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Forecasting: Predictability, Probability, and Persistence

By Klaus Fraedrich

Summary: Weather forecasting, though dominated by numerical weather pre-
diction (NWP) models, is discussed in terms of time series analysis: (i) Nearest
neighbour search and scaling is linked to predictability estimates and ensem-
ble prediction; ensemble forecasts of tropical cyclone tracks provide a practical
example. (ii) Short term memory in weather time series is tested and used to
estimate the future probability of precipitation by discrete Markov chains. (iii)
Finally, the weather’s short term memory allows a first order autoregressive
process to serve as a surrogate atmosphere, for which persistence forecasts are
made and evaluated. This conceptual model demonstrates predictability exper-
iments and their analyses as they are common in a practical weather forecast
environment.
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1 Introduction: Forecasting and memory

Forecasting the evolution of a non-linear system is closely linked with its mem-
ory. Short-term memory lies behind an exponentially decreasing auto-corre-
lation with a finite integral time-scale. It allows predictions of the first kind
(Table 1.1, following Lorenz), which show sensitive dependence on initial con-
ditions caused by internally occurring instabilities at fixed boundary conditions.
Daily numerical weather predictions (NWP), which are verified by comparing
predicted with observed fields, are prominent examples. Predictability, that is
prediction of the forecast error, can be estimated by ensemble forecasts based
on one model only, as the bias in the model’s climatology is anticipated to be
small. Long-term memory is described by an auto-correlation with a power-
law decline of certain magnitude, which (i) extends over many time scales and
compartments of the climate system, (ii) leads to an infinitely large integral
time-scale, and (iii) characterises low frequency variability. In this sense, pre-
dictability of processes with long-term memory, as observed in N-Atlantic sea
surface temperatures (but not in precipitation), may possibly be utilized to
extend forecasts of the first kind into the domain of second kind predictions.
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Predictions of the second kind describe the response of systems to changing
boundary conditions, which can be linked with structural stability. Climate
scenario computations are prominent examples, for which boundary conditions
are prescribed like doubling of the anticipated future atmospheric CO-2 con-
tent. Climate states associated with prescribed boundary conditions are char-
acterized by long term equilibrium statistics, that is, moments and extremes.
Predictability is estimated by super-ensembles from a set of climate models,
differing in their long-term statistics.

Table 1.1: Prediction of the first and second kind (schematic).

Time scale (in days) 10−1 1 10 102 103 104

Atmosphere pred. 1. kind => prediction of 2. kind
Atmosphere and Ocean prediction of 1. kind => prediction of 2. kind

In the following, prediction of the first kind will be analysed. For practi-
cal weather forecasting, numerical weather prediction (NWP) models play the
eminent role; their advancement has been remarkable since the first concepts
(Richardson 1922) emerged and first applications (Charney, Fjörtoft, and von
Neumann 1950) were made. However, alternative methods are presented here;
these are empirical-stochastic forecasts using time series analysis techniques.
A brief glossary on predictability and prediction is presented first.

Predictability analysis interprets the budget of a forecast error in terms of the
time evolution of, for example, the distance between forecast and verification.
These analyses can be interpreted in analogy to a diffusion process in state
space: (a) Single particle diffusion corresponds to an analysis of the verifica-
tion trajectory only; its distance from the origin represents the error growth
of persistence forecasts, which is an important reference for forecast quality
evaluation. (b) Two-particle diffusion provides the standard frame for an in-
dividual forecast evolving in relation to its verification. (c) An ensemble of
particles (‘prediction plume’) with diverging trajectories represents a forecast
ensemble; defining appropriate ensemble members and relating their statistics
to the verification trajectory is subject of ongoing research.

Predictability experiments provide the data for diagnosing the error budget. Ex-
ternal (practical) predictability experiments are, for example, practical weather
or climate forecasts. The bias due to differences between model and real climate
(systematic error) is one of the problems met in analysing NWP-products in
an imperfect model environment. Internal (theoretical) predictability is related
to error budgets due to small perturbations in initial or boundary conditions
generated by identical model atmospheres; that is, ’identical twin’ experiments
in a perfect model environment.

The outline of these notes is as follows: First (section 2 on predictability), non-
linear analog methods are applied to search for nearest neighbours or ensemble
members in phase space in order to extrapolate their time evolutions, which
are known from the past data sets. Thus, topological properties like dimension
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and entropy (predictability) are estimated and, for example, hurricane tracks
are predicted. Utilizing the commonly neglected forecast errors and combin-
ing independent predictions can improve forecast accuracy. The methods have
been developed in the eighties, but have been used in meteorology even before
the seventies (Lorenz 1969). Next (section 3 on probability), methods to pre-
dict single station probability of precipitation (PoP ) are presented, applied,
and evaluated. Since Cooke (1905) probabilistic forecasting of local weather
states, which implies a forecast of forecast errors, has a long tradition. In the
sixties, Markov chains have been tested and applied to quantify probability of
precipitation forecasts (Gabriel and Neumann 1962). Finally (section 4 on per-
sistence) prediction and predictability experiments are performed analytically
in a conceptual model environment simulating the practical weather forecast
process: Persistence represents the forecast scheme, which is used to predict a
red noise surrogate atmosphere. Section 5 summarizes the results.

