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Summary 

The instability due to cumulus heating in the inner region of 
a balanced slab-symmetric two-layer model with an under- 
lying Ekman layer is analysed. In satisfying the water balance 
the heating comprises two terms: One can be associated 
with the wind-evaporation feedback (representing a 
WISHE-type* parameterisation) and replaces the CISK- 
type heating originally employed in the classical Charney- 
Eliassen model. The second is associated with the mid-level 
vertical mass flux. The model comprises two regimes of 
instability depending on the scale and the dominance of 
either one of the heating terms: (i) Dominance of the 
WISHE-type heating is characterised by hyperbolic mer- 
idional eigenfunctions, which represent the spatial structure 
of the inner region. It requires sufficient intensity of the 
surface heat exchange to obtain finite growth rates within a 
finite scale range. Beyond a certain threshold of the heating 
parameter the unstable scale range extends to infinitely 
large values. The maximum growth rates, though relatively 
small, occur at the smaller scale limit, which separates both 
regimes. (ii) Dominance of the mid-level term requires 
trigonometric meridional eigenfunctions to represent the 
spatial structure of the inner region; the growth rates range 
from zero to infinity associated with a finite range of spatial 
scales. It joins the other regime at its large growth (and 
small scale) boundary. In this linear model the influence of 
wind induced surface heat exchange tends to enlarge the 
spectrum of spatial scales effected by the heating induced 
instability. 

* WISHE = Wind Induced Surface Heat Exchange. 

1. Introduction 

Riehl, in 1954, emphasized the importance of 
heat fluxes from the sea in the genesis of tropical 
storms. In an early modelling attempt, Charney 
and Eliassen (1964) introduced a linear dynami- 
cal system to describe the response of the large 
scale flow of a tropical f-plane atmosphere on 
cumulus heating induced by Ekman pumping. 
The implicite assumption of an infinite (sea 
surface heat and moisture) reservoir is a common 
feature of linear modelling. The resulting instabil- 
ity shows two modes of behaviour. The fast mode 
has been rejected (growing with infinitely fast 
rate atfinite horizontal scale) non-physical while 
the slow mode (growing with finite, though 
relatively slow, maximum rates at zero scale) has 
been coined CISK (conditional instability of the 
second kind). This instability seems to be losing 
favour as a suitable theory for the genesis of 
tropical disturbances, although the dynamical 
feedback mechanism and the appropriate water 
balance involved have not been described until 
rather recently. One of the reasons is that non- 
linear dynamical systems are being advocated to 
describe the large scale flow response on a 
cumulus heating parameterised by a wind 
induced surface heat exchange (WISHE, after 
Yano and Emanuel, 1991). 
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A WISHE-type heating instead of a CISK 
parameterisation is used to drive a Charney- 
Eliassen type model and to interpret the in- 
stability in terms of Ooyama's (1997) review on 
'cooperative intensification and maintenance 
theory' of tropical systems, the participants of 
this cooperation being the primary and the 
secondary circulation. The model's moisture 
budget requires a mid-level heating which 
depends on the secondary circulation, while the 
parameterisation may be attributed to the 
primary circulation. This model is neither 
intended nor capable to prove whether CISK or 
WISHE is closer to reality; it serves as a system 
for a linear normal mode or asymptotic 
growth analysis and, possibly, provides a step 
towards future WISHE and CISK comparisons. 
In this sense, this linear WISHE-type instability 
analysis lies at the simplistic side of the 
spectrum of model complexity. Section 2 
describes the model, the solutions, and the 
dispersion-relation. The structures of the two 
modes of response are described in the subse- 
quent sections 3 and 4. A conclusion (section 5) 
summarises the analysis. 

