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SUMMARY 
Individual and lagged ensemble forecasts of persistence in a red-noise atmosphere are analysed to 

obtain information on predictability experiments performed in an imperfect model/ensemble environment. By 
examining the lead-time-dependent error budgets of individual and ensemble forecasts, various measures of 
predictability are analytically determined: the initial and saturation error, the error growth rates, the limit of 
predictability, error and squared error distributions depending on initial conditions, and the systematic and 
non-systematic error, etc. Furthermore, weather-regime dependent predictability can be studied directly by 
using different autocorrelation time-scales of the red-noise atmosphere. Finally, ensembles of lagged forecasts 
are constructed to analyse the relation between the forecast errors of the ensemble mean and the dispersion 
within the ensemble. Despite the simplicity of this external predictability experiment, the error budgets show 
features that may be qualitatively compared with those of numerical weather-prediction and climate-model 
systems. 

1. INTRODUCTION 

Predictability characterizes the weather or climate system's sensitive dependence on 
initial and boundary conditions. Predictions of the first kind (Lorenz 1975), which 
show sensitive dependence on initial conditions, are dominated by internally occurring 
instabilities at fixed boundary conditions. These forecasts are related to the practical 
aspects of weather prediction, revealing either chaotic or random properties of the 
weather system. Predictions of the second kind describe the response of the system to 
changing boundary conditions. Such predictions are associated with the structural stability 
and, from a practical point of view, related to long-range or climate-anomaly forecasting 
and, therefore, to the static properties of the weather or climate attractor. 

Predictability is analysed by the error budget that describes the time evolution of 
forecast errors in terms of the (squared) distance between the forecast and its verification. 
The error-budget analyses are analogous to the diffusion process where, in a first step, 
only the distances between the diffusing particles are of relevance: single-particle diffusion 
corresponds to an analysis of the verification trajectory only, where the distance from 
the origin represents the error growth of a persistence forecast; two-particle diffusion 
provides the frame for an individual forecast evolving in relation to its verification; and, 
finally, the ensemble forecast gives the picture of a cloud of forecast trajectories, which 
disperses near an individual verification trajectory. One may even go one step further in 
this analogy and apply the kinematics of the diffusion or mixing process by not only 
analysing changing distances but also deformation, rotation and other properties, which 
may eventually lead to a mathematical theory of predictability. 

Predictability experiments provide the data for diagnosing the error budget. Experi- 
ments of external (or practical) predictability are directly linked with the practical task 
of weather or climate forecasting; the bias due to differences between the model and the 
real climate is one of the problems met in analysing the predictability of numerical 
models. They are predictability experiments performed in an imperfect model environ- 
ment. Intrinsic (internal or theoretical) predictability, in contrast, is related to error 
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budgets due to small perturbations in the initial and/or boundary conditions generated 
in identical model atmospheres (‘identical twins’); this leads to predictabiity experiments 
in the perfect model environment. 

An approach to incorporate predictability aspects into practical forecasting is the 
method of stochastic-dynamic prediction, by which not only the expected forecast fields 
but also the related statistical moments or distributions are determined (Epstein 1969; 
Gleeson 1970). Because of the complexity of this approach a more practical technique 
has been suggested that leads to similar results: Monte Carlo forecasts (Leith 1974; 
Seidman 1981; Hayashi 1986). A convenient variant utilizes lagged forecast ensembles 
that are commonly available at the national weather services (Hoffmann and Kalnay 
1983); they may be considered as a parametrization of the stochastic-dynamic predictions 
or of the Monte Carlo forecasts. Many Monte Carlo and lagged ensemble predictability 
experiments have been performed with numerical weather-prediction (NWP) models in 
both perfect and imperfect forecast environments (Lorenz 1982; Hoffman and Kalnay 
1983; Roads 1987, 1988; Deque 1988; Murphy 1988; Dalcher et al. 1988; Chen 1989; 
Brankovic et al. 1990, etc). In the real atmosphere similar studies have been made that 
diagnose ensembles of past-weather analogues, or nearest neighbours in phase space (for 
example, Lorenz 1969). 

In the following we are concerned with predictability analyses in the imperfect 
model-imperfect forecast ensemble environment. However, instead of diagnosing lagged 
ensembles of complex NWPs for real weather systems, we analyse lagged persistence 
forecasts in a substitute red-noise atmosphere. In this way we demonstrate the pre- 
dictability analysis methods in a toy predictability experiment consisting of the per- 
sistence-forecast model and the red-noise substitute atmosphere. The red-noise process 
has been used in many studies. Because of its simplicity it serves as a null-hypothesis for 
statistical tests, a stochastic model to parametrize various aspects of fluctuations associ- 
ated with general circulation and climate time-scales, and it provides a description of the 
mutual dependence of stochastic forcing and deterministic response (for example, Dole 
and Gordon 1983; Gutzler and Mo 1983; Trenberth 1984). Persistence forecasts are a 
fundamental reference prediction scheme, particularly in long- and short-range 
forecasting, and a characteristic of atmospheric dynamics (Munk 1960; Legras and Ghil 
1985; Horel 1985; Trenberth 1985; Saha and van den Do01 1988; Schubert et al. 1992, 
etc.). 

From a different perspective we like to draw an analogy to the analysis of the 
similarly complex climate problem: a simple, say zero-dimensional, climate model can 
serve as a prototype model for climate analysis, which involves internal and structural 
stability, sensitivity studies and the response to stochastic forcing. We hope to introduce 
persistence forecasts in a red-noise atmosphere as a similar prototype system to study 
the external predictability problem posed by the imperfect model-imperfect ensemble 
forecast experiments. (For a study of predictability in a perfect model environment see, 
for example, Palmer (1993).) In section 2 the substitute atmosphere is described as a 
first-order autoregressive process; the error budget and error distribution associated with 
individual persistence forecasts are discussed. Section 3 describes the predictability 
analysis of an ensemble of lagged persistence forecasts. Section 4 continues with the 
forecast-error budget, depending on the initial anomaly conditions. Section 5 describes 
an ensemble of two-lagged forecasts, as a special case, to provide a maximum of 
simplicity. In section 6 the ensemble dispersion is discussed. Furthermore, the results of 
the imperfect model forecast-verification system of persistence in red-noise is linked to 
NWP predictability experiments and observations to emphasize results that have potential 
practical relevance. Finally the conclusions are given in section 7. 
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2. PERSISTENCE FORECASTS IN A RED-NOISE ATMOSPHERE: THE ERROR BUDGET 

Before analysing the predictability or error budget of persistence forecasts, the 
deterministic and stochastic properties of the substitute red-noise atmosphere, for which 
forecasts are being made, are discussed. This substitute is a first-order autoregressive 
process, which is one of the simplest non-trivial processes that simulates many observed 
aspects of the variability in the atmosphere and climate system (see, for example, Dole 
and Gordon 1983; van den Do01 and Chervin 1986). It has also been used in predicting 
some dynamical features of the weather and climate. 

(a) Autoregressiue process (first order) 
The atmospheric dynamics, X ( t ) ,  are represented by fluctuations, X ( t )  = (X) + X'( t ) ,  

about zero climate mean (X) = 0. Time (sample) averaging is denoted by (), and the 
prime, describing anomalies, will be deleted in the following. Red-noise fluctuations are 
introduced by a first-order autoregressive process, AR( l ) ,  which serves as a substitutre 
atmosphere. This stochastic process consists of a deterministic part, X( t ) ,  and an additive 
random part, zi: 

X ( t )  = aX(t - 1) + 21 

with the lag-one autocorrelation a = ( {X( t )  - X(t  - 1))') and the time lag r.  Given the 
Gaussian white-noise random forcing, zi, with zero mean (2;) = 0, variance s: = (2:) and 
vanishing lag-correlation, (ziz.) = 0 if i # j, then the variance of the red-noise atmosphere, 

noise random forcing: s: = s2(1 - a'), describing the fraction 1 - a' of the total varia- 
bility, s?, which will be set to unity in the following. The deterministic part of the 
fluctuations contributes the remaining variance, sia', so that a signal-to-noise ratio is 

s i  = ( (X-(X))*)  = (X') - (X) i , can be related to the intensity (or variance) of the white- 

a'/( 1 - a'). 

(b )  Integral time-scale-weather regimes 
A time-scale, t, which is based on the time integral over the autocorrelation can be 

assigned to the anomaly fluctuations, C,(r) = (X( t )  X(t  + r ) ) / s f  = a'. This leads to a 
geometric series, X ; : f - ' a r  = (1 - aN)/(l  - a) which, for A'+ w, gives the integral time- 
scale: 

1 
1 - a' 

t=- 

The integral time-scale is a measure of the lifetime of the red-noise anomaly fluctuations 
in the sense that it reveals how quickly a single realization loses memory of its initial 
state on average. For a = 0.8 (or 0.3) the integral time-scale is 5 (or 1.4) unit time 
steps. The time-scale, t, grows with increasing lag-one autocorrelation (or red-noise 
parameter), a. Thus red-noise regimes in this model atmosphere are simultaneously 
characterized by the integral time-scale, 1 < t < w, the intensity of the stochastic forcing, 
0 < s: < 1, and the autocorrelation, 0 < a < 1, with a = (1 - s ~ / s ~ ) ' / '  = 1 - l/t. That is, 
large (small) red-noise parameters, a, describe regimes with large (small) integral time- 
scales t , which are associated with relatively small (large) intensities of the stochastic 
forcing s:. 
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In this sense a ‘weather regime’ may be parametrized in the substitute red-noise 
atmosphere by an autocorrelation, a, which determines the magnitude of the integral 
time-scale, t, etc. Time series observed in the real atmosphere share some of these red- 
noise properties; in particular, if one assumes that weather regimes are distinguished by 
different lag-one autocorrelations. In this sense the quasi-stationary behaviour in the 
large scales (deterministic part, a2si)  can be integrally associated with an organized 
behaviour of the synoptic scales (random part, s;) (see, for example, Reinhold and 
Pierrehumbert 1982). Therefore, it is not surprising that red noise has been used in many 
studies as a substitute (or surrogate) atmosphere or, vice versa, to fit atmospheric data 
for interpretation or test purposes to this prototype stochastic-dynamic process (see, for 
example, Munk 1960; Dole and Gordon 1983; Trenberth 1984; van den Do01 and Chervin 
1986). 