2 Predictability and prediction: Analog ensemble forecasts

Predictability is quantified by the time evolution of an ensemble of nearest
neighbour states (or analogs), which are embedded in a time-delay coordinate
phase space, and is utilized to estimate future states from weather history. Em-
ploying the Grassberger-Proccacia (1984) algorithm the distance scaling of an
ensemble of nearest neighbors yields the local correlation dimension D2, and
its spread in time yields the local entropy K2 (for reviews see Tsonis and El-
sner 1989, Abarbanel et al. 1993, Götz 1995, for examples see Fraedrich 1986,
1988, and for some later developments see Fraedrich and Wang 1993, Shirer et
al. 1995). Thus, atmospheric predictability is revealed by naturally occurring
analogs (Lorenz 1969, revisited by Fraedrich and Leslie 1991) with analog en-
semble forecasting being a practical application of non-linear systems analysis.
Further development, for example, adapting a forecast error minimising metric
in phase space for proper analog search has improved individual and ensemble
mean forecasts of Hurricane tracks (Fraedrich and Rückert 1998, Fraedrich et
al. 2003, Langmack et al. 2007). For general applications in daily weather fore-
casts, however, the method suffers from data scarcity, because the atmosphere’s
recurrence time is vast, even compared with its life span (van den Dool 1994).

2.1 Analog ensembles: Dimension and entropy

To make use of Takens’ theorem on the reconstruction of the dynamics of a
non-linear system evolving with time, consider an observed time series. The
system’s evolution can be displayed in a time-delay coordinate phase space of
sufficiently large embedding dimension. Scaling the spread of initial ensemble
members or nearest neighbours (perfect ensemble hypothesis) provides the D2-
dimension; here the spread characterizes the mutual distance between ensemble
menbers and thus the initial error. The K2-entropy estimates the time evolution
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of the ensemble spread by increasing the embedding dimension of the time-
delay coordinate space; it describes the main axes of an initially small sphere
expanding into an ellipsoid as the trajectories diverge in time (perfect model
hypothesis). Thus predictability can be defined and quantified; a first reliability
test (Fraedrich 1988) with surrogate data may appear useful; a demonstration
follows.

Take a single or vector time series y(t) of observed local weather variables
measured at time steps τ . Pieces of this time series, which commence at ti
and last for (M − 1)τ time steps, are used to define local weather states (or
points) embedded in an M -dimensional phase-space spanned by time-delay
coordinates, y(ti) = {y(ti), y(ti−τ), . . . , y(ti−(M−1)τ)}; weather states at tk,

in the same phase space are called past weather ’analogs’ or nearest neighbors
y(tk) to the base point y(ti), if both are independent |ti− tk| > τ in this space
and their Euclidean distance, dik = |y(ti)− y(tk)|, is small. Note that a delay
time-lag τ near de-correlation time-scale may guarantee linear independence
of phase-space coordinates. Scaling the number statistics of analog-pairs (with
distance in phase space of dimension m) leads to estimates of the dimension of
local weather dynamics and its entropy as a measure of predictability. Scaling
behaviour is determined from the cumulative number distribution (correlation
integral) CM (l) of all K pairs of points in phase space.

τ = 3 days
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Figure 2.1 Correlation integrals (cumulative l-distance distribution), CM (l),
changing with increasing embedding dimensions 1,. . . , (M − 1): (a) Local sur-
face pressure and (b) surrogate data (AR(1)-process) determined analytically.
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(i) Analog ensembles: Count the relative number of k = 1, . . . ,K analogs
y(tk), whose distance from the local base point y(ti) is smaller than a pre-
scribed threshold (dik < l). This provides a cumulative number distribution,
which increases to one with increasing threshold l. Here the Heaviside function
is used with Θ(a) = 0 or 1, if a > 0 or a < 0. Repeating this procedure for
all i = 1, . . . ,K base points, y(ti), and subsequent averaging gives the correla-
tion integral (Grassberger and Procaccia 1983, 1984) in terms of the averaged
cumulative number distribution (Figure 2.1):

CM (l) = K−1
K

∑

k

[

K−1
∑

i

Θ(l − dik)/(K − 1)
]

.

(ii) Perfect ensemble hypothesis and distance scaling of the correlation integral
(at fixed embedding) leads to the mean correlation dimension D. Consider
the number of pairs of points, which are homogeneously distributed on a line
(surface or volume) embedded in an M -dimensional space. This number grows
according to a linear (quadratic or cubic) power-law:

CM (l) ∼ lD

with D = 1, 2, or 3 at fixed M = 1, 2, or 3. Likewise, local weather states, which
evolve in a delay-coordinate phase space, describe an object with a dimension
that characterises the dynamics of the system. The dimension is obtained by
scaling of CM (l) with l ≥ 0, which occurs only at sufficiently high embedding
M; that is, if the pairs of points counted are perfect ensemble members in the
M -dimensional l-sphere.

(iii) Perfect model hypothesis and time scaling of the correlation integral leads
to the estimates of the local mean predictability (entropy or information loss):
Extending the lengths of the weather trajectories from (M−1)τ to Mτ , that is,
increasing the embedding dimension by one, reduces the number of analog pairs
trapped in a sphere confined by the l-threshold. Their chance being trapped
in the M-dimensional l-sphere decreases proportional to

CM (l) ∼ exp(−MτLk).