2. Model Equations and Solutions 

Following Charney and Eliassen (1964) a two- 
layer model in pressure coordinates is employed 
for inviscid, balanced disturbances of a stratified 
basic state at rest. The vertical geometry for the 
dynamical system is presented in Fig. 1. Slab- 

Levels Dynamic Moisture 
Variables Variables 

l 0 COo 

AP 1 . . . . . . . . . .  v 1 ~ 

2 c~ Q2 q2 

AP 3 . . . . . . . . . .  v a q)3 

4 w4 q4 
MIXED LAYER 

SST 

Fig. 1. The two-layer model geometry of the classical 
Charney and Eliassen (1964) and Mak (1981) model. See 
text for notations 

symmetry on an f-plane simplifies the dynamic 
equations which, after McBride and Fraedrich 
(1995), are: 

druU 1 -- f v  1 = 0 O'uU3 -- f~3 = 0 

ful = -O~l / Oy fu3 = -O~3 / Oy 
Ovl/Oy + (w2 - 030)lAp = 0 

OV3/Oy 4- (034 -- 032) / /kP = 0 

oJ 0 = 0 034 = K O u 3 / O y  

- - 6 1 )  = (PS/Rd)032 + Q,/cp 
Q2/cp = heating lyl < b 

Q 2 / c p  = 0 lYl > b (2.1) 

Subscripts are attached to the growth rate, or, 
serving as tracers to identify the origin for 
later simplifications. The primary circulation is 
characterised by the zonal balanced flow u, the 
secondary circulation induced by Ekman pump- 
ing represents the meridional circulation and is 
associated with the inverse Ekman time-scale 
E=Kf/~p~O.35/day for the Ekman layer 
depth K =  50 hPa, the Coriolis parameter 
f=0 .377  10-4s -1 and the pressure interval 
Ap ~ 450hPa. The associated Rossby deforma- 
tion radius R = (Ap2S/f2) 1/2~ 1700 kin, used to 
normalise the y-coordinate, can be introduced 
with the constant static stability parameter, 
S ~ 2 10 -2 m 2 sec -2 hPa 2. 

The diabatic heating, Q2, occu r s  in an 
inner domain lYl < b with upward motion while 
adiabatic processes govern the outer region 
[Yl > b. The formulation of the diabatic proces- 
ses requires consideration of the moisture 
budget, before a parameterisation of the 
cumulus heating can be introduced in a consis- 
tent manner. 

2.1 Moisture Budget and Cumulus 
Parameterisation 

The moisture budget is used to derive and inter- 
pret the cumulus heating considering a vertical 
column with conservation of equivalent poten- 
�9 4 4 

tlal temperature: J0 Q dp = - L  ~o (dq/dt)dp = 
Q z A p .  Neglecting the terms f Oq/Otdp and 
fv .  Vqdp, integrating by parts with moisture 
being carried at the middle level 2 and the 
boundary 4, one obtains (see McBride and 
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Fraedrich, 1995): 

f 
O 2 A P  = - L  I (dq/d t )dp  

- L  I" cJ(Oq/Op)dp 

- L { I o 2 2 q 2  q- I (o24 -q- o22) (q4 - q2) } 

= -IL{O24q4(1 - q2/q4) + O22q4}. (2.2) 

That is, cumulus heating comprises two compo- 
nents: (a) The first term on the right hand side, 
O24q4(1 -q2 /q4) ,  can be associated with the tur- 
bulent moisture flux at the sea surface, p~ (w'ql)d c, 
which is conveniently parameterised in terms of 
the primary circulation at level 3: 

O24q4 ~ --gPs( Wl qf)sfc ~ --CtPsg(qsfc -- q4)lu3] 

(2.3) 

with the turbulent transfer coefficient ct. This 
yields o24q4(1 - q2/q4) ~ - a  ctpsg(q~fc - q4)lu31 
setting 2q2 ~ q4. A comprehensive moisture 
analysis requires eddy plus scaled transports 
including CISK-type heating. This will be dis- 
cussed elsewhere. Note that sign(ct) = sign(u3) 
provides the proper sign-relation when 
deducing the solution of the instability problem. 
This is a primary circulation induced heating (or 
wind induced surface heat exchange, WISHE). 
Introduction to the thermodynamic equation 
leads to the WISHE-type parameterisation which 
is characterised by the parameter ~5 = - ( L / c p )  
(1 /Ap)  l (w4q4) (1 - qz/qm)/lu31 = �88 
- -q4) / (Cp/kp) .  (b) The second term in the water 
balance (2.2), Io22q4, is a secondary circulation 
induced heating, characterised by the parameter 