(c )  Individual persistence forecasts 
A fundamentally important reference forecast is persistence, ‘because only forecasts 

better than persistence have skill in the forecast of the time derivative-the essence 
of forecasting’ (van den Do01 1989). Persistence predicts the future weather states 
(verifications), X(t), by the initially observed state X(to); that is, a persistence forecast, 
F, commences at the time to = t - r with the observation X(to) = X(t - r )  and is evaluated 
after the lead time or forecast range, r ,  by the observation (verification) X(t): 

F(r) = X(t  - r) .  (2.3) 
Forecasts and their corresponding verifications are commonly analysed in terms of pairs 
of trajectories evolving in state space, whose squared Euclidean distance corresponds to 
the squared error. Error analyses of persistence forecasts can, therefore, be interpreted 
as the structure function statistics associated with a degenerate trajectory pair (that is a 
single trajectory), because only the individual verification trajectory, X( t ) ,  and its squared 
distance from the initial position is considered: IX(t) - X(to) 1 2 .  In the red-noise atmos- 
phere the error budget of individual persistence forecasts (subscript 1) is described by 
the following evolution of the error variance, where the average is taken over all 
verification pairs: E , ( r )  = ({X(t) - F(r)}*) = ({X(t) - X(t  - r)}2)  = (xL(t)> + (P(t - r))  
- 2(X(t) X(t - r)):  

E , ( r )  = 2s: (1 - a‘). (2.4) 
The error budget is shown in Fig. 1 for a = 0.8. The following features are noted: 

(i) The vanishing initial error, E,(r  = 0) = 0, is one of the advantages of persistence 
forecasting. Therefore, it has been introduced as a forecast guidance which, if combined 
with another independent prediction scheme, can improve the forecast accuracy. In long- 
range forecasting this is achieved by persistence plus an analogue trend prediction (see, 
for example, Livezey et al. 1990); in short-term forecasting of tropical rainfall the daily 
persistence is combined with a shorter-term Markov chain to yield a high accuracy 
(Fraedrich and Leslie 1990). 

(ii) As the autocorrelation, d ,  vanishes at lead times r+ QO, the limiting persistence- 
error variance approaches the saturation level E l ( r +  m) = 2s;. That is, in this limit, the 
persistence error corresponds to the mean difference between two randomly chosen 
‘weather’ states. 

(iii) The probability distributions of both the error, e = X(t) - F(r), and the squared 
error, e2, provide important additional information lost by the time (sample) averaging, 
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lead time 

Figure 1. Error budget of individual persistence forecasts (M = 1) in a red-noise atmosphere (autocorrelation 
a = 0.8). The time evolution of the error variance, the median and the upper and lower terciles (0.66; 0.33) of 
the squared-error distribution. The same is shown for climate-mean forecasts (horizontal lines). The pre- 

dictability limit, T ,  is also indicated. 

(), over all forecast-verification samples, X - F. The normalized error of persistence in 
a red-noise atmosphere, y = {X(t)  - F ( r ) } / d E l  ( r )  = e / d E ,  ( r )  with E l  (r) = (e'), is lead- 
time dependent and Gaussian distributed with zero mean and unit variance, El(r ) ;  the 
squared error e2 is chi-squared distributed with one degree of freedom. Thus, with the 
normalized error random variable, y = (X- F ) / d / E ,  the densities of the error, g(y),  
and the squared error, f(y2), yield a normal and a chi-square distribution, respectively: 

with the mean (yz) = n, variance ( ( y 2  - (y2))2) = 2n, and n = 1 degrees of freedom 
(d.0.f.); hence the Gamma-function, T{(n = 1) /2}  = dn. The squared-error distribution, 
f (y2),  can be displayed in terms of the quantiles associated with the f(y2) density. The 
mean, median and the upper and lower terciles (thirds) are shown in Fig. 1 (for persistence 
and also for climate forecasts). For a sufficiently small number of d.0.f.s the median of 
the squared-error distribution may be a more appropriate error measure than the mean 
(which is the error variance). For increasing d.0.f.s this discussion may become less 
relevant, because the distribution tends towards a Gaussian one as it is observed in 
multivariate weather maps composed of normally distributed variables. 
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(iv) At a fixed lead time, r*, the forecast error, E l ( r * ) ,  is associated with the auto- 
correlation regime, a = (1 - El(r*)/s:)l/r*. Because of the underlying stochastic fluc- 
tuations, a small autocorrelation (or integral time-scale, t) leads to a large error variance 
(and vice versa), which is also affecting the error growth rate. 

(v) The rate of change of the error, dEl/dr = Elr(r) ,  yields (with dar/dr = a'ln a): 

where In(l/a) = - h a  = -ln(l - l / t )  - 1/t for large integral time-scales. That is, the 
initial error growth is inversely proportional to the life span of the weather regimes. For 
a = 0.8 (or 0.3) the initial growth rate of the normalized error, E l r ( r  = 0)/2s: is In( l/a) = 
0.45 (or 2.41) per unit time step. That is, the smaller the autocorrelation a ,  or integral 
time-scale t, the larger the stochastic forcing s$ and the larger the initial rate of error 
growth, E l r ( r  = 0). Furthermore, substituting a = (1 - E , ( r ) / ~ t ) ' / ~  shows that the rate, 
El,,  decreases with increasing magnitude of the error, E l ( r ) .  This leads to the often 
misinterpreted generalization that large errors grow slower, because this holds only for 
predictability experiments in the same forecast environment (a = constant) where the 
error growth decreases when approaching saturation. This needs to be modified when 
regimes (0 < a < 1) change. 

(d )  Predictability limit 
The climate forecast error (or variance), s:, serves as a predictability threshold. 

That is, predictions at lead time r > T have passed the predictability limit at 
E(r = T) = s i  if their error variance, E(r) ,  exceeds that of the climate forecast. For 
individual persistence forecasts, El(& the limit of predictability, r = T, is derived from 
(2.4) with aT = 1/2: 

This predictability limit has a close connection to the integral (or life) time-scales t of 
weather regimes, if t is large. With ln(l/a) = -1na = -ln(l - l / t )  - l / t ,  the pre- 
dictability limit of individual persistence forecasts is proportional to the integral time- 
scale of the red-noise regimes: T - t ln 2. It is smaller than the lifetime-scale since the 
persistence forecast is not a perfect model but contains a systematic error. Only if the 
threshold is defined by E l ( r  = T) = 2(1 - l/e)s: - 1.26sf, does T -  t. For a = 0.8 (or 
0.3) the predictability limit is reached after T = 3.1 (or 0.6) unit time steps. 

That is, the persistence-red-noise (or forecast-verification) system also reveals the 
well known effective forecast range for complex physical systems, which is finite and 
limited by the life span of its most energetic phenomenon (see, for example, Tennekes 
1991). Here it should be noted that the condition for the deterministic signal being larger 
(or more energetic) than the noise, a2/(1 - a') > 1 or a > 2-@, coincides with the 
condition of a sufficiently large life span of the weather regime, if t > 3.4. . . . (2.2), 
satisfying the approximation for 1/t being small (in 2.7). 

(e) Systematic and non-systematic errors 

systematic, SE, and non-systematic or random components, RE: 
In an imperfect model environment the mean square error can be separated into 
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(2.8) i E = SE + R E  

SE = ((4') = ( ( ( F )  - (X)) ' )  

RE = ( (e  - w2> = ( ( ( F -  x) - ( ( F )  - (3))') 
where the error at  lead time r is e = X ( t )  - F(r).  Now the systematic error and the 
random error of persistence forecasts in the red-noise atmosphere can be determined. 

The initial anomaly X o  yields the persistence forecast F(r) = X o  for lead time r.  The 
associated verification time series commencing from this anomaly at the rth step backward 
is X(t )  = a'X(t - r )  + 2;:; u ' z , - ~ .  Now averaging over a sample of the forecast-veri- 
fication pairs, (), conditional on a fixed initial anomaly, Xo,  yields the conditional forecast 
error and its associated growth rate: 

} (2.9) 
E , ( r I X o )  = ( X ; )  (1  - a')' + s: (1 - a2' 1 
E l r ( r ~ X o )  = 2(X$ (1 - a ' )  a' ln(l/a) + 2F~a'' h(l/a).  

The sample averaged persistence forecast conditional at the initial anomaly 
(F(r)) = ( X ( t ) )  I x o  = X o  is associated with the following average verification, which 
commences from the same anomaly X o ,  (X( t ) )  = a' (X( t  - r ) )  + (Z;:; u'z,_~) = 
a' (X( t  - r)) = a'Xo, where the average of the last term vanishes. Thus the systematic 
error (e)lxo = Xo(l - a'). Now averaging over all initial o r  conditional anomalies X o  
leads to the unconditional error budget (2.4) and also to the distinction between the 
forecast error's systematic and non-systematic or random components. That is 
( X i )  = s: in (2.9) is interpreted as the variance of all possible initial anomalies 
(and not as the square of an anomaly), leading to the random and systematic errors, 
RE = s:(l - a") and SE = sI(l - a')': 

(i) The systematic error is smaller than the random error, and both approach unity for 
infinitely large lead times. At the limit of predictability (2.7), the systematic (non- 
systematic) error attains 1/4 (3/4) of the climate variance, SE(r = T) = s:/4 ( R E  = 
1 - SE = 3sf/4). The initial error growth rate vanishes for systematic errors, dSE/dr = 
0 for r = 0, but is finite for the random part, which, therefore, determines the total initial 
error growth of persistence forecasts. 

(ii) NWP experiments show qualitatively similar results that, however, reveal con- 
siderably smaller systematic errors (Dalcher and Kalnay (1987) show systematic errors 
of about 20% of the total). Here it should be mentioned that the analogy to NWP 
predictability experiments can be improved by ensemble averaging (sections 3 and 4). 

(iii) Finally, the mean squared error (error variance) of the individual persistence 
forecasts conditional on the initial anomaly is shown in Fig. 2 for a varying red-noise 
parameter, a = 0.1, . . . 0.9 and r = 1. At zero initial anomaly (and forecasts initialized 
near the climate mean) there is no systematic error and the total forecast error is minimal. 

