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Abstract. The impacts of different spatial resolutions and different data assimilation schemes of the

available re-analysis data sets (NCEP/NCAR and ERA-40) on the assessment of drought variability

are analysed. Particular attention has been devoted to the analysis of the possible existence of a linear

trend in the climatic signal. The long-term aspects of drought over the globe during the last forty

years have been evaluated by computing the Standardized Precipitation Index (SPI) on 24-month

time scale. The SPI, in fact, seems to be a useful tool for monitoring dry and wet periods on multiple

time scales and comparing climatic conditions of areas governed by different hydrological regimes.

To unveil possible discrepancies between the analyses carried out with the two data sets, we studied

the leading space-time variability of drought by applying the principal component analysis (PCA) to

the SPI time series. Results suggest that on the global scale, the two re-analyses agree in their first

principal component score, but not in the associated loading: both re-analyses capture a linear trend,

though the areas where this feature should be most likely observed are not uniquely identified by the

two data sets. Moreover, while the ERA-40 unveils the presence of a weak net “global” trend towards

wet conditions, the NCEP/NCAR re-analysis suggests that the areas in the world characterised by

positive/negative trends balance to zero. At large regional scale, a good agreement of the results with

those obtained from the observations are found for the United Stated, while for the European sector

the two re-analyses show remarkable differences both in the first loading and in representing the

timing of the wet and dry periods. Also for these areas a linear trend, superposed on other short-term

fluctuations, is detectable in the first principal component of the SPI field.

Key words: drought assessment, re-analysis data, large-scale variability, standardized precipitation

index, principal component analysis

1. Introduction

An assessment of drought conditions in a particular area and its spatial-temporal
variability plays an important role in the development of practices for water re-
sources management and for the planning of measures devoted to the mitigation of
the negative impacts of future occurrences. For these purposes, several studies have
been carried out to develop objective methods for the evaluation of water supply
deficit, the estimation of the duration time of precipitation shortages or the return
time of dry events (see Keyantash and Dracup, 2002, for a review).
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However, the reliability of these analyses strongly depends on the quality of the
primary data. In particular, in assessing dry or wet periods, it is highly desirable to
have at hand a data set that: (i) is easy to access, (ii) uniformly covers the globe,
(iii) has a time-duration sufficiently long to be trustworthy in a statistical sense and
(iv) is optimal in the sense of capturing consistently dry and wet events. Most of the
available records may match one or more of these requirements, but not (especially
the first) all of them. Thus, in meteorological studies it has become a popular
practise to disregard raw observations in favour of “analysed data”, i.e. a set of
observations which have been processed through several quality checks, including
the ones of their consistency with atmospheric models of a great complexity. In
meteorology, the analysed fields are the result of complex interactions between
available observations and model results. The final products of this procedure are
uniformly gridded fields on a global scale of wind, temperature, specific humidity
and mass that are released for further applications. In the latest decade or so,
two of such re-analyses became easily available: one produced by the National
Centers for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) and the other one by the European Centre for Medium-Range
Weather Forecasts (ECMWF), the ERA-40.

Let us remark that precipitation, the main variable for drought assessment, is
not a primary variable of the re-analysis product, i.e. the observed precipitation
is not assimilated in the model, but it is evaluated by the physical model that has
assimilated other data. Thus it is fair to define the re-analysed precipitation as a
forecast product.

In principle, these data satisfy the criteria above described and, therefore, they
may be used to assess dry or wet periods over the globe for approximately the last
fifty years. At the best of our knowledge, apart from few exceptions (Bordi et al.,
2001), the optimality, for the assessment of dry/wet periods, of these re-analyses has
not been reported. Moreover, a comprehensive check of such re-analyses and their
reliability against observations is not yet available, especially when the purpose is
the evaluation of the long-term aspects of climatic features, such as dry and wet
periods. In particular, an intercomparison between the performances of the two re-
analyses in capturing the trend unveiled in some regions using observations (such
as Sicily and China, Bonaccorso et al., 2003; Bordi et al., 2004) is virtually absent.
Given the great deal of relevance in understanding the trend shown by dry and
wet spell analysis over the globe and the high potential in doing so by means of
re-analysis, the present paper is devoted to such an achievement, by sorting the
positive outcomes and signalling the negative ones.