- I  lo2 O22 T = ( L / c p ) ( A p S P / R d )  (~ 2 q 4 ) /  ~ 80q4: 

HEATING Q2/cp (51u31 - (pg/Rd)To22 

(2.4) 

2.2 Solutions 

Combination of the dynamic Eqs. (2.1) with the 
cumulus parameterisation (2.4) and normalising 
the y-coordinate with the Rossby deformation 
radius, R 2 = A p 2 S / f  2, gives 

outer (y>lb/R[) : Vyy - aZv  = 0 
(2.5) 

inner (y<[b/Ri) : vyy + Dvy + B2v = 0 

The evaporation-wind feedback which appears 
only in the Vy-term is associated with D. The 
external parameters, A, B, and D are 

A 2 = (2o- u + E)/[cr~, + E] 

B 2 ~- (crr (2or, + E) / [ (?  - 1)(or, + E)] 

D = - 2 W / [ ( 7  - 1)(or, + e)]. (2.6) 

The following comments on the three parameters 
are in order: 

An inverse WISHE time-scale, W, can be intro- 
duced characterising the WISHE-type heating, 
2W = (6/R)(RclAp/pf)  ~ [ctr(qsfc-q4)/cpTs] 
(g / f )R  -1 ~ (105/day) �9 ct(qsfc-q4) ~ 0.50/day 
with ct ~ 1.0 10 .3 and (qsfc - q4) ~ 5.10-3, 
where Ts ~ 2p/psRd ~ 290 K with p = 500 hPa. 
This is a useful measure to compare cumulus 
heating and frictional damping characterised by 
the inverse Ekman time-scale, E = K f / A p  
0.35/day. 

An estimate of the T-parameter, which char- 
acterises the mid-level heating gives T = (L/cp) 
(ApSp/Ra)  -1 (lo22q4)/CO2 ~ 80q4 ~ 1.2>1. 

Realistic parameter values for the inverse 
Ekman and WISHE time scales are E ~  0.35/ 
day and W ~  0.25/day, and the mid-level heating 
term is E(T - 1) 1/2 ~ 0.2/day with T ~ 1.2. The 
condition T = 1 leads to the special case of a 
linear inner region profile, Vy + (B2 /D)v  = O. 

In the inner domain one has to realise that 
sign(ct) = sign(u3) requires a sign-change in W, 
if an eastward or negative zonal component 
(associated with a southward or negative mer- 
idional wind) is to generate evaporation. This 
leads to W< 0 and thus D>0 ,  and meridionally 
trapped perturbations. 

The outer solutions are straight foreward; for 
v3 and ~b3 one obtains: 

OUTER V3o = - V o e x p { - A ( l y l  - b)} 

03o = -Vo( f2 /o - , ) (1 /A)  

�9 exp{-A( lYl -b )} .  (2.7) 

The structure of the inner solution depends on the 
root, - I  D • (�88 2 - B2) 1/2, of the characteristic 
polynomial where the sign of D describes the 
damping of the inner spatial eigenmode. Two 
regimes may be distinguished: 

(a) r 2 = (�88 D 2 -- B 2) > 0: The WISHE-type heat- 
ing, W or �88 2, dominates over the secondary 



86 K. Fraedrich: Response of Tropical Convective Complexes 

circulation influence, B 2. The spatial structure of 
the solution is formed by hyperbolic eigenfunc- 
tions in the inner convective area lyl<b. Realis- 
ing sign(ct) = sign(u3) means that a southward 
(negative) meridional wind is associated with an 
eastward (negative) zonal component generating 
(positive) evaporation with W< 0. This provides 
a damped meridional structure (D > 0 for y > 0, 
and vice versa) corresponding to meridionally trap- 
ped perturbations: 

MODE-1 v3i = - V i e x p ( - 1 D y ) s h ( r y )  

~3i = + V i f  2 / (o .uB2)exp ( -1DY)  