(f) Summary 
Individual persistence forecasts in the red-noise atmosphere are analytically analysed 

as a toy predictability experiment for an imperfect model. There is, in a qualitative sense, 
similarity with the results of external (or practical) predictability experiments based on 
NWP models: 

(1) Persistence forecasts reach a saturation level which, as in NWP experiments, cor- 
responds to the mean difference between two randomly chosen weather states; the error 
growth depends on the weather regime; and the conditional forecast errors are smaller 
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Figure 2. Mean squared error at lead time r = 1 of the individual persistence forecasts (M = 1 )  depending on 
the initial anomaly for different red-noise regimes, autocorrelation a.  

when they are initialized close to the climate mean (or near zero anomaly). The error 
growth depends on the weather regime, with the predictability limit being proportional 
to the integral time-scale. Furthermore, the distinction between systematic and non- 
systematic errors allows direct insight into the complex relations within the forecast- 
verification system as, for example, occurring in the NWP-atmosphere predictability 
experiment. Finally, besides being analytical, this toy experiment has the additional 
advantage that weather-regime dependence (a = constant but variable) can be studied 
explicitly. 

(2) Other simple forecast schemes do not show these features. Damped persistence, 
X(t )  = uX(t - l), for example, reaches only half of the saturation limit (natural variance), 
does not exhibit systematic errors and, therefore, conditional forecast errors are inde- 
pendent of the magnitude of the anomaly. 

The predictability features of the persistence red-noise system make it an ideal toy 
for further analysis. Therefore, the predictability experiments are extended to ensemble 
forecasts to investigate the two main goals of ensemble forecasting: improvement and 
prediction of the forecast skill. Although older data in a first-order substitute atmosphere 
do not add (in the unconditional mean) to the prediction itself, they do conditionally 
and, in particular, to a spread-skill relation. 

3. ENSEMBLE-MEAN PERSISTENCE FORECASTS 

Ensemble-mean forecasts of one model with different initial conditions are per- 
formed to achieve three goals: to improve the forecast skill, to predict the forecast skill 
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and, ultimately, to provide a realistic probability distribution for expected atmospheric 
states. The motivation to achieve the first two aims is based on the theoretical perfect 
model-perfect ensemble scenario (Leith 1974). The basic mathematical background is 
easily deduced (see Brankovic et al. 1990). 

Let F, be an individual forecast by one member of the ensemble forecasts (i = 1, 
. . . , M). For a given field variable X ,  the mean squared difference of X from the forecast 
members, F,, gives 

[(Fi - * ’ I  = ([Fil - x)’ + [(Fi - [F,I)’l (3.1) 
with [(F; - [F;] + [F,] - X)’] = [ ( [ & I  - X)’] + [(F; - [F;])’] + 2[(Fi - [Fi])([Fj] - 91. The 
last term vanishes and the first term is independent of ensemble averaging, which is 
denoted by [F;] = Z f i ,  FJM. 

First, with vanishing field variable, X = 0, (3.1) is confined to the forecast ensemble 
and the first two terms describe the ensemble variance or spread: 

[ F f ]  - [F;]’ = S L .  (3.la) 

Next, let the field variable X be the verification X ( t )  of the forecast, then the first 
term describes the ensemble averaged squared error of the individual forecasts F,(r ) ,  
[e’] = [ ( F ,  - X)’]  where e , ( r )  = F,(r) - X ( t ) ;  the second term denotes the squared error 
of the ensemble-mean forecast [F , ( r ) ] ,  e& = ( [ F , ]  - m2; and the last term is the spread 
or dispersion of the individual forecasts from the ensemble mean, s& = [ ( F ,  - 
[F, ] ) ’ ] ,  which is a forecast variance. This quantifies the average improvement of the 
ensemble-mean forecast, [F,],  over the individual members in terms of the mean squared 
error: 

[e’] = e L  + &. (3.lb) 

This improvement is achieved by removing parts of the variance, namely sb ,  from the 
forecast error [ e f ] .  ‘Although true in a least squares sense, this is somewhat misleading 
since part of the reduction in error variance is caused simply by the reduction in anomaly 
intensity (smoothing) resulting from formation of an ensemble mean. Smoothing a 
forecast does not by itself improve the signal-to-noise ratio. The real benefit lies in the 
fact that, compared with an individual forecast, the ensemble mean is a better estimate 
of the true state’ (Murphy 1988). 

Finally, corresponding to the ensemble mean of the individual squared errors, 
[e f ]  = XE, ( F ,  - X ) ’ / M ,  one defines the ensemble mean of the squared distances 
between all non-identical pairs of individual forecasts, [ d f ]  = Z i Z j ( F i  - Fj) ’ /M(M - 
1). Substituting F/ for X in (3.1), summing over the whole ensemble and dividing by 
M - 1, one obtains 

(3.1~) 

( a )  Perfect model/ensemble environment 
A perfect ensemble ( r  = 0) and perfect model ( r  > 0) hypothesis can be introduced: 

(i) The perfect ensemble hypothesis ( r  = 0) assumes that the ensemble members are 
chosen such that initially the spread amongst them is representative of the initial analysis 
error. Then [ e f ]  = [ d f ]  = 2 M s & / ( M  - 1) at zero lead time. 

(ii) The perfect model hypothesis ( r  > 0) assumes that during the time evolution the 
growth of the mean distance between the members of the ensemble d:  is equal to the 
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average growth of the internal deterministic errors. Then [e:]  = [d?]  = 2 M s b / ( M  - 1) 
holds also for increasing lead time r > 0. Now, combination with (3.lb) and ( 3 . 1 ~ )  yields 
the forecast error of the ensemble mean, e&, related to the mean error of the individual 
forecasts and the ensemble variance (spread); . 

I 
J M + l  e 2  - 2 

M - 1  - s M  - - sb for large M. 

That is, for sufficiently large ensemble size M, one obtains (from 3.2) the theoretical 
perfect model/perfect ensemble limit for the skill of an ensemble forecast (Leith 1974): 
the mean squared error of an ensemble forecast is half the average mean squared error 
of the individual members of the ensemble (first goal). Furthermore, there is a linear 
relation between forecast error e& of the ensemble mean and the ensemble spread 
sb, (second goal). Note that (time) averaging () over the forecast samples will be 
employed to analyse (later in this section) the statistics of predictability experiments in 
the imperfect model/ensemble environment. 

( b )  lmperfect model/ensemble 
Practical forecasts are based on imperfect models and the related ensembles are also 

imperfect as their initial spread is not a direct measure of the analysis error. In the 
following we simulate the imperfect model-imperfect ensemble environment by the 
persistence model and a set of M time lagged (unweighted) persistence forecasts as the 
imperfect ensemble: 

M -  1 

[F(r  + ill = X ~ ( r  + i ) / ~ .  (3.3) 
i = O  

The forecasts are verified at time t and issued at t - ( I  + i); here the square brackets, [ I ,  
define the average over the lagged forecast ensemble; note that the counting index i 
commences at i = 0 to include the latest forecast F(r) in the ensemble. Furthermore, the 
M-lagged ensemble mean persistence can be reformulated as a persistence plus equally 
weighted trend model, [F(r + i)] = F(r) + {F(r + 1) - F ( r ) } / M .  . . + {F(r + M - 1) - 
F(r)} /M (see section 6 for error-spread relation). 

(c)  Error budget 
The error budget is determined by the time or sample average () of the squared 

forecast errors EM(r) = (e&) = ({X(t)  - [ ~ ( r  + i)]}2) = (P) + ( [F(r  + ill2> - 2(X[F(r + ill). 
Leaving these three terms in the same order we obtain (appendix A): 

1 + a 2 4 1  - a M )  2 a y 1  - a M )  E,(r)  =s; 1 + - - ( M(l - a )  MZ(1 -a )2  M ( 1  - a )  

and the growth rate of the error variance, dEM(r)/dr = E M r :  

1 a r ( l  - aM) 
E M r ( r )  = s t  In - 0 a M(1 - a )  * 

(3.4) 

(3 .5 )  

The related distribution densities of the error and the squared error, g and f, can easily 
be derived in analogy to those of the individual persistence forecasts (2.5) using the 
random variable y = ( X  - F ) / V E M ( r ) .  Figures 3(a) and (b) show the error budget for 
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Figure 3. Ensemble-mean error budget, EY(r). The error variance of ensemble averaged lagged persistence 
forecasts for varying ensemble size M = 1 to 10 in red-noise atmospheres with the autocorrelation a = 0.8 (a) 

and a = 0.3 (b). 
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the individual and the ensemble averaged forecasts ( M =  1 to 10) evolving with lead 
time, r ,  for red noise with the autocorrelation a = 0.8 and 0.3, respectively. The following 
results are of interest: 

(i) Forecasts of fixed ensemble size M realize small (large) initial errors EM(r = 0), and 
small (large) growth rates EMr(r = 0) in red-noise regimes of large (small) autocor- 
relations, a, or time scales, t, because these regimes are associated with small (large) 
stochastic white-noise forcing (compare Fig. 4(a) with 4(b)). This behaviour will also be 
discussed in section 5 for an ensemble of M = 2 lagged persistence forecasts and in 
connection with the regime related error budgets of NWP predictability experiments. 

(ii) At small lead times r ,  and large autocorrelation values a ,  the ensemble-mean forecast 
error variance, EM, grows with ensemble size M. However, if the lead time is sufficiently 
large so that the forecasts enter the region of saturation, the error variances EM decrease 
with growing ensemble size M. 
(iii) Before reaching the predictability limit, unweighted lagged ensemble-mean forecasts 
appear to be always worse than the single forecast, in some general agreement with NWP 
experiments (Hoffman and Kalnay 1983; Dalcher et al. 1988; Tracton et al. 1989; 
Brankovic et al. 1990). This only holds in the unconditional sample average and up to a 
lead time of about ten days (that is near the limit of predictability (Tracton et al. 1989)). 
However, the skill of ensemble-mean forecasts depends on initial conditions, ensemble 
size and red-noise regime, so that ensembles improve over the latest single forecasts 
under favourable conditions (section 5 ) .  Here it should be noted that optimally weighted 
lagged ensemble forecasts (with recent forecasts having larger weights) improve in skill 
over the latest ensemble member even unconditionally. However, for skill prediction by 
ensemble spread, the forecast spread correlates more strongly with the uniformly 
weighted ensemble forecast skill than with the optimally weighted ensemble forecast skill 
(Palmer and Tibaldi 1988). 

