTM (correlation exponentsγ=0.4 and 0.7), Bunde et
al. (2004) analyse the respective return times arranged in a
sequence, and find their long-term correlation exponentsγ

to be similar to the exponents of the original time series. It
is expected that this relationship changes distinctly for very
strong LTM due to its close vicinity to the nonstationarity
threshold 1/f .

In this paper, extreme events are determined by the Peak-
Over-Threshold (POT) method with different thresholdsq,
which are adjusted for mean return timesRq . The de-
trended fluctuation analysis (DFA) is employed to determine
the LTM of the observational data and the recurrence times
in the simulated data. Fits of FARIMA process support the
LTM analysis of observational data. The time series are sim-
ulated by fractionally differenced processes (FD, Hosking,
1981). The fits of the power-law and the Weibull distribu-
tions are performed by the code available from Clausset et
al. (2007). For all other calculations we use the statistics
software R (R Development Core Team, 2005).

3 High resolution observational data

The observed time series analyzed in this study are ob-
tained during the TOGA-COARE experiment (November
1992–February 1993, Data Processing Center/Data Archive
and Distribution Center for COARE Surface Meteorologi-
cal Data, Florida State University, COARE-MET; Webster
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and Lukas, 1992). The aim of the international field ex-
periment TOGA COARE during 1992–1993 was to study
the atmospheric and oceanic processes over the western Pa-
cific. The data measured at the Research Vessel (R/V) Kexue
(3.9◦ S, 155.9◦ E) encompasses boundary layer near surface
air temperature and the mixing ratio with one minute resolu-
tion (Fig. 1); this data set has been corrected by Lucas and
Zipser (2000). In the air temperature time series the diurnal
cycle (daily mean with 1 min resolution) is removed for the
analysis. The weak diurnal cycle in the mixing ratio is not
removed since this does not change the result.

The mixing ratio (Fig.1c) reveals the presence of a large
scale event during the first part of the time series (due to a
passing 40-day wave). The fluctuations of the temperature
and the mixing ratio are characterized by a 1/f power spec-
trum in a wide range of time scales (Yano et al., 2001, 2004).
Only a part of this time series (8.8·104 time steps, roughly 61
days) is analyzed to keep the number of missing values be-
low <5%. The missing values are replaced by the mean and
no attempt has been made to determine the effect of these
replacements.

The overall behaviour of the data indicates nonstationar-
ities in both time series. The frequency distributions for
both time series (Fig.1b, d) show deviations from Gaussian,
which are, however, not substantial and presumably related
to the nonstationarity.

3.1 Long term memory analysis

To determine LTM properties of the two observed time se-
ries two methods are applied (see Sect.2.1): Detrended fluc-
tuation analysis (DFA, Peng et al., 1994), and an estimation
of the parameters in FARIMA (p, d, 0) process (Hosking,
1981).

(i) The DFA spectra in Fig.2a, b show scaling fluctu-
ation spectra,F(τ)∼τα, with exponentsα≈1. . .1.1
close to a 1/f −spectrum (α=1) for the temperature
and the mixing ratio. The power spectrum is closely
related toF(τ) and scales asS(f )∼f −β with expo-
nentsβ=2α−1≈1. . .1.2; the correlation exponents are
γ=1−β≈0. . .−0.2. Note that the temperature fluctua-
tion spectrum in Fig.2a approachesα≈1 (γ=0) for long
time periods (tr>103 min) during two decades. An anal-
ysis of a trend-eliminating version of the DFA yields the
same exponents.

(ii) Short- and long term memory contributions are assessed
by fits of autoregressive processes (AR) and fractionally
integrated autoregressive process (FAR); see Sect.2.1.
To determine the optimal number of parameters in the
FAR fit, the Akaike information criterion (AIC) is used
based on the minimum of

AIC = −2 log(L) + 2k (14)

whereL is the maximized likelihood function andk the
number of estimated parameters. For temperature and
mixing ratio it appears that the FAR process is supe-
rior to AR processes for small numbers of coefficients
(Fig. 3a,b). The mixing ratio shows a higher preference
for the FAR than temperature, which can be explained
by the higher degree of scaling (Fig.2b). Furthermore,
a maximum likelihood ratio test (99% significance) sup-
ports a lower degree of the autoregressive component in
the FAR for the mixing ratio.

Likelihood ratio tests are performed to test whether higher
order models give significant improvement compared to
lower order models. FAR-models are tested against all (AR
and FAR) lower order models, while the test for the AR-
models is only performed for lower order. Filled symbols
(Fig. 3) show significance against lower order models on the
99% significance level.