�9 { - �89  - rch(ry)} 

(2.8) 

(b) r 2 =  (B 2 -  1D2)>0: The secondary circula- 
tion induced heating B 2, dominates over the 
WISHE term, W or �88 2. The spatial structure of 
the solutions is formed by trigonometric eigen- 
functions in the inner convective area lyl<b. 
Again, realising that sign(ct)= sign(u3), the 
solutions describe meridionally trapped perturba- 
tions in terms of trigonometric (and not hyber- 
bolic) functions. Thus, for 7 > 1, one obtains the 
meridional wind and the geopotential height 
for y>0:  

MODE-2 v3i = - Vi exp( -  I Dy )sin(ry) 

03i = + V i f  2/(o-uB2)exp(-1Dy) 

�9 { -  1Dsin(ry) - rcos(ry)}. 

(2.9) 

For brevity and reference we refer to these 
regimes as mode-1 and mode-2. 

PURE REGIMES: Before analysing the stability 
properties of this model, the cases of pure modal 
regimes are discussed: (a) The special case "~ = 0 
abandons the influence of the secondary circula- 
tion on cumulus heating. In this case, - A  2 
replaces B 2 and D' = -2W/(o. ,  + K f / A p )  > 0 
replaces D in the inner domain. The resulting 
dynamical system leads to meridionally un- 
trapped solutions which, therefore, have to be 
rejected as non-physical. (b) The special case 
W = 0  emerges as a singular solution which 
abandons the influence of the WISHE-type 
heating. This case requires D = 0 in the inner 
domain and the resulting dynamical system is 
identical with the special case of the 'fast mode 

without CISK mode' discussed in McBride and 
Fraedrich (1995, Table 1). 

2.3 Width-Growth Relation (Dispersion) 

The kinematic and dynamic boundary conditions 
at y = -t-b, v3i = V3o and q53i = q53o, lead to the 
width-growth (or dispersion) relation. This may 
be formulated in terms of the external model 
parameters and the time scales involved: the 
Ekman damping, E = K f / A p ,  and the WISHE- 
type heating, W, characterising the two inverse 
feedback time-scales. The dispersion or width- 
growth relations of the mode-1 and mode-2 
regimes are: 

MODE-1 (�88 2 - B 2 ) > 0  " 

b/R = (1D2 - B2) -1/2 

. Ar th{ (102  _ B2)l/2/(B2/A 1 - ~ D ) }  (2.10) 

MODE-2 (B2 - 1D2)>0 �9 

b / R  = (92 - 102) -1 /2arc tan  { (B 2 _ 1 D2)1/2 / 

(B 2/a  - t ~D)}. 

Although the meridional eigenfunctions are 
structurally different, the dispersion relations can 
be treated simultaneously for both regimes realis- 
ing sin(x)=-ish(ix) ,  cos(x)=ch(ix), tan(x)= 
-ith(ix). The dispersion b/R = f ( W ,  o.) forms a 
hyperplane in the (W, b/R, o.)-space. Three cross- 
sections are presented to describe the stability 
properties: the (W,b/R)-plane, the (W, o-)-plane, 
and the (b/R, o.)-plane (Fig. 2a-c). 

The separatrix between both instability 
regimes is the intersection of the hyperplane 
1D2 - B 2 = 0 with the dispersion (2.10) b/R = 
f(W,o-).  The dispersion at the separatrix is 
obtained applying l'Hospital's rule. Inserting 
(2.6) yields (b/R)* = ( B 2 / A - 1 D )  with 

SEPARATRIX �88 D z - B 2 = 0 �9 

o.* = - ~ E +  {E2/16 + 1 w ' a / ( 7 -  1)}1/2 

(b/R)* = (o.* + E)( 7 - 1)/ 

{[(2o-* + E)(o-* + E)] 1 /2-  W*}. 