(iv) The predictability limit T ,  given by E M ( r  = T) = s:: 

l + a  
In 2 

For both M = 1 and M = 2 the limit of predictability is T = In2/ln(l/a); for increasing 
ensemble size, M -+ 03, the ensemble-mean forecasts approach the limit of predictability, 
T = {In2/(a + a)}/ln(l/a) at E M  = s;, while the initial error of the mean, [F i ( r  = O)], also 
approaches the climate variance: E M ( r  = 0) + s; for M -+ w,  

A final comment on the predictability limit and its initial error dependence may be 
relevant for NWP predictability analyses. It can be observed in Figs. 3(a) and (b) that 
the limit of predictability depends on the threshold of error variance chosen for its 
definition (here we used the climate variance, sf). A value larger than the climate 
variance, EM(r = T) > sf ,  does not only lead to different numbers but it may also reverse 
the relation between the decreasing predictability limit and the increasing initial error. 
This holds independently of whether the variability of the initial error, EM(r = 0), is due 
to changing the ensemble size M or due to the changing autocorrelation a. Increasing 
the predictability threshold from s; to As: (with 1 < A <2) can lead to a qualitatively 
different behaviour of the associated predictability limit TA given by 
E M ( r  = T A )  = As:. Increasing initial errors EM(r = 0) can, therefore, lead to increasing 
predictability limits, TA. This is plausible, because initial, EM(r  = 0), and saturation error 
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variance, EM(r+ m ) ,  depend in an opposite way on the autocorrelation regime. Thus 
the limit T at higher (smaller) predictability threshold values is influenced by the 
saturation (initial) error; in extreme cases the predictability limit may not even be reached 
(that is T -  m). One may apply this result to the real atmosphere, where regimes of large 
time-scales t, or high autocorrelations a, occur in more or less irregular alternation with 
regimes of the opposite character. If regimes of shorter time-scale are also related to 
smaller saturation values EM(r+ m),  and vice versa, a relatively large constant and not 
regime-related predictability threshold might lead to an overestimation of the average 
predictability limit. 

( d )  Anomaly correlation 
The anomaly correlation coefficient serves as another measure of skill. For an 

individual persistence forecast, F l ( r )  = X(t - r ) ,  the anomaly correlation between fore- 
cast and verification is, A l(r) = (X( t )  X( t  - r))/si = a', and the forecasts by an ensemble 
mean, [ F ( i  + i)] = ZEi '  X{( t  - ( r  + i ) } / M  of M members yields the anomaly correlation 
(see appendix A): 

where s$ = ( [F(r  + i)12) - ( [F(r  + i)])' = s:[(l + a ) / ( M ( l  - a) )  - 2 4 1  - aM)/(M2(1 - 
u ) ~ ) ] ;  for M = 1, A l  = a'. From a practical point of view it is important to consider 
whether the forecast by the latest ensemble member (or control forecast, Brankovic et 
al. (1990)) is superior to the ensemble mean. As in their NWP model experiments we 
observe that 'the unweighted lagged-average forecast gives no significant advantage 
over the single (deterministic) forecast from the latest initialization date'. For lagged 
persistence forecasts this is easily deduced from the ratio between anomaly correlation 
of the latest, A and the ensemble-mean forecasts, AM: 

A (M(1 - a') - 2 4 1  - aM))'l2 
-- - > l f o r M > l .  
AM 1 - a M  

Note that the latest member of the lagged persistence ensemble gives the best short- 
term forecast only in the average, because the latest persistence forecast initialized by 
an extreme anomaly is not necessarily better than the related ensemble-mean prediction. 
Thus forecast errors depending on the magnitude of the anomaly at the initial condition 
will be analysed in the next section. 

4. CONDITIONAL, SYSTEMATIC AND NON-SYSTEMATIC ERRORS 

Error growth has been observed to depend on the state from which the forecast is 
initiated. Recent general circulation model (GCM) experiments (Molteni and Tibaldi 
1990; Molteni etal. 1990) have shown that error distributions may tend towards a bimodal 
density of the error variance if the initial state in phase space is situated near the boundary 
of two weather-regime basins. That is the time evolution of the forecast error statistics 
can be employed as a diagnostic tool to extract information on the dynamical properties 
of the atmospheric phase space. In this sense conditional error (variance) distributions 
are a useful extension of the error-budget analysis, which has not been considered in the 
previous section on ensemble forecasting where only time averages, (), over all initial 
anomalies of the red-noise regimes were considered. 

The error variance conditional on the initial anomaly, X,, from which the forecast 
starts, can be derived analytically (see appendices A and B): 
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). (4.1) i (1 - a)M (1 - a)’M’ (1 - a)’M’ 
1 - aZM 2(1 - U M )  (1 + a) - l + a  

+s; 1 - u Z r +  + 
Note that formally the average is to be taken over all realizations of the red-noise 
atmosphere given the same starting point X,, but the stochastic forcing remaining 
random. This conditional formulation will be of further use when analysing the spread- 
skill relation (section 6) depending on the initial anomalies, Xo.  

Figures 4(a) and (b) show the mean squared errors E M ( r l X O ) ,  and Figs. 4(c) and 
(d) the skill, 1 - E M ( r l X o ) / E l ( r ( X o ) ,  conditional on the initial anomalies, X o ,  for varying 
ensemble size M in the red-noise regime a = 0.8. The following results substantiate the 
results of section 3. The smallest error is attained when persistence forecasts commence 
at situations of small anomalies about the climate mean. This result is independent of 
the autocorrelation, a, and has also been found in the real atmosphere (van den Do01 
1989) when analysing past-weather analogues; it may also hold for NWP forecasts. Given 
small anomalies the individual persistence forecasts are better than ensemble forecasts 
for short lead times, r = 1 (Fig. 4(a)). However, the ensemble forecasts improve over 
the individual forecasts at larger lead times (Fig. 4(b) for r = 6) when the conditional 
anomaly, X o ,  is large. Note that this occurs near the predictability limit. However, at 
smaller lead times one observes an additional constraint by the ensemble size M. That 
is short-term forecasts with too large an ensemble M do not gain skill (over the predictions 
by a smaller ensemble) at certain conditions of a, M, rand  X,. Figures 4(c) and (d) show 
the skill of the ensemble forecasts taking the individual persistence forecast as reference, 
M* = 1, in the red-noise flow a = 0.8 for lead times r = 1 (and 6). One observes that for 
sufficiently large initial anomalies, Xo, ensemble-mean forecasts can be superior to the 
latest individual forecast which, however, depends on the regime a, the ensemble size 
M ,  and the lead time r.  

For unconditional situations, that is averaged over all conditions 
(Xg) = (X’) = s;, the error variance (3.4) is recovered. Then (4.1) can be used to 
distinguish between the systematic SEM(r) and random or  non-systematic contribution 
REM(r) to the total error E,+,(r): 

(1 - a ) M  
SEM = S: ( a r  - 

‘ - a M  l U r I n -  1 
dr  (1 - u)M U 

1 - aZM 2(1- aM) (1 + a )  - l + a  + 
(1 - a)M (1 - a)’M’ (1 - a ) W  

dREM 1 
- 2 s ; ~ ”  In - 

dr U 
-- 

* (4.2) 

and the respective growth rates. Figures 5 and 6 display the following structures of the 
systematic and the random contributions to the total error budget (4.2) changing with 
ensemble size M and lead time r in dependence of the regime a: 

(i) For lead times r > 0 the mean systematic error is generally smaller than the non- 
systematic contribution. Furthermore, the systematic errors SE (non-systematic errors 
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RE) attain minima (maxima) at the ensemble sizes M, whose magnitudes and positions 
are related to the autocorrelation regime. The larger the autocorrelation (Fig. 5(d)) the 
smaller (larger) the ensemble size for SE = min. (RE = max.). Furthermore, the non- 
systematic error variance magnitudes at the extrema decrease with increasing auto- 
correlation (Fig. 5(e)). The initial ( r  = 0) systematic error deviates from the structures 
observed for r > 0; it increases continuously with decreasing autocorrelation a and 
growing ensemble size (Fig. 5(a)). 
(ii) The optimal ensemble size M* generates ensemble-mean forecast errors that are 
almost completely determined by the non-systematic error contributions (Fig. 5). That 
is the systematic error vanishes, and model deficiencies have the least influence on the 
error growth that affects the error-spread relation and the skill forecasting. 
(iii) At a fixed ensemble size M the systematic errors can pass through a minimum when 
increasing the lead time from r = 0, so that a ‘return of skill’ (Fig. 6(d)) may be possible 
under favourable conditions. The initial anomaly Xo needs to be larger than a standard 
deviation of the fluctuations of the weather regime, and the ensemble should be of 
sufficient size to warrant a substantial decrease of the systematic over the increasing 
random-error contribution. However, this return of skill with negative systematic error 
growth rates commences at lead time r = 0. A similar behaviour can be observed in NWP 
predictability experiments (Tracton et al. 1989) occurring at larger lead times. The reason 
may be similar. A change from a weather regime with relatively poor model performance 
(or large systematic error) to a regime of opposing characteristics may be realized by the 
model as a large anomaly, so that its systematic error returns to smaller values before 
rising again. This is observed in situations when the circulation moves to a state that is 
closer to the lagged average than to the initial condition. In the atmosphere it occurs under 
seemingly fortuitous circumstances, when similar anomalous situations are recurrent; this 
is not due to the model’s ability to simulate the relevant circulation. There is no return 
of skill for the two-lagged ensemble forecasts, because the systematic error growth is 
positive for all 0 < a < 1 and the systematic error remains constant for r = 0 and r = 1 
(see Fig. 6(b)). 
(iv) The growth rate of the non-systematic error, dRE(r)/dr = ’ 2 s : ~ ~  ln(l/u), depends 
only on the autocorrelation regime a, and the lead time r ,  and not on the ensemble size 
M. This is plausible because the non-systematic forecast error represents the perfect 
model conditions, when initially close trajectories diverge at a rate which is determined 
solely by the internal dynamics represented by the white-noise forcing in the red-noise 
atmosphere. 