Thus predictability characterises the system’s dynamics in delay coordinate
phase space. It can be estimated by the sum of the positive Lyapunov (or char-
acteristic) exponents, which contribute to the expansion of an infinitesimally
small sphere of initially close trajectories into an ellipse with m expanding main
axes: H =

∑M
m=1 Lm with Lm > 0, which is related to the Kolmogoroff-Sinai

entropy.

(iv) Interpretation: Data analysis of weather variables reveals a relatively small
dimension, D2 ∼ 7, which does not suggest that global weather has low dimen-
sionality. Instead, this result represents merely the projection of the global
weather dynamics onto a single station time series, which is associated with

9



Klaus Fraedrich

an average local predictability (or entropy) corresponding to H ∼ 2 weeks.
Estimating the dimensionality of the global system, however, requires a set of
independent stations (and variables) separated by a distance of, say, the Rossby
radius.

2.2 Tropical cyclone track forecasting

Theoretical predictability analysis provides the foundation for the methods of
non-linear empirical forecasts based on historical weather analogs. One practi-
cal example is the prediction of tropical cyclone motion. Meteorological services
in tropical regions regard that as their major weather forecasting problem, be-
cause Hurricanes are one of the most destructive natural hazards. Although
hurricane position forecasting has been a major activity for many decades, it
has defied rapid improvement, with an average of less than one per cent re-
duction per annum in the mean 48-hour position error over the past decade
or so. It is worth noting that there are two distinct approaches to hurricane
position forecasting: statistical regression techniques (CLIPER; see Leslie et al.
1990) blending climatology and persistence forecasts, and numerical weather
prediction (NWP), whose skill has enhanced considerably due to the recent
improvements in data assimilation. Both approaches may be combined to con-
sensus or super-ensemble forecasts.

Metric adaption: Establishing empirical prediction tools requires the theory,
building, and the validation of the forecast model. Here, a non-linear empirical
prediction system is developed utilizing the analog-Ansatz described above to
obtain ensemble forecasts where nearest neighbours of today’s weather are pro-
vided by their historical analogs in the time-delay coordinate phase space; that
is, instead of all nearest neighbour pairs we take all neighbours to the reference
point in phase space, given by the trajectory to be extended into the future by
analog ensemble forecasting.

Theory : The future weather state (forecast) is estimated by analog evolutions of
historical weather trajectories. These analog evolutions comprise an ensemble
of size K, which are nearest neighbours of the reference (present) state and,
from their ‘historical futures’, the real ensemble forecast is estimated. Such
empirical forecast schemes require, in general, a finite set of parameters, which
are optimized to obtain, in the average, a good forecast plus an estimate of
the forecast error. The procedure presented here has been used by McNames
(2000) extending Fraedrich and Rückert’s (1998) metric adaption procedure.
Given the vector time series x(t) = (y1(t), . . . , yN (t)), say the lat-long position
of a hurricane (N=2):

x(t) =

y1(t), y1(t− τ), . . . , y1(t− (M − 1)τ)
...
yN (t), yN (t− τ), . . . , yN (t− (M − 1)τ)
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(i) Two parameters are sufficient for optimal forecasting: the time-delay em-
bedding of the phase space and its metric, that is, the window length M and
the weights λl, which characterize the system’s memory duration and decay
rate, respectively. The weights depend both on the vector component and its
delay. The distance dk between the basic state and its k neighbours (identified
by tk) is needed for estimate the ranking weights rk of the ensemble members

dk =

N
∑

n=1

M
∑

m=1

λ2
l (yn(t−m)− yn(tk −m))2 with l = m + (k − 1)M.

(ii) Two measures define the ensemble forecast, which are deduced from the
‘historical futures’ of the analog ensemble: the ensemble size, k = 1, . . . ,K,
and ranking, rk, of the ensemble members. The weighted ensemble mean fore-
cast, Fn(x), is determined after the ranking has been estimated by minimizing
the forecast error C (or cost function):

Fn(tk) =

K
∑

k=1

r2
kyn(tk + 1)/(

K
∑

k=1

r2
k).

The ranking, r2
k = (1− d2

k/d2
K+1), is estimated to characterize the relevance of

the k-th ensemble member in providing the ensemble mean prediction; the rank-
ings are positive between zero and one and thus suitable to yield convergence
of the optimization process (see also Fraedrich and Rückert 1998, McNames
2002, Langmack, H., F. Sielmann and K. Fraedrich, 2007). The cost-function
C to be optimized measures the squared errors (Euclidean distance) compar-
ing hindcasts (past forecasts) by the weighted ensemble mean F (tk) with the
respective verification, y(ti + j + 1) commencing at ti. Forecasts issued for
lead time j + 1, depend on the historical analogs extending up to that lead
time j = 0, . . . , J . The cost function includes averaging over the i = 1, . . . , I
hindcast trials:

C = (1/IJ)

I
∑

i=1

J
∑

j=1

|yn(ti + j + 1)− Fn(tk + j)|2.