(2.11) 

The associated o-*-growth rate increases with 
the inverse time scale W*. The meridional ex- 
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Fig. 2. Boundaries of  the instability re- 
gimes of the linear slab-symmetric two 
layer model in the (W, b/R, cr)-space: (a) 
(W, b/R)-projection, (b) (IV, e)-projection, 
~ d  (c) (b/R, cr)-projection. Tables 1 and 2 
contain further details 
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tent (b/R)*= [(0.* § E)/(20.* § 
[ 1 - ( 7 - 1 ) 1 / 2 ] }  1/2 decreases from (b/R)* = 
( - 7 - 1 ) / { 1 - ( 7 -  1) 1/2 } at 0.* = 0  to (b/R)*oc = 1/2} ( v / � 8 9  for 0.* -+co. This 
intersection of hyperplanes separates dispersion 
of the mode-1 and mode-2 regimes. That is, the 
separatrix ( (b/R) *, 0.* --< co, W*) represents the 
minimum growth of the regime dominated by the 
secondary circulation (mode-2) and the max- 
imum growth of the mode-1 regime dominated 
by WlSHE-type heating. 

3. M o d e - 1  R e g i m e  

The mode- 1 width-growth relation (2.10) domi- 
nated by the WISHE-type heating, (1D2 - B2)> 
0, is analysed in the instability region, 0. > 0. In 
particular, the projections onto the (W, b /R)- ,  
(W,0.)-, and the (b/R,0.)-planes are presented 
for fixed E and 1 < "7 < 2, but for changing W: 

b/R = (c~+E)( 7 -  1)/ 

{W 2 - (20. + E)(0.  + E)('~ - 1)}  1/2 

�9 Arth{[W z - (20. + E)(0. + E) (~ / -  1)1/2/ 

([(20. + E)(0. + E)]  1/2 - W). (3.1) 

This instability regime emerges with growth- 
rates, 0.*>0.>0.~, and related widths, (b/R)*< 
(b/R)<(b/R)w, if the inverse time scale, W, 
exceeds a sufficiently large intensity threshold, 
W > E(7 - 1) 1/2 ~ 0.15, to overcome the dom- 
inance of the secondary circulation induced 
(mode-2) heating effect. 

The upper bound of the growth rate, 0.*, 
coincides with the separatrix (2.11) which, in 
(W, b/R, 0.)-space, changes with increasing the 
inverse time scale, W: The instability domain 
opens at the bifurcation point (W,b/R, 0.)* = 
( e ( 7 -  1)1/2 , (7-  1 ) / { 1 -  ( 7 -  1)1/2),0). For 
infinitely large inverse time scale, IV, the maxi- 
mum growth rate and its width are attained at the 
following parameter constellation: (W, b/R, 0.)*0o 
= (oc, (~/�89 - 1 ) / { 1 - ( ' ~ -  1)1/2}, oc) ~ (oc, 
0.26, ec). Any additional intermediate locus, 
(W,b/R, 0.)*, as for example at W=�89 7 may 
be computed, substituting W and b/R into the 
width-growth relation (2.11) of the separatrix. 

The two lower 0.-bounds of the instability 
domain attain a zero and finite (minimum) 
growth rate, 0.w = 0 and >0. Accordingly, the 

associated width is finite, oc> (b/R)w > O, and 
has infinitely large values, (b/R)w --+ oc 
(Fig. 2c): 

lower bound (0.w = 0) : 

(b/R)w = E ( 7 -  1)/{W 2 - E2(7 - 1)} 1/2 

Arth{[W 2 -  E2(7 - 1)]1/2/(E - W)} 

This zero- or (0.w = 0)-bound occurs for �89 7 > 
W> E(7-1)  1/2 satisfying W 2 -  (20- + E)(0. + E) 
( 7 - 1 )  > 0. The associated width (b/R)w in- 
creases with increasing inverse time scale W. In 
the (W, b/R, 0.)-space this domain commences at 
(W, b/R, 0.)~ = (E(7-1) 1/2, (7--  1)/{ 1 - ( 7 - 1 )  1/2 }, 
0) ~ (0.15, 0.36, 0) and ends at (IV, b/R, o%, = 
(! ET, oc. 0) ~ (0.21, oc, 0) Further increase of 

2 ~ 

the inverse WISHE time scale, W _> �89 7 ~ 0.21, 
creates a finite minimum growth rate, W 2 - � 8 9  
{(20.w+E)(0.w+E)}l/2=O, as a lower (0.~ > 0)- 
bound (Fig. 2b): 

lower bound (0.w > 0) : 

0.w = - 3 E  + {E2/16 + W2/")/2} 1/2 ~ 0 

with (b/R),~ ---+ oc. 