5 .  TWO-LAGGED PERSISTENCE FORECASTS: A PARAMETRIZATION 

The error budgets of individual persistence forecasts are a poor parallel to common 
predictability analyses. There is no initial error and the forecast-verification trajectory 
pair to be analysed is degenerated to a single trajectory analysis. In this section a forecast 
model is introduced which is generated by a model of similar simplicity as the individual 
persistence forecast, but is closer to the real situation as it allows for initial errors. It 
may also serve as an illustrative example for an ensemble mean of lagged forecasts. 
Dalcher et al. (1988) experienced that an ensemble of only two members provided a 
good prediction of the skill of the individual forecasts ‘for regions which are not large 
enough to contain many mid-latitude cyclones (say, the size of North America or 
Europe)’. Let F ,  and F2 be a forecast pair commencing one time lag apart and running 
over a forecast range r in parallel to be verified at the same time t ,  then: 
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Figure 4. Ensemble-forecast errors, EM(rlXo),  conditional on initial anomalies, X o  at r = 0, in the red-noise 
autocorrelation regime a = 0.8 for the ensemble size varying from M = 1 to 10 at lead time r = 1 (a) and r = 

6 (b). For completeness, the skill is also shown for r = 1 (c) and r = 6 (d). 
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Figure 4. Continued. 
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Figure 5. Ensemble-mean predictions: (a) and (d) systematics, (b) and (e) non-systematic and (c) and (f) 
total error variance changing with ensemble size at different lead times r ((a), (b) and (c): r = 0; (d), (e) and 

( f ) :  r = 1) and for various autocorrelation regimes a = 0.2, 0.4, 0.6, 0.8. 
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Figure 5 .  Continued. 
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Figure 5. Continued. 
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I F, ( r )  = X ( t  - I )  = X(to)  

Fz(r) = X{t - ( r  + 1)) = X(r, - 1). 
(5.la) 

The lagged forecast pair can be combined to an ensemble averaged, [ I ,  forecast F(r).  It 
consists of M = 2 members: 

F =  [Fi] = ( F ,  + Fz)/2 = F1 + (Fz - F,)/2. (5.lb) 

This forecast can also be interpreted as a persistence plus half-trend prediction. In long- 
range forecasting, for example, a persistence plus analogue-trend scheme is successfully 
used (Livezey et al. 1990). Because of its initial errors this scheme may be more suitable 
for analysing error budgets than the individual persistence forecasts. In particular, the 
predictability limits of both forecasts are the same (see below). 

(a)  Error budget 
Setting M = 2 in (4.6) gives the error budget of ensemble-mean forecasts of a pair 

of two-lagged consecutive persistence predictions, Ez(r )  = ({X(t)  - F(t ) }2) ,  and its rate 
of change, dE/dr, varying with lead time: 

For unconditional forecasts, (Xi) = sf, the error variance is E2(r )  = sf (1 + (0.5 - 
a,) (1 - a)}. The magnitudes of the initial error E2(r = 0), and the saturation error 
E2(r+ m) are bounded: 0 < E2(r = 0) = s:(l - a)/2 < s: and 1.5s; < E(r+ m) = 
s:{1.5 + a/2} < 2s:. Their values depend on the autocorrelation regime a in an inverse 
sense; for increasing time-scale t (or a)  the initial error is reduced whereas the saturation 
level is enhanced and vice versa. To complete the error budget the Gaussian distributions 
of the error and the chi-squared distributions of the squared error are deduced in analogy 
to the individual persistence forecast; that is, replacing the forecast error variance, E, in 
(2.5) by the lead time r dependent error variance, E2(r) ,  and using the normalized 
error random variable y = (X - F ) / d E z ( r ) .  From this information the quantiles of the 
distribution can be calculated. Figure 7(a) presents the error budget and the quantiles 
of the error distribution. Figure 7(b) exhibits the sensitivity on changing autocorrelation. 
These measures show a behaviour which appears to be similar to the individual per- 
sistence-forecast model. There are, however, differences. At zero lead time the initial 
error does not vanish, and for large lead times a saturation value, E(r+ m), is reached 
that is smaller than that attained by individual persistence predictions (due to ensemble 
averaging). In addition, the limit of predictability T of the two-lagged forecast is the 
same as for the individual persistence prediction (2.7). At this limit the systematic error 
attains the value SE(r = T) = a2sf/4, the non-systematic error is RE = 1 - SE. 

The rate of error growth, dE/dr = E,, gives more details. The initial rate of uncon- 
ditional error growth, EZr(r  = 0) = sf(1 + a)  ln(l/a) increases with increasing magnitude 
of the mean initial error, E2(r  = 0) = sf(1 - a)/2, which depends on the weather regime 
a. For = 0.8 (or 0.3) the initial growth is 0.4 (or 1.6) per unit time step, which is smaller 
than for individual forecasts; note, however, the mean initial error of 0.1 (or 0.35) sf. 
As weather regimes of large (small) autocorrelation a = (1 - 2E2(r  = O)/sf) or time- 
scale t are related to small (large) white-noise fluctuations s: = sf(1 - a2), forecasts 
made in these regimes realize small (large) initial errors, Ez(r = 0) and small (large) 
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Figure 6. Ensemble-mean predictions: Systematic, non-systematic and total error variance changing with lead 
time r for different ensemble sizes, (a) M = 1, (b) M = 2, (c) M = 8, in the autocorrelation regime a = 0.8. 

Examples for the ‘return of skill’ phenomenon are shown in (d). 
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Figure 6. Continued. 
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Figure 7. Error budget of the average of two-lagged persistence forecasts in a red-noise atmosphere (auto- 
correlation a = 0.8). (a) The time evolution of the error variance, the median and the upper and lower terciles 
(0.66; 0.33) of the squared error distribution. The same is shown for the climate-mean forecasts (horizontal 
lines). The predictability limit T, is also indicated. (b) The lead-time-dependent error variance for various red- 

noise atmosheres: a = 0.1 to 0.9; note the associated initial errors. 
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initial error growth rates, EZr(r  = 0); and vice versa. In the limit a +  1, infinitely large 
values of Ezr(r = 0) are approached. Such error-growth behaviour is reported from both 
NWP predictability experiments and historical-weather analogue analyses (Horel and 
Roads 1988, Fig. 9; Chen 1989, Figs. 7 and 9; Toth 1991, Fig. 5) .  One can only guess 
about the cause of the phenomenon. The structure of the same magnitude of error, its 
wave number of geographical distribution, might be different with various initial errors. 
Indeed, the magnitude of the initial error, E2(r = 0), is associated with the weather 
regimes in the substitute red-noise atmosphere where the autocorrelation, a, or the 
integral time-scale, t, characterize the dynamics (Fig. 7(b)) in the following sense: the 
larger the autocorrelation, the smaller the stochastic forcing, s i ,  the smaller the initial 
error, E2(r = 0), and, subsequently, the smaller the initial rate of error growth, 
Ezr(r = 0), and vice versa. As described in section 4 this holds for M > 1. These 
considerations lead directly to a parametrization of the error budget to derive the upper 
bound of the NWP predictability limit (Chen 1989). 

These qualitative results of NWP perfect-model predictability experiments are comp- 
lemented by the imperfect model-verification (persistence - red-noise) system. Sep- 
aration of the systematic from the non-systematic error variances and their associated 
growth rates (first and second term on the right-hand side of (5.2), setting (So) = s l ,  
normalized by the respective saturation values Et(r+  a)) shows that the non-systematic 
error contributions exhibit qualitatively the same sensitive dependence on the weather 
regimes as revealed by the perfect NWP experiments. The initial non-systematic error 
(and its growth rate), which characterize the ‘dynamics’ unaffected by model errors, 
increase with decreasing integral time-scale of the weather regime; however, the initial 
growth of the systematic error remains unchanged (or reverses sign for M > 2) while the 
initial error grows with decreasing time-scale. In comparison, Chen (1989, Fig. 5 )  shows 
that the small-scale dynamics of NWP models (with wave numbers > 18) are related to 
larger initial errors and growth rates than the large-scale processes. In the non-systematic 
(and total) error budget of persistance in red noise, the small (scale) integral time-scale 
is associated with relatively strong random forcing which leads to larger initial errors and 
growth rates compared with processes of large integral time-scale (see Schubert and 
Suarez (1989) for error-budget modelling of the combined effect). 

(b )  Parametrization 
Error-budget models like that of the constrained population growth (Lorenz 1969; 

for a review see Stroe and Royer (1993)) are constructed to estimate upper and lower 
bounds of the predictability limied and to determine error doubling times of infinitesimally 
small errors. These error-budget models are fitted to internal and external predictability 
experiments by NWP models, using finite perturbed initial conditions, time-lagged 
forecasts (Hoffman and Kalnay 1983) or observed past-weather analogues (Lorenz 1969). 
Such experiments provide a set of (relatively large) initial errors, E(r = 0), which are 
associated with a set of predictability limits, T. Now, the upper bound of the predictability 
limit is defined by a hypothetical limit reached under the assumption of vanishing 
initial error: E(r = 0) + 0. Based on NWP and past-weather-analogue predictability 
experiments, a linear extrapolation of the limit of predictability, T, towards zero initial 
error is suggestive, although very small initial errors may happen to be associated with 
anomalously large predictability which would not fit such a linear (but a geometric) 
relation. Chen (1989, Fig. 8) has introduced this parametrization of the error budget, 
examining NWP predictability experiments; his analysis has been further substantiated 
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by Toth (1991, Fig. 2) using past-weather analogues. The linear initial error versus 
predictability limit parametrization has been developed, because the commonly used 
Verhulst-type error-growth models (adopted from population dynamics) tend to under- 
estimate predictability (Toth 1991) when its parameters are fitted to all error data 
irrespective of lead time. This linear predictability/initial-error parametrization will be 
discussed using the persistence plus half-trend forecast. 

Figure 8 displays the predictability versus initial-error relation (using (3.4) and (3.6)) 
for the lagged persistence forecasts using unit lag and M = 2. Assume autocorrelations 
(representing weather regimes) to be uniformly distributed over the a-interval (0, A) and 
to remain unchanged during the prediction until the limit of predictability has been 
reached, r > T = ln2/1n(l/a), then an average limit of predictability can be defined: 

T” = A Tda’ = -A-’ In 2 Li(A) 
0 IA 

with the logarithm-integral, Li(A) (Gradshteyn and Ryzhik 1980). Now regime averaged 
predictability limits T* can be calculated; for 0 < a < A = 0.9 one obtains the average 
predictability limit T* - 2.5 unit time steps. This analytically determined value compared 
favourably with the linear extrapolation (see Fig. 8) as suggested by the parametrization 
scheme. The coincidence is not surprising; the datasets, from which the parametrization 
has been originally deduced, are taken from both NWP and past-weather-analogue 
predictability experiments, which cover only relatively large initial errors (Chen 1989; 
Toth 1991). It is equivalent to not letting the autocorrelation regime reach the upper 
limit a + 1, where the stochastic forcing becomes relatively small (compared with the 
deterministic part) and likewise the initial errors. This is the case in regimes of large 
time-scale, small stochastic fluctuations, 0 < E2(r = ) < 0.15s:, and large predictability 
T, where the initial error/predictability-limit relation is far from linear. 