Model-building and validation: The model building phase consists of two steps
to estimate total number K and ranking rk of the ensemble members by min-
imizing the cost-function C. The gradient algorithm is employed to minimize
the cost-function. Applying the PARTAN algorithm, a recursive approach (Mc-
Names 2002) enables efficient computation. Now, ensemble mean and spread
(variance) can be deduced. Altogether, 12 components appear to be optimal
for the final prediction model: the N = 3 state variables: position differences
in latitude and longitude and its cosine of latitude, for a one day window with
M = 4 six-hourly time-lags. More variables result in larger errors. Note that
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the dimension of Hurricane tracks in the Australian basin region is estimated
to be about D ∼ 8 (Fraedrich and Leslie 1989); the upper bound for the embed-
ding dimension, 2D+1 is thus satisfied, following Witney’s embedding theorem.
A validation is presented for the Australian Hurricane basin (Figure 2.2) for
the tropical cyclone Jason and the great circle forecast errors for a decade.
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Figure 2.2 Hurricane ensemble forecasts in the Australian basin for the trop-
ical cyclone Jason (top, 10-12 February 1987, observed in blue, ensemble mean
in red, ensemble members in yellow) and great circle forecast error of forecast
track position versus lead time (bottom, 1991 to 2000): this method (blue),
analog ensemble (Fraedrich et al. 2003, black), United Kingdom Meteorologi-
cal Office (UKMO, red), Australian Bureau of Meteorology (BOM, green) and
CLIPER (Climate-Persistence, yellow).
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Consensus forecasts: Optimal weighting of super-ensemble forecasts (that is,
forecasts made by models of differing bias) has received much attention in eco-
nomics, management and statistics literature. In meteorology it is also known
that consensus forecasts provide, in the average, more accurate results than
the individual forecasts, which comprise the consensus. Although, according
to Thompson (1977), this is the incontrovertible fact, it is recognized only re-
cently. The following linear error minimizing multivariate combination forecast
of tropical cyclone position (X∗, Y ∗) shows considerable forecast improvement:

combination X∗ = a1XA + a2YA + a3XB + a4YB + a5

Y ∗ = a6XA + a7YA + a8XB + a9YB + a10

Here the numerical weather prediction (NWP) model (subscript A) is combined
in a simple manner with an empirical forecast system (subscript B) based on
non-linear analog and statistical regression techniques (CLIPER). Independent
forecast trials show that the 24 and 48 hour position errors of the combination
forecast can be reduced by 15 - 20% compared to the best individual scheme
(Figure 2.3). Practical implementation has been reported (more in Leslie and
Fraedrich 1990). Predictions by super-ensembles based on a set of different fore-
cast models are being tested to supplement the classical single model ensemble
forecasts modulated by initial conditions.

Figure 2.3 Linear error minimising combination (multivariate) of short-term
forecasts of tropical cyclone tracks: Comparison of forecast tracks of Australian
tropical cyclone Jason (10-12 February 1987): observation (O), CLIPER (C),
NWP model (M), linear combination (L).

13



Klaus Fraedrich

3 Probability: Markov chain forecasting

Who started it all? A century ago the world’s first probabilistic weather
forecasts were issued in Western Australia and evaluated about eighty years
later (Monthly Weather Review: Cooke 1906, Fraedrich and Leslie 1987). Dur-
ing the year 1905, daily weather forecasts for two districts in Western Australia
were amended by quantitative weights of the forecasters’ confidence in their pre-
dictions. These weights range from 1 to 5 or from ‘not likely at all’ to ‘almost
absolute certainty’. To evaluate skill and reliability (Figure 3.1), probabilities
(0, 10, 60, 90 and 100%) are assigned to Cooke’s weights. This trial shows
that forecasts with high confidence weights were most frequently predicted, so
that Brier scores (rms error of probability forecasts) attain high values. Since
Cooke’s time, automatic recording of long records of station data, sophisticated
statistical and dynamical techniques and powerful computing devices have im-
proved forecast methods to provide a distribution of possible future weather
states and to issue probability forecasts.
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Figure 3.1 Reliability diagram (see also Figure 3.3) of the first probability
weather forecasts for two districts near Perth in Western Australia during 1905.
The first two of the five confidence weights have been quantified aposteriori in
probabilistic terms (abcissa); the number of predictions is also indicated and
the Brier scores (lower right).
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3.1 Probability of precipitation (PoP )

Probability forecasts imply the prediction of forecast accuracy. Here, devel-
opment, application, and analysis of a statistical-empirical model are briefly
demonstrated. Although such forecast schemes serve mainly as a reference for
the performance of more sophisticated numerical models, they have proven to
be practically useful in very short-term forcasting of local weather, tropical
cyclone motion and climate anomalies (long range or seasonal). Probability of
precipitation, PoP , is a classical example of predicting both weather state and
forecast accuracy, both of which are required from a forecaster. Three steps
are discussed: model building, forecasting, forecast evaluation.

Rainfall Markov chain: Theory and model building consist of analysing in-
ternal time statistics (distributions of first passage times, period lengths etc.),
testing the order of the process and the Markov properties of the underlying
time series (for example, Fraedrich and Müller 1983, Kirk and Fraedrich 1998):
Weather at a single station is best characterized by two extreme ‘sky-states’,
sunshine and rainfall, so that three mutually exclusive weather states appear
almost naturally: These two opposing extremes are (i = 1) cloud-free including
fair weather cumuli and (i = 3) rainfall; the weather state i = 2 lies between
the two defined by stratus clouds. In practice, the rain state at a station is de-
fined by measurable precipitation during the previous three hours or, according
to the international weather code, by observing rain nearby. Now, a first-order
Markov chain, pi = Pijpj , consists of a state transition probability matrix, Pij

with
∑n

j Pij = 1, mapping an initial probability state vector, p = pj with
∑n

j pj = 1 into its future state, pT = pi, a component of which is the probabil-
ity of precipitation, pi=3 = PoP . These transitions based on a single time-step
memory show considerable improvement over

(a) chance PoP -forecasts with equal transition probabilities, Pij = 1/n for
all i, j;

(b) climate PoP -forecasts (zero-order Markov chain) which are represented by
the equilibrium transition matrix, Pij = Ci, whose column entries are climate
state probabilities emerging from the transition probability matrix, and

(c) persistence PoP -forecasts whose transition probabilities are defined by the
identity matrix, Pij = I:

Markov chain pi = Pijpj with pi=3 = PoP ;

integral time-scale τi =
∑r=N−1

r=0 P r−1
ii (1− Pii) of state i;

regression model PoP (i, r) = a(i, r) +
∑3

k=1 bk(i, r)Xk.