The meridional width is infinitely large, (b/R)w 
--+ oc, because the argument of Arth(X ~ 1) --+ 
oc; the denominator of X = Z/N,N = (20. + E) 
(0.+E) - W 2 >_ 0, guarantees positive b/R-values�9 

The mode-1 instability structure in (W,b/ 
R, 0.)-space is summarised in Table 1: For 
W _ > E ( 7 - 1 ) 1 / 2  and 1 < 7 _ < 2 ,  the mode-1 
instability regime is dominated by the WISHE- 
type heating. This regime commences once the 
inverse time scale exceeds the threshold, W = 
E(3 , -  1)1/2, w h i c h  depends both on the magni- 
tude of Ekrnan damping, E, and the heating 
induced by the secondary circulation, 1 < 7 < 2. 
The meridional width range, b/R, is finite and 
limited by the zero growth bound (0. = 0) in the 
interval E(~, - 1) 1/2 < W < �89 and the upper 
bound 0.*. Further enhancement of the WISHE 
influence, W _> 1E% leads to finite (though 
relatively small) minimum growth rates effecting 
infinitely large space scales, (b/W)w (Fig. 2c). At 
7 = 2 ,  however, the mode-1 regime vanishes; 
both Arth(X ~ 1) ~ oc and Arth(X= 0) occur 
simultaneously satisfying W = �89 and W = 
E(~, - 1)1/2; that is 0.w = 0.* (Fig. 2b). Thus, for 
~, > 2, the mode-1 structure disappears and the 
instability is taken over by the mode-2 regime 
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Table 1. Mode-1 Instability Regime in (W, b/R, cr)-space for l -< 7 <- 2 

89 

Parameter domain Growth rates Width ranges 

w = E('r - 1) ~/2 
E ( 7 -  1) 1/2 <_ W < 1/2E',/ 

W > 1E 7 

W --+ oc 

0 : 0 - : O  ->~ 

: - + I e 2 / 1 6  + �89 w 2 / ( 7  - 1)] 1/2 

: + [E2/16 + w2/7 ] 1/2 < 

O-* ---400 

(b/R)*o = ( 7 -  1)/{1 - (7 - 1) 1/2} 

oc >_ (b/R)w o > b/R > (b/R)* 

(b/R)w-+Oc 

(b/R)L = , /k 1)/{1 -- ( 7 -  t) 1/2} 

(dominated by the midlevel massflux term) 
independent of the magnitude of the WISHE 
contribution W (dominating in the mode-1 
regime). Figure 3a shows the amplitude profiles 
of the meridional wind and the geopotential 
height at the lowest level 3. 

4. Mode-2 Regime 

The mode-2 width-growth relation (2.10) of 
the secondary circulation dominated heating, 
(B 2 - �88 2) < 0, related to the mid-level vertical 
massflux, is analysed in its instability region, 
o- _> 0. In particular, the projections onto the 
(W,b/R)-, (W,o-)-, and the (b/R,o-)-planes are 
presented for fixed E and 1 < 7 < 2 ,  and 
changing W: 

b/R = (o-+ E ) ( 7 -  1)/ 

{(2o- + E)(o- + E)(  7 - 1 ) -  W2} 1/2 

�9 arctan{[(2o- + E)(o- + E)(  7 - 1) - W211/2/ 

([(2o- + E)(o- + E)] 1 / 2 -  W)}. (4.1) 

The function arctan{x} covers the interval 
0 < x < cx~, which guarantees positive width 
scales, b/R > 0 for y > 0. As in the mode-1 
case there is an upper o--bound and a zero or 
finite lower o--bound limiting the width or (b/R)- 
interval of the mode-2 regime (Fig. 2a). 