A final comment on the interpretation of error budgets is in order before proceeding 
to the error-spread relation. Within a fixed red-noise regime, a = constant, small (large) 
error magnitudes, E(r ) ,  are related with large (small) growth rates Er(r),  because the 
error growth rate decreases when the error magnitude approaches saturation. On the 
other hand, however, the predictability experiments with lagged persistence forecasts 
and also NWP models realize regime dependence of the error budget (that is, the 
autocorrelation, a,  is no longer fixed), so that the initial errors exhibit an inverse 
behaviour as explained above. Small (large) initial errors are related to small (large) 
initial error growth rates because, in regimes with large (small) autocorrelation times, 
the white-noise level is relatively small (large) and subsequently the initial forecast errors, 
E(r = 0), and their growth rates, E,(r = 0), tend to be smaller (larger). Therefore, 
realistic error-growth models such as those taken from population dynamics need to 
discriminate between weather regimes and, possibly, between the initial states within 
these regimes (which is certainly true for ‘chaotic’ regimes). 

The results of this section (and section 4) can be summarized in a qualitative sense. 
If the intensity of the anomalous fluctuations of the deterministic part, s:a2, is enhanced, 
the white-noise forcing s: = s:(l - a’) decreases, and vice versa. Consequently, the 
initial error E2(r = 0) and its initial growth rate E2r(r = 0) become smaller, as they are 
dominated by the relatively small random noise, s;. However, the saturation level 
E2(r+ w) rises, because the inherently longer memory (and time-scale) of the anomalous 
fluctuations and their enhanced intensity, s:a2, are dominated by the deterministic part 
of the system. This leads to a rise of the predictability limit, T (provided the selected 
predictability threshold is sufficiently small). A similar behaviour is observed in the real 
atmosphere (van den Do01 and Saha 1990); more than 50% of the total variance of the 
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Figure 8. The predictability limit, T, chan ing with the magnitude of the initial error E(r = 0) due to changing 

graph; the initial error axis is labelled in multiples of the unit climate variance, s: = 1 .  
red-noise regime, a = (1 - 2E2(r  = O)/s:)' 9 R. The related autocorrelation values, a, are denoted on the T- 

500 mb height fields is found at periods of 18 days or longer associated with phenomena 
characterized by a long lifetime or large autocorrelation coefficient. These low-frequency 
regimes can be predicted over longer time-scales than their high-frequency counterparts. 

6. ENSEMBLE DISPERSION AND FORECAST ERROR 

The time evolution of two initially close trajectories in phase space (say a forecast 
and its verification in a perfect-model experiment) provides information on the sensitivity 
of the system's dependence on initial conditions and its internal predictability. In the 
perfect-model environment a perfect ensemble of forecasts can be used to determine the 
predictability (measured in terms of the squared error of the ensemble-mean forecast) 
by the ensemble variance. In the imperfect model/ensemble environment no such relation 
exists for individual ensemble-mean forecasts; firstly because the error is influenced not 
only by the initial conditions but also by systematic model deficiencies and, secondly, 
because the ensemble is imperfect since its members do not necessarily provide the 
correct distribution about the unknown true initial state. Therefore, such an error-spread 
relation may exist only in a statistical sense, depending on many parameters like the 
weather regime characterized by the red-noise parameter a, the magnitude of the initial 
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anomaly, Xo, and on the lead time r.  The predictability experiment with an ensemble 
of lagged persistence forecasts may be considered as a first step towards the more 
comprehensive analyses of the imperfect model/ensemble hypothesis. 

(a) Spread 
The ensemble variance (dispersion or spread) is defined (Eq. (3. la)) by the ensemble 

average over the individual lagged forecasts that comprise the ensemble, s& = 
[(F(r + i) - [F(r + i])2] = [F(r + i)2] - [F(r + i)I2. Subsequently, the (time or sample) 
average over all forecasts leads to a sample-averaged spread 

S M  = (s&) = ( [ ~ ( r  + i)z]) - ( [F(r  + i)]') 
which can be derived conditional on the (value of the latest) initial anomaly, X,, from 
which the ensemble-averaged forecast (latest member of), [F(r + i)], starts (see appendix 
A) : 

1 - aZM 2(1 - aM)(1 + a ) ] )  
- . (6.1) 

Note that for persistence forecasts the spread does not evolve with lead time. As the 
error budget allows an interpretation based on its systematic and random components, 
the ensemble variance or spread may also be interpreted in a similar manner. Again, the 
conditional spread is composed of two terms, the first describing the systematic and the 
second the non-systematic or random contribution. In the climate average over all initial 
anomalies (g) is to be replaced by the variance s:. For unconditional situations, 
(g)  = s:, so that the time-averaged spread is given by the sum of the systematic and 
non-systematic parts: 

l + a  + - 1 - aZM 
+s: 1-  ( (1 - a2)M [(l - a)M (1 - a)2M2 (1 - a ) W  

Adding (6.2) and (3.4) gives the ensemble mean of M sample-averaged individual 
forecasts (see 6.5) which, for large lead times r ,  tends towards the mean squared distance 
of two randomly chosen (independent) weather states. Indeed, in the sample average (), 
the improvement of the squared error of the ensemble mean forecast, ( eL(r ) ) ,  over the 
ensemble mean error of the individual forecasts ( [e(r  + i)']) = (Zz,' e2(r  + i ) / M )  with 
ei = e(r + i) = F(r + i) - X(t ) ,  is given by the (sample averaged) spread SM (see also 
Brankovic et al. 1990): 

( [e(r  - i ) 2 ] )  = [ E , ( r  + i)] = EM(r) + S M ( r ) .  (6.3) 
Furthermore, the spread SM is related to the squared distances between all pairs 
of individual forecasts: DM = ([df]) = ( Z y Z r ( F i  - Fj) ' / (M(M - 1))) = 2MS,,,/ 
(M - 1) (Eq. (3.1~); Brankovic et al. 1990). 

The contributions of the systematic and non-systematic spread (6.1) to the total (6.2) 
depend on the ensemble size, and vary with the autocorrelation time-scale. Let (a) = s: be unity, both contributions to the total spread change with ensemble size and 
weather regime, M and a ,  respectively (Fig. 9). The structures are similar to the initial 
error ( r  = 0) but the systematic and random contributions are reversed; while the non- 
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systematic error grows continuously with ensemble size M and the systematic contribution 
has a maximum at finite M, the random spread increases monotonically and the systematic 
spread shows a maximum. 

( b )  Error-spread relation 
In a perfect model/ensemble environment the squared error of individual ensemble- 

mean forecasts, e b ,  is linked to the ensemble spread, sL; that is, eL - s b  holds for 
individual realizations. For the imperfect model/ensemble environment the error-spread 
relation is analysed in terms of the statistics provided by the predictability experiment, 
using samples of time-lagged ensemble-mean forecasts. The analysis of lagged persistence 
forecasts in the red-noise atmosphere proceeds in two steps. (i) The statistics of a sample 
of individual ensemble forecasts (with ensemble size M and lead time r )  in a given climate 
or weather regime is evaluated. This may lead to practical aspects of error prediction. 
(ii) Functional relationships between the sample averaged conditional/unconditional 
squared forecast errors and their related spreads are derived. 

(i) Scatter diagrams, Figs. lO(a) and (b), show a sample of (lo00 from a total of lOO00) 
squared errors, e $ ,  of ensemble-mean forecasts for lead time r = 1 versus their related 
spreads, sL, in the red-noise regime a = 0.8; the error-spread regression lines estimated 
from the total sample represent correlations of 0.31 (0.14) for M = 8 (2) ensemble 
members. This analysis is extended to evaluate error-spread correlations in dependence 
of the ensemble size M and the forecast range r: 

<@a - E M )  <sb - & . f ) > / { ( ( e b  - EM)*> ((4 - W2)P2. (6.4) 
To search for an optimal M’ for skill predictions, a set of error-spread correlation 
coefficients is plotted against the ensemble size M for lead times varying from r = 1 
through 5 (Fig. lO(c)). The points M = 8 and 2 on the r = 1 line correspond to the two 
examples discussed above. 

For a given weather regime and at a fixed ensemble size M, the average error- 
spread correlation decreases with increasing lead time. For a given forecast range r one 
observes ensemble size-dependent correlations indicating a size M‘, for which the error- 
spread correlation is maximal and optimal for skill prediction; for example, the optimal 
ensemble size M’ = 8 is associated with a maximum error-spread correlation of 0.31. 
These optimal sizes M‘ tend to increase with growing lead time. 

The occurrence of an optimal ensemble size M’ for the error-spread correlation may 
be interpreted as follows. Realizing that there is an optimal ensemble size M* (section 
4) at which the systematic error contribution vanishes, then the total error is almost 
completely determined by the non-systematic part, which describes the internal dynamics 
(that is, the stochastic forcing) in terms of a perfect model. These non-systematic errors 
grow owing to the stochastic nature of the dynamics, even if initial conditions were 
perfectly known (M = 1, section 2). Although the perfect model-ensemble hypothesis is 
best met in the neighbourhood of M* (when the systematic error attains a minimum and 
tends towards zero) the related error-spread correlation is expected to be optimal 
but not perfect, because imperfect (that is lagged) ensemble members are used. An 
independent analysis of all nine possible correlations (not shown) between the individual 
realizations of the systematic, random and total error (at r = 1) and the respective spread 
(obtained from 10 OOO ‘forecast experiments’) support the interpretation. The structure 
of the ensemble size-dependent correlation between error and spread, the position and 
the magnitude of its maximum, is found only in the non-systematic contributions. 
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Figure 9. 

ensemble size 

1 

ensemble size 

Ensemble spread: (a) systematic, (b) non-systematic and (c) total ensemble variance for various 
autocorrelation regimes a = 0.2, 0.6, 0.4, 0.2. 
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Figure 9. Continued. 

These results may be compared with NWP predictability experiments in an imperfect 
model environment (Dalcher and Kalnay 1987; Brankovic et al. 1990, but see also 
Murphy (1990) and Tracton et al. (1989)). In the imperfect NWP model environment the 
(hemispheric and regional) spread did not turn out as a very good predictor of skill in the 
extended range; it has been argued that smaller regions (and fewer synoptic disturbances) 
might improve the error-spread relation, but this has also not been substantiated by the 
analysis of Brankovic et al. (1990), most likely because NWP forecast experiments are 
influenced by a large variability of the climate and weather regimes and the initial states 
and, in particular, by the systematic error of the model. 