At this aim, we decide to use, as an indicator of dry and wet periods, the
Standardized Precipitation Index (SPI) as defined by McKee (1993) and widely
applied in drought monitoring centres (see for example the National Drought Mit-
igation Center web site http://drought.unl.edu) or in some case studies (Hayes et
al., 1999; Loukas and Vasiliades, 2004; Tsakiris and Vangelis, 2004; Lloyd-Hughes
and Saunders, 2002 or Bordi et al., 2001, 2002, 2004 for its use in combination with
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a re-analysis product). This index, based only on precipitation, is, in fact, a useful
tool for capturing most of the climate variability associated with water shortage or
surplus in different areas. Moreover, we compute also the SPI over grid points over
the ocean. This may appear an unusual and exotic practice, but we argue that most
of driest or wettest events occur over the oceans. As we will see later on, the assess-
ment of the climate variability in these locations may unveil remote connections
among, apparently local, climate features. Therefore, the meaning of the SPI may
go beyond its usual understanding by acquiring the significance of climate variable.

Since the number of grid points available to us is far behind our capability
of assessing climate fluctuations at each location, we decide to extract the main
variability by using a principal component analysis, excluding however, any further
rotation to preserve the global nature of the climatic signal.

The paper is organised as follows. In section 2 data and methods for the analysis
are presented, while in Section 3 the main results for the globe, the United States
and the Euro-Mediterranean area are shown. In the final section some conclusions
and discussions are put forward.

2. Data and Methods of Analysis

2.1. DATA

The analysis is based on monthly precipitation time series, from which drought
is monitored. The two data sets used, the NCEP/NCAR and the ECMWF 40-yr
re-analysis (ERA-40), have different spatial resolutions and different assimilation
schemes have been applied in their re-analysis procedures. The ERA-40 precipi-
tation data are available at 2.5◦ × 2.5◦ regular latitude/longitude grid, while those
from the NCEP/NCAR have 1.9◦ × 1.9◦ horizontal resolution. The ECMWF data
are provided every six hours and it is possible to download total precipitation or
its different components (say convective and stratiform precipitation), while daily
or monthly precipitation rates are available for the NCEP/NCAR data set. The
NCEP/NCAR reanalysis, which is available back to 1948, comprises different data
sources such as observations from land stations and ships, upper air rawinsondes,
satellite and numerical weather forecasts, which are assimilated in an AGCM (At-
mospheric Global Circulation Model) and re-analysed by means of a “frozen” state
of an AGCM (for more information see Kalnay et al., 1996). The ECMWF 40-
year re-analysis project (ERA-40, Simmons and Gibson, 2000, Uppala, 2002) has
been recently finalised and the data are available for climatic studies. This analy-
sis of the state of the atmosphere, which covers the period from September 1957
to August 2002, complements the hitherto available NCEP/NCAR and ERA-15
re-analyses. The ERA-40 project applies a modern Variational Data Assimilation
technique (used in daily operational numerical forecasting at ECMWF) to the past
conventional and satellite observations.

Because the two data sets cover different periods, we choose the common one
ranging from January 1958 to December 2001. We carry out the analysis for the
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globe and the Euro-Mediterranean region (the area selected is 27.5◦–70◦N, 12.5◦–
62.5◦E). We also show the analysis for the United States derived from the CPC
(Climate Prediction Center, U.S.) unified precipitation data set (Higgins et al.,
2000). This Unified Raingauge Dataset (URD) has been established from multiple
sources of U.S. raingauge data. Tests to eliminate duplicates and overlapping sta-
tions, standard deviation and buddy checks were applied; subsequent gridding into
0.25◦ × 0.25◦(20◦–60◦ N, 140◦–60◦W) was accomplished by using a Cressman
(1959) scheme. The data set covers the period from January 1958 to December
1998 and we use this period for the analysis over the United States.