Finally, this basic three state first-order Markov chain can be extended by
linearly incorporating covariates of other relevant weather variables observed
at the single station and another nearby upstream location. The lead time
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r is the number of hours ahead; the covariates Xk for k = 1, 2, . . . are the
cloud cover, pressure, temperature, low clouds and zonal wind, introduced
through the empirical regression coefficients a, bk. Including covariates from
neighbouring upstream stations improves the model performance considerably.
A simplified version of the PoP -model is conveniently drafted for Hamburg
(and other stations) as a probability versus surface pressure diagram given
three basic Markov weather states, cloud-free or cumulus, stratus and rain
(Figure 3.2).

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✦

✦

✦

✦

✦

✦

✦

✦

✦

950 960 970 980 990 1000 1010 1020 1030 1040 1050 [hPa]
0

20

40

60

80

100

[%] Hamburg–Winter

Cumulus
Stratus

Rain

Figure 3.2 Single station short-term forecast of probability of precipitation in
Hamburg (12-hour PoP -prediction) for winter: Graphic display of the rainfall
Markov chain (with surface pressure as the only covariate).

3.2 Forecast verification

The relationship between the forecasts and observations can be conveniently
analysed by two methods which rely on the joint forecast and verification dis-
tributions:
(a) The performance measures of specific aspects of the relationship between
F and X.
(b) The basic joint, conditional, and marginal distributions themselves and
their summary measures as, for example, means, variances etc.

Performance of probabilistic forecasts, F = PoP , is measured by the com-
monly used Brier score B =<(F −X)2 > with PoP lying between 0 and 1, and
the verification X is either 0 or 1; smaller Brier scores correspond to better fore-
casts. The following values taken from independent Hamburg PoP -forecasts
show how forecasts improve with better models: persistence (B ∼ 0.29), cli-
mate (0.25), simple Markov-chain without covariates (0.19), with pressure only
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(0.17), with single station covariates (0.15) and with covariates of an upstream
station (0.14).

Joint forecast-verification distributions provide more details on the forecast-
verification couple (F,X) as described in the reliability and sharpness diagrams
(Figure 3.3):
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Figure 3.3 Verification of Hamburg
PoP -forecasts (with all co-variates in-
cluding the upstream station Hel-
goland): Sharpness (top) and reliability
(bottom) diagram.

First, the reliability diagram re-
lates predicted rainfall probabilities,
PoP , to the verifying observed rel-
ative frequencies of rainfall occur-
rence. A diagonal implies the ideal
reliability of the model which can
be achieved by PoP -forecasts (pre-
sented in 5% PoP -intervals); the
vertical and horizontal lines corre-
sponds to climate mean probability
forecasts and the half-angle area in-
cluding the ideal diagonal describes
bounds for the real PoP -forecast
reliability. Finally, as this result
may also be achieved by forecasts
mostly issued in the meaningless
PoP ∼ 50% neighbourhood, the
conditional forecast-verification dis-
tributions p(F |X) need to be anal-
ysed: The sharpness diagram asso-
ciates PoP -forecasts (abscissa) with
the verifying occurrence (ordinate)
of rain and no-rain (yellow, red cir-
cles).

A model that blends Hamburg data with an upstream station, yields PoP
forecasts, whose performance shows the required separation between large and
small PoP -values. Combining probability forecasts in an error-minimising fash-
ion is a particularly simple low-cost method for forecast improvement (Fraedrich
and Leslie 1987), for example, combining single station PoP and categorical
NWP rainfall forecasts:

combination PoP ∗ = αF + (1-α)G.

The α-weight describes the correlation between the two probabilistic forecast
schemes, F and G, and the verification X:

α = {<XF ><XG> + <G2 ><FG>}/{<F 2 > + <G2 > −2 <FG>}.
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It is derived by minimizing the Brier-score of the combination, that is dB/dα =
0. For example, the (unlikely) combination of two unbiased and uncorrelated
binary forecasts of the same performance as obtained by climate mean predic-
tions yields a 50% improvement of skill. In the practical forecast environment,
a Markov-NWP combination is particularly useful; for Melbourne, percent cor-
rect NWP rainfall forecasts improved by 5% from 83 to 88%, at almost zero
cost.

4 Persistence in red noise: Conceptual forecast experiments

Forecast experiments are performed for a (stochastic) surrogate atmosphere
representing the imperfect model environment; that is, individual and ensem-
ble persistence forecasts in a red noise atmosphere are analysed analytically
(see Fraedrich and Ziehmann 1994, 1995). These experiments show, in a qual-
itative sense, similarities with external (or practical) NWP predictions.