In the perfect-model environment the correlation between the mean-square spread 
and the forecast error has been determined by Barker (1991) using a sample of 120 cases 
from a two-layer GCM. This is one of the few studies based on a large sample. The 
error-spread correlation obtained is 0.35 (0.58) for lead time r = 1 (12 days), explaining 
about 10% (30%) of the variance, which may have little practical use. Barker (1991), 
however, notes that the Monte Carlo generated ensembles have the deficiency that their 
initial spread is always generated in the same way; it is not related to the initial error, 
although it should be associated with the confidence in the initial analysis to obtain a 
perfect initial spread-initial analysis error correlation. In an imperfect (operational) 
environment this is difficult to achieve notwithstanding the systematic error growth even 
at short lead times. Many earlier investigations use small samples, leading to considerable 
variability in the correlations. Furthermore, Dalcher and Kalnay (1987), Murphy (1988), 
Tracton et al. (1989) used anomaly correlation measures that can be misleading in cases 
(Palmer and Tibaldi 1988). Additionally, forecast error-spread correlations are much 
greater when forecasts from different seasons include the seasonal variations in spread 
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Figure 10. (a) and (b) Scatter diagrams of squared errors versus ensemble variance (spread) of a sample of 
1 OOO individual ensemble mean forecasts of lead time r = 1 in a red-noise atmosphere with autocorrelation a = 
0.8 and ensemble size M = 8 (a) and M = 2 (b). The linear regression is also shown. (c) Error-spread correlation 
of ensemble mean forecasts in the red-noise regime a = 0.8 (=0.3), versus the ensemble size M for lead times 
increasing from r = 1, . . ., 5 .  Note that there appears to be an optimal ensemble size depending on lead time 

and regime. 
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Figure 10. Continued. 

and error (Brankovic et al. 1990). Finally, the extremely high correlations quoted from 
van den Do01 (1989, based on weather analogues) appear to be created by a regression 
not weighted by the number of the cases. Therefore, it appears plausible that Monte 
Carlo generated ensembles may not be optimal to determine the error-spread relation 
but dynamically conditioned ensemble members (see Mureau et al. 1993). In this sense 
ensemble forecasts may be improved by two steps. First a control prediction may be 
constructed in terms of a lagged average forecast with an ensemble size which minimizes 
the systematic error contribution. Then this optimal control forecast may be applied to 
make ensemble forecasts, using, for example, dynamically conditioned perturbations 
(see Mureau et al. 1993) of the optimal control instead of Monte Carlo generated or 
lagged ensembles. 

(ii) Error and spread are now analysed to determine functional relationships between both 
sample-averaged error and spread to extend the analysis of the individual realizations. 

Firstly both the unconditional sample-averaged squared error (error variance) and 
the sample-averaged spread, EM(?-) and SM (Eqs. (3.4) and (6.2)) are added to provide 
a regime (a  = constant) averaged error-spread relation. This is basically a sample- 
averaged version of (3.lb): 

Two examples of (6.5), M = 8 (and 2) for a = 0.8 and r = 1, correspond to the sample- 
averaged squared errors EM = ( e b )  and spreads S M  = (&) of the individual ensemble- 
mean forecasts shown in Figs. l l(a) and (b). Note that such a sample-averaged error- 
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Figure 11. Error versus spread diagrams depending on the initial conditions, (Xi) = 0, 1, . . . 10 and changing 
with the red-noise regime, autocorrelation a (dots). Individual diagrams are presented for lead time r = 1 

associated with the ensemble size M = 2 (a) and M = 10 (b). 



PREDICTABILITY EXPERIMENTS 421 

spread relation is not suitable for 'practical' forecasts of the error of individual predic- 
tions. It merely reveals the properties of a sample-averaged ensemble statistics (3. lb) 
applied to forecasts in an imperfect-model environment. At large lead times, 
Ew(r+  =J) + Sw = 2. That is saturation error and spread add to the mean squared error, 
2sf , of the individual forecasts that comprise the ensemble; at zero lead time, for example, 
one obtains Ew(r  = 0) + Sy = 2 f { l  - (1 - a')/(M(l - a)}. In combination with the 
perfect ensemble hypothesis (3.2), Ew(r  = 0) = S M ( M  + l)/(M - l) ,  one can show that, 
in the sample or climate average, there is no perfect ensemble except the singular solution 
M = m. 

Secondly, conditional sample averages are analysed. Both the conditional sample- 
averaged squared error (error variance) and the spread, E M ( X o  lr) and Sw(Xo),  (Eqs. 
(6.1) and (4.1)) are combined by eliminating the magnitude of the initial condition X o  
to yield a linear relation of the form 

E d X o  I4 = bSM(X0) + B (6.5) 
whose slope b and offset B depend on the lead time r ,  the ensemble size M and the 
weather regime a;  b is the quotient of the factors attached to the initial conditions 
( X i )  in (6.1) and (4.1). This linear relation can be traced in the displays of Figs. l l (a)  
and (b), showing the rather complex structure of the conditional sample aierages of 
error and spread in EM(Xo))  versus SM(Xo) diagrams based on (4.1) and (6.1). The results 
are presented for isolines of constant initial anomalies (z), and autocorrelation coef- 
ficients a, given the lead time r = 1 and the ensemble sizes M = 8 (Fig. 11 (a)) and M = 
2 (Fig. ll(b)). The unconditional error-spread relation is defined by the initial condition 
(g) = (X2) = sz = 1; the non-systematic error is obtained by (g) = 0. 

The non-systematic error-spread relation is represented by the line, defined by 
( X i )  = 0. Adding the systematic error-spread relation leads to the imaginary straight 
lines which follow constant autocorrelations a = constant. 

For common initial conditions, that is (Po) < 2 to 3 s:, the conditional sample aver- 
aged error-spread relation is dominated by the non-systematic contribution (that is near 
(x',) = 0). This, at least partially, supports the error-spread correlations of individual 
forecasts, which are also dominated by the non-systematic fluctuations. Furthermore, 
the larger the ensemble size the wider the spread interval to be covered by the related 
average error. 

For large initial conditions the systematic contributions dominate the error-spread 
relation. The magnitudes of the initial anomalies set a limit to the spread; the dependence 
on the regime, a ,  defines the slope of the error-spread relation, b, modulated by ensemble 
size M and lead time r.  

Finally, the persistence predictability experiment with lagged ensemble-mean fore- 
casts has demonstrated that both initial values and weather regimes need to be considered 
for the evaluation of ensemble-mean predictions in the imperfect-model environment. 
In particular, for both skill improvement and skill prediction, the predictability experi- 
ments need to be statistically analysed by conditional sampling. 

7. CONCLUDING REMARKS 

Predictability experiments are performed by a univariate persistence model associ- 
ated with ensembles of time-lagged forecasts. The predictions are made in a red-noise 
atmosphere so that predictability can be analysed analytically for an imperfect model/ 
ensemble environment. In this sense these predictability experiments have some aspects 
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in common with the complex problem of weather predictability posed by NWP model 
forecasts in the real atmosphere, so that it is not surprising to obtain results that are, at 
least qualitatively, comparable with NWP predictability studies. As the dominating 
weather regimes are relatively well parametrized by the autocorrelation time-scale and 
the noise level of a red atmosphere, a and st, their infiuence on the error budget can be 
studied. For lagged persistence ensemble forecasts, the systematic and non-systematic 
error budget and derived measures of predictability (initial and saturation error, error 
growth rates, limit of predictability, error distributions, etc.) can be determined analyti- 
cally. There is no need to fit models of population-growth dynamics to the results in 
order to obtain a simple and interpretable format. Besides the traditional error-budget 
approach with its derived properties and sample statistics, other predictability aspects 
have been discussed which may be explored further in terms of the two goals, improve- 
ment and prediction of skill. 

(i) Skill improvement. In an imperfect-model environment the sample statistics (of error 
and spread) of predictability experiments depend sensitively both on initial anomalies 
and the particular weather regime. That is although unweighted lagged average forecasts 
do not give advantage over the latest single forecast in the unconditional sample mean 
(Fig. 3), this is not the case for conditional samples (Fig. 4) that depend on the magnitude 
of the initial anomalies, the autocorrelation regime and the ensemble size. This suggests 
that, for example, it would be more effective to use lagged averages when initial 
perturbations are larger than the climate standard deviation (depending on the lead time 
and the autocorrelation regime). This may be further explored in practical weather 
forecasting and needs to be incorporated in error-growth models. 

(ii) Skill prediction. In the perfect model/ensemble environment the optimal ensemble 
size to achieve the two goals (improvement and prediction of skill) is assumed to be the 
same. However, in an imperfect model/ensemble environment this need not necessarily 
be the case. For skill improvement (first goal) there are indications that the ensemble- 
mean forecasts are, in the average, not sufficiently superior to the latest individuals of 
the ensemble, suggesting an optimal size M = 1; optimal weighting, however, can provide 
ensemble-averaged forecasts that are better than the latest member. For skill prediction 
(second goal) the lagged persistence forecasts suggest an optimal ensemble size M, which 
is close to the ensemble size associated with minimum systematic error (Figs. 5(d) and 
lO(c)). For example, for observed atmospheric autocorrelations, a = 0.8, corresponding 
to a five-day integral time-scale (Dole and Gordon 1983, appendix A) an optimal number 
of three to four lagged forecasts minimizes the systematic error of the average prediction 
at short lead times, and a slightly larger number leads to a maximum error-spread 
correlation. 