2.2. STANDARDIZED PRECIPITATION INDEX (SPI)

Drought conditions of the areas under study have been assessed by applying the
SPI. The index permits to monitor both dry and wet periods and requires for its
computation only long time series of monthly precipitation. The SPI is computed
by fitting a probability density function to the frequency distribution of precipi-
tation summed over a selected time scale (usually 1, 3, 6, 12 and 24 months are
used). This is performed separately for each month of the year and each location in
space. Each probability density function is then transformed into the standardised
normal distribution, which readily allows comparison between distinct locations
and analytical computation of exceedance probabilities. Thus, the SPI is a Z-score
or the number of standard deviations (above or below) that an event deviates from
the normalised mean of the month considered. Values of the standardised normal
variable are grouped into classes that identify the severity level of a drought or a
wet event (McKee et al., 1993; Bordi and Sutera, 2001).

Because the index can be computed for multiple time scales by considering the
cumulated precipitation over a selected period, different effects of wetness/dryness
can be specified: short time scales affect growing seasons, long time scales charac-
terise hydrologic balances with a net water gain/loss. The time scale of 24 months
is usually considered a suitable time scale for the investigation of the long-term
aspects of dryness and wetness (see Keyantash and Dracup, 2002), thus we decide
to focus our analysis on this time scale.

2.3. PRINCIPAL COMPONENT ANALYSIS (PCA)

The leading time and spatial variability of drought has been investigated apply-
ing the Principal Component Analysis (PCA) to the SPI on 24-month time scale
(SPI-24). The PCA is a classical statistical method widely used in data analysis,
for identifying patterns, and compression, reducing the number of dimensions.
The method consists of the following steps (see for example Rencher, 1998 or
Peixoto and Oort, 1992). From a sample of vectors x1, . . ., xM of n components
(i = 1, . . ., n), we can calculate the sample mean (μx ) and the sample covariance
matrix (Cx ). Thus, from a symmetric matrix such as the covariance one, we can
calculate an orthogonal basis by finding its eigenvalues (λi ) and eigenvectors (ei ),
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which are the solutions of the characteristic equation:

|Cx − λI | = 0,

where I is the identity matrix having the same order than Cx and | · | denotes the
determinant of the matrix. By ordering the eigenvectors in the order of descending
eigenvalues (largest first), one can create an ordered orthogonal basis with the first
eigenvector having direction of largest variance of the data. In this way, it is possible
to find directions in which the data set has the most significant amounts of variance.
Let A be a matrix consisting of eigenvectors of the covariance matrix as the row
vectors, by projecting the original data vector on the orthogonal base we get the so
called “principal components (PC) scores” as:

y = A(x − μx ).

On the other hand, the original data can be reconstructed using the property of an
orthogonal matrix A−1 = AT , where the up-script T denotes the transpose:

x = AT y + μx .

In the present work, the input data for the PCA are the time series of the SPI-24
at each grid point. Moreover, the SPI time series, by definition, have zero mean,
thus in our case μx = 0. In guiding a proper interpretation of the results shown
in the next section, we remark that the spatial patterns (eigenvectors), properly
normalised (divided by their Euclidean norm and multiplied by the square root of
the corresponding eigenvalues), are called “loadings”; they represent the correlation
between the original data (in our case, the SPI-24 time series at single grid points)
and the corresponding principal component time series.

To reduce the degrees of freedom, we may select only few spatial patterns to
represent the statistical properties of the original field. However, there is no general
rule to decide how many eigenvectors should be retained, though few methods have
been proposed (Rencher, 1998). One of these criteria is based on the percentage of
variance accounted for, i.e. it is recommended to achieve a relatively high percent-
age, say 70–90%. For our purpose we focus the attention on the main pattern of
variability that explains the most percentage of variance of the SPI-24 field, leaving
the latter problem open for other investigations.