For both observed datasets FAR-models outperform the
ARs for all model orders belowp=7 according to the Akaike
information criterion and the likelihood ratio test. Even for
temperature (Fig.3a), where the information criterium looks
quite similar for higher model orders, the likelihood ratio
test prefers the FAR-models. However, the likelihood ra-
tio test for temperature does not indicate an optimal model
order. The mixing ratio (Fig.3b) can best be characterized
by an FAR-model including four additional AR coefficients
with the correlation exponentγ≈5·10−4. Since the model of
choice is less clear for the temperature we consider the corre-
lation exponents and their standard deviations. The correla-
tion exponents decay fromγ=0.016 forp=0 toγ≈10−4 for
p≥2; the standard deviations are below≈2·10−3. In sum-
marising we conclude that the spectra of both observed time
series can be considered as 1/f .

3.2 Return time distributions

The return time distributionspq(tr) for temperature and mix-
ing ratio are determined for the mean return timeRq=100
(6). For the data the complementary cumulative distribution
function (CCDF) is determined,CF (tr)=1−F(tr), where
F(tr) is the cumulative distribution function. Scaling of the
distribution function is preserved in the CCDF with an expo-
nent reduced by 1. Unfortunately, a fit of the stretched expo-
nential distribution is inhibited by insurmountable numerical
difficulties.

The distributions in Fig.4a, b are compared with the fits
of Weibull distributions (13) and power-laws. The Weibull
parameters, the power-law exponents, and the cutoffs are
given in Table 1 together with confidence intervals, which
are determined by resampling with replacement (1000 sam-
ples). For temperature and mixing ratio the powerlaw expo-
nents=1.5 lies outside the confidence intervalls.
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Fig. 2. DFA fluctuation function of (a) atmospheric near sur-
face temperature and (b) mixing ratio at R/V Kexue. The solid
(red) lines indicates α = 1.1, the dashed (blue) lines represents
a 1/f−spectrum (α = 1).
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Fig. 3. Akaike Information Criterion (AIC) for AR (4) and FAR (◦)
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Fig. 2. DFA fluctuation function of(a) atmospheric near surface temperature and(b) mixing ratio at R/V Kexue. The solid (red) lines
indicatesα = 1.1, the dashed (blue) lines represents a 1/f −spectrum (α=1).

The cutoffs are determined by minimizing the
Kolmogorov-Smirnov test statistic. The power-law fits
are compared with the power-laws=1.5 predicted by the
limit of the stretched exponential for 1/f noise (9, 10). The
return time distributions for the two observed time series are

reasonably well approximated by Weibull distributions in a
wide range of return times. Note that the power-law fits are
restricted to narrow ranges (in particular for the mixing ratio)
and are obviously worse approximations for the observed
distributions. The power-law exponents for air temperature
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(s=1.74) and mixing ratio (s=1.8) differ substantially from
1.5, since this value is beyond the confidence intervals
(Table 1).

4 Simulated data

Simulated time series with self-similar LTM are generated by
a linear autoregressive process. As the AR part (2) is respon-
sible for short memory, the simulated data is simulated by an
FD process (4), see Fig.5 for the time series and the Gaus-
sian frequency distribution. The power spectrum exponent

is chosen asβ=0.99 (d=β/2=0.495, γ=0.01) to obtain an
approximation for a stationary time series with a 1/f power
spectrum. To inhibit the impact of finite size effects in the
comparison with observational data, the total length of the
simulated time series is identical with that of the observed
data (N=8.8·104). For the following analysis of the LTM in
the return time sequence, however, a very long time series of
N=108 is simulated.
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Fig. 6. DFA fluctuation functions for the sequence of return times
obtained with a FD (γ = 0.01) and different thresholds corre-
sponding to the mean return times Rq as indicated. n enumerates
the return time sequence. The solid lines show the LTM exponent
α = 0.72.

Fig. 6. DFA fluctuation functions for the sequence of return times
obtained with a FD (γ=0.01) and different thresholds correspond-
ing to the mean return timesRq as indicated.n enumerates the
return time sequence. The solid lines show the LTM exponent
α=0.72.

4.1 Return time distributions

The distributionpq(tr) for the return timestr is determined
for a thresholdq related to a mean return timeRq=100. The
analysis is analogous to Sect.3.2. The distribution (Fig.4c)
is well approximated by a Weibull distribution. The 95%
confidence interval (gray shaded) is determined by creat-
ing 1000 time series with the same parameters. The shape
and scale parameters areγ=0.2 andτ=0.29, respectively.
The validity of the power law fit,pq∼t−s

r with the exponent
s=1.53, is restricted totr≈10. . .500. The deviation from
s=1.5, which is the 1/f limit of the stretched exponential,
might originate in either:

Table 1. Values of: estimated parameters for Weibull and power-
law distributions (with 95% confidence intervals), and cutoffs for
the Weibull (power-law) distribution.

temperature mixing ratio simulated data

shapeγ 0.21 (0.17, 0.27) 0.15 (0.11, 1.88) 0.19 (0.15, 0.25)
scaleτ 0.36 (0.04, 1.94) 0.003 (10−5, 0.04) 0.29 (0.01, 2.68)
exponents 1.74 (1.66, 1.85) 1.80 (1.69, 1.94) 1.53 (1.49, 1.57)
cutoff kmin 4 (8) 5 (46) 5 (10)

(i) The conjecture that the stretched exponential exponent
(see Eq.8) is identical to the correlation exponentγ is
not valid.