Recent developments in skill prediction indicate that deterministic NWP models can 
provide more suitable (than random or lagged) ensemble members. Within the linear 
error-growth range non-normal mode disturbances or singular vectors can be derived 
with the adjoint-model technique (Molteni and Palmer 1993, see also Lorenz (1965) and 
Lacarra and Talagrand (1988)) which leads to a maximum ensemble dispersion and 
provides an estimate of the maximum possible error. Another efficient approach is to 
find the maximum growing modes by breeding growing-mode perturbations (Toth and 
Kalnay 1992). Now, the systematic error has been assumed to be part of the cause of the 
observed relatively small correlations between ensemble spreads and forecast errors; 
especially in the extended range where systematic errors become as important as errors 
due to uncertainties in the initial conditions (Barker 1991). In this sense a lagged average 
forecast (with a systematic error minimizing ensemble size) may still be useful because 
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it could provide a suitable control forecast from which subsequent ensemble predictions 
can be determined by applying the dynamically conditioned perturbations (breeding or 
adjoints) for skill prediction. 
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APPENDIX A 

Conditional error variance 
Two averaging operators are introduced: the average of an ensemble of forecasts, 

[ F ] ,  and the average over a sample of forecast experiments (sample, time or climate 
average), (). Then the error variance, EM, and the dispersion (spread), SM, of the 
ensemble-mean forecasts, [ F ]  = [F(r + i ) ]  = X E i ’  F(r + i ) / M  can be expressed as a sum 
of terms, which are individually deduced: 

EM(rIX0) = W t o  + r )  - [F(r + i)12)) = (P) + ([PI) - 2(X[FI)  

S M ( X 0 )  = ( ( F ( r  + i) - [F(r + i)1)2) = ([PI) - ([FI2) = e’,> 
where the ensemble variance of the individual forecasts, s& = [F(r + i ) 2 ]  - [F(r + i ) ] ’ ,  
is given in (3.la). The verification is denoted by X(to + r ) ,  the conditional initial value 
by Xo = X(to) ,  and the members of the forecast ensemble by F(r + i ) .  The statistics are 
analysed in terms of a (time) average over all forecast samples, (), all of which are 
conditional on the same initial value Xo. For convenience we use the notation 
s i  = (P); the initial value, Xo, is not affected by the sample averaging, Xo = (Xo); z and 
w are introduced to differentiate between noises that are characterized by the same index 
in the verification and ensemble-forecast building mode: 

Verification ( r  > 0): 

X(to + r )  = arX(to) + ar-’zl + . . . + z ,  

Individual forecasts (0 < i < M - 1): 

F(r + i )  = X(to - i) = aiX(to)  + ai-’wl + . . . + wi-’ 

Conditional state ( r  = 0): 

F(r = 0 )  = X(to)  = Xo.  
Now the following statistics can directly be derived: 

Sample variance of verification: 

(xZ(to + r ) )  = a”(%) + (Z:X~~(~- ’ )  + . . . + ao} = a=(%) + (z:)(I - #)/(I - a’) 

= a”(%) + (P)(l- ab) .  
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Ensemble-mean forecast: 

[ F ( ~ + ~ ) ] = { X , ( I + U + .  . . + a ‘ - l ) + w l ( ~ + a + .  . . + a M - ’ ) + .  . . + w ~ - ~ } / M  

= {X,(1 - a M )  + W’(1 - a M - 1 )  + . . . + W&f-l(l - a)}/{M(l - a ) } .  

Sample average of squared ensemble-mean forecasts: 

( [F(r  + i)]’) = {(~2,)(1 - uM)’ + (w2)[(1 - 2 d - I  + + . . . + 
+ (1 - 2a + a’)]}/{M( 1 - a)}’ 

=(x“,)(l - aM)’/(l - a)’ + (X’)[(l - a’)/{M(l - a’)} + 
+ (1 - a2M)/{M’(1 - a)’} - 2(1 - a M )  (1 f a)/{M2(1 - a)’}  

because (2’) = (w’) = (x2)(1 - a’). For (X;) = (X’) = sf ,  the unconditional sample 
averages are attained, so that we obtain s$ = (P) [ ( l  + a)/{(l - a)M} - 241 - a”)/ 
(M’(1 - a’)}. This is identical to the sample or climate variance of the ensemble-mean 
forecast (see the following term). 

Sample variance of ensemble-mean forecasts (s;): 
( ( [F(r  + i)] - ( [F(r  + i)]))’) = ([F(r + 41’) - ([F(r + i)])’ = ([F(r + i)]’), because for 
unbiased persistence forecasts ([F(r + i)]) = 0. For (x‘,) = (P) = s: this is identical with 
the sample or climate variance of the ensemble-mean forecasts (for M = 1, s$ = s z ) ;  this 
will be used in deriving the anomaly correlation: 

s$ = ( [F(r  + i)]’) =$[(I + a)/{M(1 - a)}  - 2 4 1  - a‘)/{MZ(l - a)’}].  

Sample average of the mean of squared forecasts: 
( [F(r  + i)’]) = {(x“,) + (a2(%) + (w’)) + . . . + ( a ’ ( M - ’ ) ( x “ , )  + 

+ u’(M-’)(w’) + . . . +(w’))}/M 

= {(x2,)(1 - U’M)  + (w’)[(l - a ’ ( M - 1 ) )  + . . * + (1 - a’)]}/{M(l - a’)} 

= {(x2,)(1 - aM)‘/(l - a’) + ( P ) [ M  - (1 - a’M)/(l - a’)]} /M 

because (w’) = (Xi)(l - a’). For (g) = (P) = sf, the unconditional sample averages 
are attained. 

Anomaly covariance: 

ACOV = (X(to + r)[F(r + i)]) = a‘(x2,)(1 - aM)/{M(l - a)}  

where the correlations between the independent noise fluctuations, z and w, vanish. 

error variance and ensemble spread (4.1 and 6.1): 
EM(rlXo) = (x“,){a” - 2a‘[(1 - #)/{(I - a)M}]  + [(I - &)/{(I - a)M}] }  + 

The appropriate terms can now be combined to provide the conditional forecast- 

+ s:{l - a” + [(l + a)/{(l - a)M}  + (1 - a’M/{(l - a)’M2} - 

- 2(1 P ) ( 1  + a)/{(l - a)’M’}]} (4.1) 

+ s:{l - (1 - a’M)/{(l - a’)M} - [(l + a)/{(l - a)M}  + (1 - a’M)/{(l a) ’M2}  - 

- 2(1 - aM)(1 + a)/{(l - a)’M’}]}. (6.1) 

S,(X,) = (Xi){(l - a’M)/{(l - a’)M} - (1 - aM)’/{(l - U)*M’}} + 
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Setting (X:) = ( X 2 )  one obtains the climate or sample-averaged (unconditional) values 
(3.4).and (6.2). The individual and two-lagged persistence forecasts are derived for M = 
1 or 2, respectively. The anomaly correlation is also easily deduced from the anomaly 
covariance, setting (Xi) = ( X 2 )  = s: and realizing the variance of the ensemble-mean 
forecasts s i  = ([F(r + i)I2). 

Forecast agreement: For completeness, the forecast agreement, FA, is introduced 
here as a measure of the ensemble dispersion related to anomaly correlations. It is 
defined after Tracton et al. (1989) as the average anomaly correlation between the latest 
(base or control) prediction and the remaining M - 1 members of the ensemble: 

M - 1  
([F(r) F(r + 91) = x(t - r) x{t - ( r  + i)} 

s, 2 i =  1 (M - 1)s: FA = 

a(1 - a M - 1 )  
M -  1 

U i  = x-- 
; = I  (M - 1) - (M - 1) (1 - a)' 

If one includes the latest forecast in the forecast agreement, then i = 0 is included and 
FA* = (1 - a M ) / { ( l  - a)M} .  Note that FA* enters both the systematic and random 
contribution of the spread. 

APPENDIX B 

Conditional distribution density of the squared error e2 at X, 
The conditional distribution densityf(eIX,) of the error e at the fixed state X o  can 

be deduced from the joint bivariate Gaussian distribution density, f(e, X,) in (B.l), of 
the error e with zero mean and variance EM (denoted by E in the following) divided by 

f(eJXo) =f(e,Xo)/f(Xo) = { ~ X E ( I  - c ~ ) } - ' / ~  exp{-{2(1 - c2)}- '  X 

the marginal density f (X , )  = (~xs,) 2 -1/2 exp {-(2s:)-' Xi}: 

x [-2c~,,e/(s,~'P) + e 2 / ~ ]  - c2{2(1 - c2)s;>-'x',}. 

The probability distribution of the squared error, e2 < 1, smaller than a threshold 1 is 
given by integration between square root limits, Prob(e2 < I) = H(1) = 
-~,J'/'f(eIX,)de, with the density h(llX,) = dH(l)/dl. Applying the Leibniz rule 
of differentiation for variable boundaries, d(Jg(Y)f(y)dy)/dy = f(g(y))dg/dy + 
Jg(Y)(df/dy)dy, and noting that dl@/dl= 1-'12/2, leads to 

h(llX0) = (2VO-l "IX,) + f ( - ~ W ) I .  (B.2) 

Finally we derive the expectation of the squared error 1 = e2 at fixed X, by 

E(IIX0) = r=J" lh(llX0) = ,=oJ" 1/2 Vl[f(VlJXo) +f(- VllXo)] dl. (B.3) 

Substituting z = dl with dl = 2zdz yields E(1lX) = z=oJa z 2 [ f ( z l X , )  +f(- zlXo)]dz, 
and with (B.l) the expectation of the squared error is 
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E(IIx,) = { 2 n ~ ( 1 -  c2)}-@ exp(-c2{2(1 - c2) sf)-'%} x 

X [ L = O J m  z2 exp(-{2(1 - c2)}-' [-2cX0z/(sxE@) + z2/E]}dz + 
+ r,OJm z2 exp{-{2(1 - c2)}-' [2cXoz/(s,E@) + z2/E]}dz] 

= {2nE(1 - c2)}-@ exp{-c2{2(1 - c2)>sz}-'x',} [A]. (B -4) 
Both integrals can be solved (Gradshteyn and Ryzhik 1980, p. 338): 

= -v/(2p2) + (n/p5)u2 (2v2 + p)/4exp(v2/p)[1 + erf(v/dp)] 

for [ I  arg v I < n/2, Re p > 01. Since p and the absolute value of v are identical in both 
integrals, but v changes sign in the second one. Noting that erf( -x) = -erf(x) their sum 
is A = o J m .  . . + oJ". . . = 2(n/p5)'/* (2v2 + p)/4 exp {v2 /p} .  With p = 1/{2(1 - c2)E} 
and v = cX0/{2(1 - c2)sxE'b},the term A substituted in (B.4) yields: 

A = E{2n(1 - c2)E}'b [{c2% + (1 - c2)s2}/sf] exp{c2{2(1 - c2)sf}-'%}. (B.5) 
Replacing A in (B.4) by (B.5) finally leads to the mean squared error at fixed Xo: 

E(IIXo) = (E/sf) [c'% + (1 - c')s:]. (B.6) 
Replacing in Eq. (B.6) the correlation c = AM(I) in (3.7) and E by E M  in (3.4) leads after 
some transformations to (4.1). 
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