3. Global Scale and Regional Analyses

Let us consider, as shown in Figure 1a and b, the first loadings obtained by de-
composing the total variance of the SPI-24 by means of a PCA for both ERA-40
and NCEP/NCAR data. They explain respectively 28.2% and 18.2% of the total
variance (see Table A1 in the Appendix also for the statistics described later on in
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the text). The associated principal component scores are shown in Figure 1c. The
two signals have a high correlation coefficient (0.96) and denote a long-term linear
trend (see the straight lines in the figure) crossing the time axis around the eighties.
In the Appendix (see Table A2) values of the angular coefficients and intercepts,
with the corresponding error bands at 95% confidence level, are listed together
with the Sum Square Error and the R-square statistics. It can be noted that the two
re-analyses unveil a common linear trend in the first principal component of the
SPI-24 field, which explains more than 80% of the total variation of the signal. The
presence of this long-term trend means that, looking Figure 1a and b, the red (blue)
areas have been switched from prevalent wet (dry) conditions to prevalent dry (wet)
conditions. In particular, the first loading for ERA–40 has positive correlation with
the corresponding score greater than 0.5 in about 5.4% of the total grid points and
negative correlation less than –0.5 in about 44.9% of points. For NCEP/NCAR the
percentage of grid points showing values greater than 0.5 is about 15.0%, while that
with values less than –0.5 is about 13.5%. This means that in most of grid points
the SPI-24 time series for ERA-40 have a high anti-correlation with the PC score
shown in Figure 1c; such behaviour is not confirmed by the NCEP/NCAR data set.
On the other hand, the integrals in spherical coordinates of the first loadings provide
values of –0.16 for ERA-40 and 0.03 for NCEP/NCAR, denoting the presence of
a weak “global” trend towards wet conditions for the ECMWF re-analysis and the
absence of a “global” linear trend for the other data set, i.e. the areas in the world
characterised by positive/negative trends balance themselves.

Moreover, it must be noted that the features characterising the loadings appear to
unveil a relationship among climate fluctuations in seemingly remote areas. Thus,
for example, the equatorial Pacific behavior covaries with mid-latitude regions at
least for the time scale of the SPI here considered. However, when we inspect the
locations where this long-term trend covaries the most, we easily detect striking
differences between the two data sets. In illustrating more quantitatively these
differences we first interpolate the two loadings on a common grid of 1◦ × 1◦

degree and then compute their difference (NCEP minus ERA-40, see Figure 1d). It
can be seen that the two loadings have a good agreement (absolute differences less
than 0.5) in about 65.3% of the points, with a prevalence of positive differences
greater than 0.5 (32.3% of points) with respect to negative (2.4% of points) in
the remaining points. Thus, we may conclude that in the last forty years or so, a
linear trend in the SPI-24 is detected by the two independent data sets, although
the locations where this trend should be observed most likely remain not uniquely
identified by the two re-analyses.

To be sure that these differences are not due to the coarse spatial resolution of the
ERA-40 precipitation field, we employed the ‘kriging’ technique (Cressie, 1991)
to this data set and repeated the analysis (say, we compute the SPI-24 and apply
the PCA). The analysis (here not shown) provides results in agreement with those
obtained by using the original precipitation data, suggesting that the origin of the
detected differences cannot be uniquely attributed to the spatial resolution.
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In ascertaining if the source of the above discrepancies are related to the per-
formance of the PCA on a global scale, we investigate the PCA decomposition on
large but limited areas where the two global loadings appear close or moderately
close, namely the U.S.A. and the European sector. Notice that, roughly speaking,
this area reduction is equivalent to a rotation of the first few eigenvectors. For the
first area we have also the opportunity to check the two re-analyses against a data set
(URD), which is in compliance with the requirements outlined in the introduction
and it is easy to get from the web (http://www.cdc.noaa.gov).

3.1. CONTINENTAL U.S.A.

Over the continental U.S.A., the first loadings of the SPI-24 for URD, ERA-40
and NCEP/NCAR are shown in Figure 2a–c. They explain, respectively, 22.0%,
64.2% and 38.3% of the total variance. The associated PC scores are displayed in
Figure 2d. As for the global case, a long-term trend, embedded on other short-term
fluctuations, is recognizable for ERA-40, NCEP/NCAR and URD cases, strongly
supporting the assertion about the existence of this feature. Moreover, the first PC
scores from ERA-40 and NCEP/NCAR correlate about 0.84, while they correlate
with that from URD respectively 0.78 and 0.88. At variance of the global case, the
trend statistics, shown in the Appendix, suggests that the parameters of the linear
fitting for the re-analyses and observations are different at 95% confidence level
and that the fits explain different percentages of the total principal components
variations (ERA-40 shows the highest value, about 72.5%). However, although
we cannot firmly conclude that the three data sets unveil the same linear trend,
we surely may conclude that there is a high degree of similarity and that both
re-analyses reasonably comply when compared with observations.