The upper o-bound is defined by an infinitely 
large maximum growth o-= oc; the corresponding 
width, (b/R)o ~, is finite and can directly be 
deduced from (4.1): 

upper bound(o- = oc) : 

(b/R)o o = [ ! ( 7 -  1)]1/2 a r c t a n ( 7 -  1) I/2. 
2 

In the parameter space (Fig. 2c) this bound is a 
constant independent of the inverse time scales 
W and E,(W}b/R,O-)~ = (W,[I (  7 - 1)] 1/2 
a r c t a n ( 7 -  1) 1/ , oc); ii coincides with the fast 
mode solution of McBride and Fraedrich (1995). 
For 1 < 7 < 2, the (b/R)~-range spans 0 < 
(b/R)~ < (v/1)arctan(1). 

There are two types of lower o--bounds: Zero 
growth, o- = 0, is the minimum growth of the 
mode-2 regime and observed in the parameter 
regime, 0 _< W _< E(7 - 1) 1/2. The associated 
meridional extent (b/R)o increases with the 
inverse time scale W (Fig. 2a): 

lower bound (o- = 0) 

(b/R)o = E ( 7 -  1)/{E2(7 - 1 ) -  W2) 1/2 

�9 a rc tan{[E2(7-  1) - w 2 ] l / 2 / ( E  - W)}. 

In (W, b/R, o- = 0)-space, there is a lower and 
an upper W-limit associated with (o- = 0)-growth. 
The lower W-bound, W = 0 ,  is related to the 
instability modes discussed in McBride and 
Fraedrich (1995) which occurs at (W, b/R, o-)o = 
(0, ( 7 -  1)l/2arctan(7 - 1)1/2 ,0)  ~ (0, M ,  0).  The 
upper W-bound for zero-growth can be derived 
by applying l 'Hospital 's rule to (4.1): (b/R)o --+ 
E ( 7 - 1 ) / ( E - W )  : (W,b/R,o-)o = (�89 
( 7 - 1 ) / ( 1 -  �89 0) ~ (0.21, 0.5, 0). This point, 

W = E(7  - 1) 1/2, lies on the separatrix between 
both mode-1 and -2 regimes. It represents the 
bifurcation point at which, with increasing 
W > E ( 7 - 1 )  I/2, the mode-1 regime opens 
with the width-scale (b/R)*o=(7-1)/[1-  
( 7 -  1) 1/2)1. 

The other lower o--bound is finite; it corre- 
sponds with the separatrix o-*, and represents 
the minimum growth limit of the mode-2 
regime. With growing influence of the WISHE 
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Fig. 3. Amplitude structure of the disturbances: (a) Mode-1 instability regime with hyperbolic function in the inner domain 
( W  = 0 .2/day,  b / R  = 0.4); (b) Mode-2 instability regime with trigonometric functions in the inner domain ( W  = 0.2/day,  
b/R = 0.3) 

Table 2. Mode-2 Instability Regime in (W, b/R, ~r)-space 

Parameter domain Growth rates Width ranges 

W = 0  0_< or-< ec 
0 < W < E ( 7 - 1 )  1/2 0 < _ ~ r - < o c  

with 

W = E(7  - 1) V2 
W > E(7  - 1) 1/2 

cr* <_ ~r-< oc 

cr * <_ cr-< oc 

(b/R)o >_ b/R >_ (b/R)o ~ 
(b/R)o >_ b/R >_ (b/R)~ 
(b/R)o = ( 7 -  1) l /2arctan(7-  1) 1/2 
(b/R)~ = ( 4 1 ) ( 7 -  1)l/2arctan('y- 1) 1/2 
(b/R)* = ( 7 -  1) / (1  - ( 7 -  1) 1/2} < (b/R)~ 
(b/R)* >_ b/R ~_ (b/R)~ 

type heating, W, this lower bound emerges at 
the bifurcation point, W =  E(7-1)1/2,  and 
remains on the separatrix between of the 
regimes (see above). Note that in the limit of 
large W (and or), there is a remaining width span, 

(b/R)o~< (b/R)*, for the mode-2 regime. The 
results are summarised in Table 2. Figure 3b 
shows the amplitude profiles of the meridional 
wind and the geopotential height at the lowest 
level 3. 