4.1 Persistence and red noise

Persistence forecast experiments (’the weather remains in its present state’) in
a red noise environment are analysed analytically. The surrogate atmosphere
is red noise generated by a first order auto-regressive Gaussian process, AR(1),
which includes stochastic forcing zi added with each time step ∆. The process
is discrete in time and continuous in the state variable X, represented by fluc-
tuations, X(t) =< X > +X ′(t), about zero mean < X >= 0. Time (sample)
averaging is denoted by the brackets, <>, and the prime X ′ = X describes the
anomalies. The stochastic AR(1)-process is the discrete-time analogue of the
continuous-time Langevin equation with short-term memory. Thus, it is well
suited as a surrogate atmospheric variable and a null-hypothesis in significance
testing for atmospheric flow phenomena.

Time integration of the auto-correlation, C(r)/σ2 = ar, defines the integral
time scale, τ = 1/(1− a)or1/τ = 1− a ∼ ln(1/a), as a measure of the life time
of a perturbation. White noise (a = 0) forcing zi with zero mean <zi >= 0 is
defined by the auto-covariance, <zizj >= qδ(ti − tj) vanishing for i 6= j. The
related white noise spectrum Sz = σ2

z∆ can be defined by the unit time step,
∆, so that q = σ2

z . The variance of the response, σ2 =< (X− < X >)2 >, is
related to the noise or random forcing intensity σ2

z = σ2(1−a2), which is 1−a2

of the total variability. The deterministic part of the fluctuations contributes
by a2 6= 0, with the signal to noise ratio of a2/(1− a2).
Red noise (0 < a < 1): This first order auto-regressive process is one of the
simplest non-trivial processes simulating many observed aspects of the variabil-
ity in the atmosphere. For ω > 1/τ , the spectrum S drops by a ω−2 power-law.
A large (small) red noise parameter, a, describes weather regimes with large
(small) integral time scales, τ , which are associated with small (large) intensi-
ties of the white stochastic forcing spectrum S2

z . For sufficiently low frequencies
ω < 1/τ , the response spectrum flattens to white noise. Note that the random
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walk (a = 1) commencing at X(t) = 0, reaches X(t + r) =
∑

i zi, i = 1, . . . , r,
after r time steps. It is non-stationary as its variance grows linearly with time
<X2(t + r)>=<

∑

i z2
i >= rσ2

z , because <X(t + r)>= r <zi >= 0.

Table 4.1 Red noise atmosphere: AR(1)-process

autoregressive process

auto-covariance

spectrum

integral time-scale

X(t) = aX(t−1)+z1 = arX(t−r)+
∑

ar−1
i aizt−i

C(r) =<X(t)X(t + r)>= σ2ar

S(ω) = S2
z{1 + a2 − 2a cos(ω)}

τ =
∑

∞

r=0
C(r)/σ2 = 1/(1− a)

Chance, climate, and persistence: These forecasts serve as reference pre-
dictions F (r) for the lead time r. They are commonly evaluated by the mean
squared (ms) forecast error E =< (F − X)2 > sample averaged <> over the
forecast experiments; anomaly correlations are another measure of accuracy
frequently used by numerical meteorological centres. Chance forecasts, FR,
select initial values at random; the ms-error corresponds to the sqared dis-
tance between independent weather states, which is twice the variance of the
system, 2σ2. Climate is predicted, FC , by the climate mean; the ms-error cor-
responds to the system’s variance and defines an accuracy threshold to obtain
a predictability limit T . Persistence (FP ) is a fundamental reference forecast,
because only forecasts better than persistence have skill in the forecast of the
time derivative, which is the goal of prediction. Persistence, FP (r), predicts
future weather states, X(t), by the initially observed state X(t0) commencing
with the observation at the time t0 = t − r : FP (r) = X(t0) = X(t − r). Its
error, X(t) − X(t − r), is evaluated after the lead time r. Forecast F (r) and
verification X(t) are analysed as a pair of trajectories evolving in state space,
whose squared Euclidean distance defines the squared error e2 = (X − F )2,
averaged over all verification pairs <e2 >.

Table 4.2 Chance, climate, and persistence forecasts F(r) for lead time r and
their mean squared (ms) forecast errors E =< (F − X)2 > in the red-noise
atmosphere (<> forecast climatology).

model forecast ms error comment

chance
climate mean
persistence
combination

FR(r) = Xi

FC(r) =<X >
FP (r) = X(t− r)
F ∗(r) = αFP +βFC

ER(r) = 2σ2

EC(r) = σ2

EP (r) = 2σ2(1− ar)
E∗(r) = σ2(1− ar)

independent states
reference forecast

AR(1): α = a; β = 0

Predictability experiments (random and systematic errors): Mean squared
errors, which grow with increasing lead time r, show two domains that deserve
particular analysis. The short term memory affects initial errors, error growth-
rates and exit-times. Vanishing initial error, E(r = 0) = 0, characterises
persistence forecasting. A limit of predictability is reached at a lead time when
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the prediction error exceeds that of a reference forecast, which is conveniently
defined by the error of a forecast by the climate mean, σ2. Predictions at
lead time r > T have passed this predictability limit, T = ln(2)/ ln(a) (setting
EP (r = T ) = σ2). As T is proportional to the integral time scale τ of weather
regimes, ln(1/a)−1/τ , it follows that the effective time span for viable weather
forecasts is limited by the life span of its most energetic phenomenon. Finally,
saturation is reached at large lead times when forecast and verification become
independent, their correlation vanishes and the mean squared error E(r →
∞) = 2σ2 reaches the level of the mean squared distance between two randomly
chosen weather states (that is, a chance forecast).