This similarity is reflected also by the first loadings: the absolute differences in
the first loadings of NCEP and ERA (again interpolated to the same 1◦×1◦ grid) are
less than 0.5 in about 97.7% of grid points and the main differences (about 2.3%)
are concentrated in the south-eastern and northern part of the Continental U.S.A.
Furthermore, the two loadings show a good agreement also with the first loading
obtained with the observations (URD, see Table A1 for details). On these grounds,
one is led to think that each re-analysis may be a good proxy for data.

3.2. EUROPEAN SECTOR

Next, in Figure 3a–c the first loading patterns and scores of the SPI-24 computed for
the European area using ERA-40 and NCEP/NCAR precipitation data are shown.
They explain, respectively, 22.9% and 21.7% of the total variance. Both PC scores
are characterised by a linear trend superimposed to short-term fluctuations, which
provide a low degree of co-variability between the two signals. The correlation
coefficient of the two PC scores is, in fact, 0.53. The trend statistics suggests that
the linear fits explain different percentages of the scores variability (ERA-40 about
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33% and NCEP about 72%) even if the NCEP/NCAR trend is within the error band
of that for ERA-40.

On the other hand, the leading spatial pattern for ERA-40, shows positive corre-
lation between the SPI-24 time series and the corresponding score in the Balkans,
Italy, central Europe and Spain, and negative correlations elsewhere. The first load-
ing for NCEP/NCAR, instead, reaches maximum values in North Africa, central
Spain, north-eastern Europe, part of Italy, Balkans, Greece and Middle Orient. For
ERA-40 the first loading has no grid points with values greater than 0.5, while about
39% of grid points have values less than –0.5. The NCEP/NCAR loading, instead,
has positive values greater than 0.5 in about 37% of points, while values less than
–0.5 in only 2% of points. This means that the loading for ERA-40 shows prevalent
negative correlations between the SPI-24 time series and the corresponding PC
score, with opposite occurrences in the case of NCEP/NCAR.

Although the spatial patterns seem to preserve the main features shown by the
global scale analysis, some discrepancies are now more noticeable. From a compar-
ison of the loadings (see Figure 3d) no discernable pattern may be recognised, since
the two maps differ virtually everywhere. The two loadings, in fact, have a good
agreement (absolute differences less than 0.5) only in about 22% of the points, and
in the remaining points the loading differences are strictly positive and greater than
0.5. However, we must point out that the agreement between the two re-analyses
is dependent on the area selected as the European sector; better results might be
obtained by choosing other areas.

To shed light on these discrepancies we directly compare the index time series,
instead of loadings and scores, and proceed as follows. We consider a location
over Europe where a remarkable difference between the first loadings have been
detected, i.e. where the SPI-24 time series for ERA-40 has a negative correlation
with the PC-1 (i.e. the trend), while the index time series for NCEP/NCAR has
positive correlation with the corresponding score.

For instance, let consider the ERA-40 grid point at 50.0N-25.0E and the near-
est four points in the NCEP/NCAR grid (say 50.53N–24.38E, 50.53N–26.25E,
48.63N–24.38E, 48.63N–26.25E). Next, we compute the SPI-24 time series aver-
aged over the latter points. The time behaviours of these SPI series are shown in
Figure 4. The signals have a correlation coefficient of about 0.1, justifying the lack
of correlation when the first principal component is considered. It must be noted,
however, that, up to the seventies, the two re-analyses show a remarkable different
SPI behaviour, while in the remaining part of the record the two series seems to
be more alike. Thus, we suspect that the low correlation between the two SPI time
series is mainly related to the differences occurring at the beginning of the record,
which are crucial in determining the first principal component linear trend. Since
in this early decade the data considered had a lower resolution (satellite data were
virtually absent), we may suggest that the observed difference may be attributed to
the two assimilating models. Thus, a careful analysis of the two models may lead
to an understanding of the observed discrepancies.
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Figure 4. SPI-24 time series at a selected location over Europe (see the text): thick line refers

to ERA-40 data set, thin line to NCEP/NCAR.