Response of Tropical Convective Complexes 91 

5. Summary and Discussion 

Wind induced sensible heat exchange (WISHE) 
is adopted as a parameterisation of cumulus 
heating. It is used to replace the CISK-type 
heating in the classical Charney-Eliassen (1964) 
model satisfying the associated water budget of 
the system. Two instability regimes emerge with 
formally different spatial amplitude structures. 
The mode-1 instability regime is dominated by 
WISHE type heating; the mode-2 is dominated 
by the secondary circulation induced heating. 
WISHE related instabilities reveal the following 
results deduced from the appropriate dispersion 
relation. 

(i) The mode-1 instability regime requires suffi- 
cient intensity of the surface heat exchange to 
obtain finite growth rates within a finite scale 
range. Beyond a certain intensity threshold of the 
heating parameter, however, the scale range 
extends to infinitely large values. The maximum 
growth rates, though relatively small, occur at the 
smaller scale limit (and vice versa), which 
separates mode-1 and mode-2 regimes. (ii) The 
mode-2 instability regime joins mode-1 at its 
large growth (and small scale) boundary and 
extends towards infinitely large growth rates at 
smaller but finite scales. 

Both regimes comprise the wide spectrum of 
space and time scales as they can be observed in 
the tropical convective complexes, ranging from 
the cloud cluster scale to the Madden-Julian 
oscillation. Dominance of the wind induced 
surface heat exchange influences the larger scale 
processes associated with smaller growth rates 
whereas, for smaller scales, the secondary 
circulation induced heating in mid-levels dom- 
inates with the large growth rates. 

Re-interpreting the CISK heating (propor- 
tional to the Ekman pumping of the secondary 
circulation) in the classical Charney-Eliassen 
(1964) model such that it also satisfies the 
associated water budget (McBride and Fraedrich, 
1995) reveals the following features. There are 
two regimes associated with CISK: The rela- 
tively fast mode is similar to the mode-2 above, 
with an infinite growth rate at a minimum finite 
scale. The slow (or classical CISK) mode, 
however, shows the well known features of finite 
maximum growth at vanishingly small spatial 
scales. Both modes attain a zero growth limit at 

finite scales so that model instability occurs in a 
finite width span. That is, replacing the CISK- 
type parameterisation by a WISHE-type extends 
the scale range effected by cumulus heating to 
larger scales and retains the fast mode features at 
the smaller but finite scales, which are associated 
with the secondary circulation induced midlevel 
beating. 
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List of Symbols 

a) Dynamic Variables, Model Parameters and Geometry 

zonal, meridional velocity, vertical 
p-velocity, geopotential 
heating, specific heat, gas constant, 
latent heat 
Coriolis parameter, static stability 
meridional and vertical axes, lateral 
width of area with convective heating, 
vertical differences, Ekman layer 
depth 

i, o subscripts: inner and outer domain 
~, c%, ~ growth rate with trace parameters 

b) Feedback and Derived Parameters, Functions, Sub- 
scripts, and other Parameters 

q, T, p,/~ 

Lp~ (wl q') 4c, c4 

A , B , D , E ,  W,r 
sin, sh;arctan,Arth 

*, ~*, (b/R)* 

~ ,  (b/R)~ 

004; ()~; (L; Vo 

humidity, temperature, density, 
Rossby deformation radius 
feedback: evaporation-wind; midlevel 
heating - massflux 
surface evaporation, turbulent transfer 
coefficient 
see text for parameter combinations 
trigonometric, hyperbolic functions; 
their inverses 
separatrix; values for growth rate and 
normalised width 
separation between mode-1 and 
mode-2 regimes; further subscripts, 0 
or ec, indicate the magnitude of the 
growth rate. 
layer, partial derivative, initial value, 
surface or saturation. 
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