In an imperfect model environment like this, the mean squared error is separa-
ble into a systematic, SE, and non-systematic or random component, RE.
Given the initial anomaly X0, its persistence forecast, F (r) = X0, up to
lead time r, needs to be compared with the proper verification time series,
which has commenced at this initial anomaly, that is the AR(1) time series
X(t) = arX(t− r) +

∑

i = 0r−1aizr−I , commencing from the r-th step back-
ward. Now, averaging the ms-error over a sample of the forecast-verification
pairs, ¡¿, conditional on a fixed initial anomaly, X0, yields the conditional fore-
cast error, E(r|X0) = X2

0 (1− ar)2 + σ2(1− a2r) (see Figure 4.1a, b). Averag-
ing over all squared conditional anomalies X0 leads to the unconditional error
budget and to the distinction between the forecast error’s systematic and non-
systematic or random components, SE = σ2

0(1 − ar)2 and RE = σ2(1 − a2r),
which combine to E = SE +RE (Figure 4.1c). The systematic error is smaller
than the random error and both approach unity for infinitely large lead times
or σ2. At the limit of predictability r = T , the systematic (non-systematic)
error attains 1/4 (3/4) of the climate variance. The initial error growth rate
vanishes for systematic errors but is finite for the random part.
Persistence forecasts averaged over the same initial anomalies X0 show the
systematic error increasing with the distance of the initial condition from the
climate mean, for which forecasts are expected to be better (SE = 0).

Table 4.3 Error statistics of imperfect model experiments: Forecasts F (r) and
verification X

error statistics definitions persistence in red noise

error

mean squared error

conditional

systematic

non-systematic

e = X − F

E(r) =<e2 >

E(r|X0)

SE =<(<F > − <X >)2 >

RE = E − SE

e(t, r) = X(t)−X(t− r)

E(r) = 2σ2(1− ar)

<X2
0 > (1− ar)2 + σ2(1− a2r)

σ2(1− ar)2

σ2(1− a2r)

error growth law

predictability limit

saturation error

Er = f(E, r)

E(r = T ) = σ2

E(r = ∞)

E(∞){1− E/E(∞)}/τ

T = ln(2)/ ln(1/a)

2σ2
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Error growth: Laws of error growth, Er = f(E, r), are similar to a Verhulst-
type equation, where growth is confined by a quadratic saturation error feed-
back. Persistence in red noise confines the error growth rate by a linear term:
Er = 2σ2ar ln(1/a). Substituting a = (1−E/σ2)1/r gives a law of error-growth,
Er ∼ E(∞){1 − E/E(∞)}/τ , which may replace the generally used Verhulst
equation of confined growth. Note that, not unexpected, the initial growth,
Er(r = 0) ∼ 1/τ , is large in processes with very short-term memory and the
growth decreases with increasing error size E(r). That is, the often misinter-
preted generalization that large errors grow slower, holds only for predictability
experiments in the same forecast environment (a = const.) where error growth
decreases when approaching saturation. If regimes change (0 < a < 1), the
conditioning climatology has to be included in the error growth analysis.

Lower and upper bounds of predictability : Persistence plus half-trend forecasts
of the state X(t) have been successfully used in empirical seasonal forecast-
ing: FT (r) = X(t − r) + 1

2{X(t − r) − X(t − 2r)}. The performance of
this scheme shows also interesting similarities with NWP models: Smaller
scales (that is, processes with shorter memory or smaller a) tend to have
larger initial errors, E(r = 0) = 2σ2(1 + a); smaller initial errors E(r = 0)
are associated with smaller initial error growth rates, Er(r = 0) = 2E(r =
0)(1− a)(1 + a)−1 ln(1/a). Both results lead to useful predictability estimates
which are similar to results obtained from practical weather forecasts:
(i) A lower bound of the limit of predictability T , which depends on the ini-
tial error (r = 0), is obtained by a linear extrapolation to E(r = 0) = 0. In
this sense the lower bound characterizes the forecast potential once analysis
schemes improve and initial errors tend to zero.
(ii) An upper bound may be reached when, in addition, the systematic forecast
error can be reduced to zero.
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Figure 4.1 Error of persistence forecasts of a red noise atmosphere: (a) Time
evolution of the squared error distribution: Mean, median, upper and lower
terciles (0.66, 0.33) of persistence and climate mean predictions, (b) error at
lead time r = 1 depending on initial anomaly-conditions, and (c) systematic,
non-systematic and total error.

4.2 Ensemble forecasts

Ensemble forecasts are introduced to estimate future probability distribution
of the atmospheric states to
(i) improve the forecast using a ensemble mean and
(ii) estimate the forecast error by the ensemble spread or variance. Ensemble
forecasts and forecast error statistics is analysed.