4. Summary and Conclusions

The aim of the paper was to compare the performances of two re-analyses in
capturing the linear trend unveiled in some regions of the world by observations or
General Circulation Models which, nowadays, is considered as the most important
feature of the climatic signal. The long-term aspects of dry and wet periods over
the globe have been evaluated by computing the Standardized Precipitation Index
over 24-month time scale. The index computation has been based on the available
ERA-40 and NCEP/NCAR re-analysis precipitation data. Then, the leading spatial-
temporal variability of dryness and wetness has been assessed by applying the
Principal Component Analysis to the SPI time series.

Results suggest that there are noticeable differences between the analyses car-
ried out with ERA-40 and NCEP/NCAR products that cannot be attributed to the
different spatial resolutions of the two precipitation fields. On the global scale, the
two re-analyses agree in their first principal component score, but not in the asso-
ciated loading: both re-analyses capture a linear trend, though the areas where this
feature should be observed most likely are not uniquely identified by the two data
sets. Most importantly, while the ERA-40 unveils the presence of a weak “global”
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trend towards wet conditions, the NCEP/NCAR re-analysis suggests that the areas
in the world characterised by positive/negative trends balance to zero.

At continental scale, a good agreement of the results with those obtained from
the observations are found for the United Stated, while for the European sector
the two re-analyses show remarkable differences both in the first loadings and in
representing the timing of the wet and dry periods. Also for these areas a linear
trend is detectable in the first principal component of the SPI-24 field, although
the sum square errors of the linear fits are higher compared to the global case.
Moreover, an analysis carried out in a particular location over Europe suggests
that probably some differences between the two re-analyses might be related to
remarkable discrepancies occurring in the first part of the precipitation record.

In concluding, results show that both re-analyses capture a trend as a primary
feature of the climatic signal, which is present both at global and large regional
level, though the spatial location of this climatic behaviour differs greatly between
the two re-analysed data sets. The discrepancies unveiled may be related to the
different assimilation schemes adopted to produce the re-analysis products; thus,
a more stringent comparison with the rain gauge observations would be useful to
properly adopt the re-analysis as a tool for drought monitoring purposes. Given that
the detected trend may be associated to a climate change, our study suggests that, in
the last few decades, there have been some winners and some losers. Unfortunately,
the present re-analyses do not allow to uncover who is in one category or in the
other.
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Appendix

Comparison among the first loadings and PC scores: In the following Table A1 all
the information relative to the first loading and score of the SPI-24 for the globe,
United States and Europe, obtained using the precipitation data from ERA-40,
NCEP/NCAR and URD data sets, are summarised.
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Table A1. Information relative to the first loading and score of the SPI-24 for

the globe, United States and Europe, obtained using the precipitation data from

ERA-40, NCEP/NCAR and URD data sets

GLOBE Percentage of variance explained by the first loading

ERA 28.2%

NCEP 18.2%

PC-1:

Corr. Coeff. between ERA and NCEP 0.96

NCEP loading

Grid points with values >0.5 15.0%

Grid points with values <−0.5 13.5%

ERA loading

Grid points with values >0.5 5.4%

Grid points with values <−0.5 44.9%

Loading differences (NCEP-ERA)

Grid point with absolute differences < 0.5 65.4%

Grid point with differences >0.5 32.3%

Grid point with differences <−0.5 2.3%

U.S.A Percentage of variance explained by the first loading

URD 22.0%

ERA 64.2%

NCEP 38.3%

PC-1

Corr. Coeff. between ERA and NCEP 0.84

Corr. Coeff. between URD and ERA 0.78

Corr. Coeff. between URD and NCEP 0.88

NCEP loading

Grid points with values >0.5% 0.0%

Grid points with values <−0.5 68%

ERA loading

Grid points with values >0.5 0.0%

Grid points with values <−0.5 98.5%

URD loading

Grid points with values >0.5 0.0%

Grid points with values <−0.5 39.3%

Loading differences (NCEP-ERA)