(ii) The streched exponential is not valid for very small
γ=0.01, i.e. near 1/f .

4.2 Potential predictability of extreme event return times

For time series with weak LTM (correlation exponents
γ=0.4, 0.7, Bunde et al., 2004) the sequencestr(n) com-
posed of extreme event return times show long-term correla-
tions with similar LTM as the time series itself. To analyse
this behavior in the vicinity of 1/f noise, the correlation ex-
ponent isγ=0.01 (as in Sect.4.1) and the extreme events
are based on different thresholds providing the mean return
timesRq=10, 100, 1000, 10000. The total length of the time
series isN=108. Note that this is two decades longer than
N=221

≈2.1·106 in Eichner et al. (2007). The sequence of
the return times is analyzed by detrended fluctuation anal-
ysis (DFA). Figure6 shows that the long-term correlation
of the return times is described by a power-law fluctuation
function F(n)∼nα with α≈0.72 independent of the thresh-
old and the mean return time; the indexn enumerates the
return times. This corresponds to the power spectrum expo-
nentβ≈0.44 (usingβ=2α−1) and the correlation exponent
γ≈0.56. Thus the sequence of extreme events in time series
near the 1/f −limit shows distinctly weaker long-term corre-
lation properties than the original time series.
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5 Conclusions

This paper presents an analysis of the extreme event re-
turn time statistics for observed and simulated data with
1/f power spectra. The observed data is given by mea-
surements of temperature and mixing ratio during TOGA-
COARE (November 1992–February 1993) at the research
vessel Kexue. In the time series of one minute resolution, 61
days with low numbers of missing values are extracted. Both
time series show a scaling power spectrum,S(f )∼f −β , with
β=1. . .1.2; the correlation exponent inC(t)∼t−γ is related
by γ=1−β. This result is determined by detrended fluctua-
tion analysis and substantiated by a fit of a FARIMA (p, d, 0)
fractionally differenced autoregressive process which yields
d≈0.5 for the long-term behavior (β=2d). Hence, both time
series are considered as 1/f noise.

Extreme events are determined by Peak-Over-Threshold
(POT) crossing. The observed return time distributions
pq(tr) are compared to a stretched exponential,∼ exp(−tγ ),
and a Weibull distribution,∼tγ−1 exp(−tγ ). According to
the approach by Altmann and Kantz (2005) and Eichner et
al. (2007), the stretched exponential distribution converges
to a power-lawpq(tr)∼t−s

r with s=1.5 for γ→0.
The return time distributions for the two observed time se-

ries are better approximated by a Weibull distribution than
by a power-law. If a power-law is fitted in the intermediate
range of return times, the temperature yields a power-law ex-
ponents=1.74, while the mixing ratio yieldss=1.8; both are
distinctly different from the stretched exponential limit.

Simulated data is generated by a fractionally differenced
autoregressive process with a power spectrum in the vicin-
ity of the stationarity threshold,β=0.99 (γ=0.01). As for
the observational data, the Weibull distribution yields a con-
vincing representation of the return time distributions, while
a power-law can be excluded.

The simulated data is used to evaluate the potential pre-
dictability of the extreme event return times. The LTM in
the sequence of return times is analyzed by the detrended
fluctuation analysis and reveals a power law fluctuation func-
tion F(n)∼nα with α≈0.72 (correlation exponent̄γ≈0.56).
Thus, the return time sequences show weaker long-term cor-
relations than the original time series. This values is indepen-
dent of the threshold and the mean return time. A possible
reason is that short term random effects lead to level cross-
ings which, thereby, perturb the overall LTM of the original
time series.

The analysis leads to the following main conclusions for
the behavior of extreme event return times in the 1/f limit:

(i) The return time distributions for time series in the vicin-
ity of a 1/f power spectum are well approximated by
the standard Weibull distribution. This is suggested by
the observed time series and substantiated by the sim-
ulated data. The stretched exponential (which differs

from Weibull by the absence of a prefactor) is likely to
be convenient for weak LTM.

(ii) The sequence of return times shows LTM with
F(n)∼nα with α≈0.72 which is weaker than in the
original time series (α=0.995). However, the correla-
tion C(n)∼n−0.56 is still promising for the prediction of
return times.

Future analyses should consider the Weibull distribution as
an alternative to the stretched exponential return time distri-
bution for a wide range of LTM correlation coefficientsγ .
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