Perfect model/ensemble hypothesis: The perfect model/ensemble hypothesis
provides the background for introducing an ensemble of individual forecasts,
Fi(r) for i = 1, . . . ,M , and its ensemble average, [Fi] = M−1(

∑M
i=1 Fi), to

predict a field variable X. A perfect ensemble (r = 0) consists of ensem-
ble members Fi, which are chosen such that the mean distances between all
members [d2

ij ] = M−1
∑

i(
∑

j(Fi − Fj)
2/(M − 1)), represents the analysis er-

ror [e2
i ] = [d2

ij ] (see similarity to analog forecasting, section 2). In a perfect
model (r > 0) the same holds: The mean squared distance between all mem-
bers [dij(r)

2] corresponds to the mean squared error of all individual forecasts,
[ei(r)

2] = [(i(r) −X)2] = [dij(r)
2]. Thus the following results can be deduced

(see Table 2.5):
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(i) The mean-squared error of the ensemble average forecast is about half of the
mean of the squared errors of the individual forecasts: EM = 2[e2

i ](M + 1)/M .

(ii) There is a linear relation between the ensemble spread SM and the error of
the ensemble mean, EM = SM (M+1)/(M−1), because [d2

ij ] = 2SMM/(M−1).

Table 4.4 Perfect model/ensemble hypothesis: ensemble and error statistics

ensemble statistics [(Fi −X)2] = ([Fi]−X)2 + [(Fi − [Fi])
2]

ensemble mean

spread (X = 0)

distance (X = Fj)

FM = [Fi] = [F (r + i)] = M−1
∑M−1

i=0
F (r + i)

SM = [(Fi − [Fi])
2] = σ2{1− (1 + a)M−1(1− a)−1+

2a(1− aM )M2(1− a−2)}

[d2
ij ] = [(Fi − Fj)

2]

ensemble mean
and

systematic error

EM = [(FM −X)2] = [e2
i ]− SM

= σ2{1+(1+a−2ar(1−aM ))M−1(1−a)−1−
2a(1− aM )M−2(1− a)−2}

SEM = σ2{ar − (1− aM ))M−1(1− a)−1}

Imperfect model/ensemble (lagged-average forecasts): Practical forecasts are
almost always made in an imperfect model/ensemble environment. Here it is
simulated by an ensemble mean of M lagged persistence forecasts of the red
noise atmosphere,

[Fi(r)] = [F (r + i)] = M−1
M−1
∑

i=0

F (r + i), where F (r + i) = X(t− (r + i)).

The error and ensemble statistics can be deduced analytically: The predictabil-
ity statistics include mean and spread (or distances) of the ensemble mem-
bers and the conditional (systematic, non-systematic) errors made by ensemble
mean forecasts. The results are summarised (Figure 4.2):

The ensemble mean and individual forecast errors, EM (r) and E(r), show that
the lagged-average ensembles of persistence forecasts are, in general, worse
than the latest individual forecast (before the predictability limit T , Table 4.3,
is reached).

The ensemble spread SM is independent of the lead time r but changes with
ensemble size M . Furthermore, there is no direct error-spread correlation as
suggested by the perfect model/ensemble case. Instead, the following is noted.
Depending on lead time r and red noise memory τ (or a), there is an optimal
ensemble size (M = 8), whose members provide an optimal error-spread (EM ,
SM )-correlation (0.31); the mean generates minimum systematic error (r = 1,
τ = 5, a = 0.8).
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Figure 4.2 Lag-averaged persistence ensemble mean forecasts in a red noise
atmosphere (autocorrelation a = 0.8 ):
(a) Error changing with lead time and ensemble size,
(b) systematic, non-systematic and total error for M = 8 ensemble members,
(c) scatter diagram of error versus ensemble spread,
(d) systematic error changing with ensemble size M (lead time r = 1).

5 Some concluding remarks

Weather is non-linear and noisy and, therefore, provides a natural area for
scientists studying dynamics and statistics alike. It is not surprising that the
work of some explorers in these fields, for example, G. Walker, L.F. Richardson,
and E.N. Lorenz, has stimulated both fundamental and applied research even
outside the meteorological community. Here we illustrate forecasting research
by some examples to characterize weather and climate related key words like
predictability, probability and persistence.
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Predictability: Predictions of the first kind link forecast research with the
dynamical framework. Methods to estimate dimension and entropy from time
series are used to demonstrate analog ensemble forecasts, to which metric adap-
tion and ensemble size are added to minimize the ensemble mean forecast error.
Ensemble spread and forecast error prediction are briefly discussed.

Probability: Single station probability of precipitation is introduced to demon-
strate a classical linear prediction model for both weather state and forecast
skill, and its performance evaluation, which is an essential though frequently ne-
glected subject. Tropical cyclone track forecasting is a multivariate application
of both a linear and a non-linear approach combining numerical and empirical
techniques; the linear part is an error minimising combination, the non-linear
part is an analog-scheme demonstrating substantial forecast improvements (in-
cluding error prediction) when past forecast errors are incorporated as vari-
ables.

Persistence: A toy model ‘persistence in red noise’ describes predictability
analysis analytically in the practical forecast environment where systematic
model errors need to be considered. Many aspects of predictability analysis
are covered ranging from ensemble prediction to various forecasts limits. A
discussion on techniques based on optimal growth and breeding of initial errors
is postponed to later lectures, for which a suitable toy model needs to be
developed.

In summarizing, with predictability as leitmotif the lecture presents closely re-
lated subjects: Short term memory, analog ensemble forecasting and nearest
neighbour phase space statistics, dimension and entropy of dynamical systems;
probabilistic, ensemble and forecast skill predictions; and an idealised concep-
tual model for practical weather forecasting techniques in terms of time series
diagnostics.
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