Grid point with absolute differences < 0.5 9.7%

Grid point with differences >0.5 2.3%

Grid point with differences <−0.5 0.0%

Loading differences (ERA-URD)

Grid point with absolute differences < 0.5 79.6%

(Continued on next page)
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Table A1. (Continued)

Grid point with differences >0.5 0.0%

Grid point with differences <−0.5 20.4%

Loading differences (NCEP-URD)

Grid point with absolute differences < 0.5 94.8%

Grid point with differences >0.5 0.0%

Grid point with differences <−0.5 5.2%

Europe Percentage of variance explained by the first loading

ERA 22.9%

NCEP 21.7%

PC-1

Corr. Coeff. between ERA and NCEP 0.53

NCEP loading

Grid points with values >0.5 37.3%

Grid points with values <−0.5 2.0%

ERA loading

Grid points with values >0.5 0.0%

Grid points with values <−0.5 39.1%

Loading differences (NCEP-ERA)

Grid point with absolute differences < 0.5 21.8%

Grid point with differences >0.5 78.2%

Grid point with differences <−0.5 0.0%

TREND ANALYSIS

The fitting process requires a model that relates the observed data to the predictor
data with one or more coefficients. To obtain the coefficient estimates, the least
squares method is commonly used, which minimizes the summed square of resid-
uals (SSE). The residual (r) for the ith data point n is defined as the difference
between the observed response value yi and the fitted response ŷi ; and is defined
as the error associated with the data:

ri = yi − ∧
yi

SSE =
n∑

i=1

r2
i =

n∑
i=1

(
yi − ∧

yi
)2

In our case, to unveil the presence of a long-term trend, we use the linear least
squares method to fit a linear model to the first principal component time series of
the SPI-24. Thus, we have:

∧
y =

∧
PC1 = p1 t + p2,

with p1, p2 the coefficients of the linear model and t the time.
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Table A2. Values of the angular coefficients and the intercepts, with the corresponding error

bands at 95% confidence level, of the linear trend detected in the first PC score of the SPI-24 for

the three areas considered and for the different precipitation data sets used for the computation

of the index. The last two columns of the table refer to the Sum Square Error (SSE) and the

R-square statistics.

Area Data set p1(year−1) with p2(dimensionless) with SSE R-square

95% confidence bounds 95% confidence bounds

Globe ERA-40 −0.0749 (−0.0779, −0.0719) 148.4 (142.5, 154.3) 85.8 0.8298

NCEP −0.0769 (−0.0795, −0.0744) 152.4 (147.3, 157.4) 62.9 0.8751

U.S.A. ERA-40 −0.0754 (−0.0796, −0.0712) 149.3 (140.9, 157.6) 128.5 0.7254

NCEP −0.0658 (−0.0712, −0.0604) 130.2 (119.6, 140.9) 209.5 0.5523

URD −0.0559 (−0.0622, −0.0497) 110.7 (98.3, 123.0) 281.4 0.3987

Europe ERA-40 −0.0471 (−0.0530, −0.0412) 93.3 (81.59, 105.00) 338.7 0.3266

NCEP −0.0698 (−0.0736, −0.0660) 138.3 (130.8, 145.8) 140.7 0.7208

In Table A2 we summarize the values of the angular coefficients (p1) and the
intercepts (p2), with the corresponding error bands at 95% confidence level, of the
linear trend detected in the first PC score of the SPI-24 for the three areas considered
and for the different precipitation data sets used for the computation of the index.
The last two columns of the table refer to the SSE and the R-square statistics. A
value of SSE closer to 0 denotes a better fit. The R-square statistic measures how
successful the fit is in explaining the variation of the data and is expressed as:

R − square = 1 − SSE

SST

where the SST is the sum of squares about the mean and is defined as SST =∑n
i=1 (yi − y)2. It must be noted that in our case the PC scores are standardised,

thus we have y = 0. The R-square can take on any value between 0 and 1, with a
value closer to 1 indicating a better fit. For example, an R2 value of 0.8298 means
that the fit explains 82.98% of the total variation of the data about its average.
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