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In this study estimates are made of the predictability time-scales for the Weddell
Sea section of the Antarctic region. Two distinct methods were applied.

One of the methods used was a traditional approach due to Lorenz in which the rate
of separation of initially close atmospheric states (analogues) was calculated. It was
found here that even the best 500 hPa height field analogues were only mediocre and
that root mean square differences between the analogues grew very rapidly, sug-
gesting that the predictability time-scales might be quite short. However, the
absence of very good analogues shows that an analogue approach is probably not
suitable for the Weddell Sea region, and the predictability estimates obtained
should be treated with caution.

An alternative approach, in which recently developed chaos theory, also known as
non-linear systems analysis, was applied to the Australian Bureau of Meteorology
archived analyses of 500 hPa cyclone track positions, was also investigated. The
divergence of initially close pieces of cyclone tracks was derived from the algorithm
of Grassberger and Procaccia (1984). The results suggest the existence of a low-
dimensional attractor, describing the dynamics of the weather systems, of fractal
dimension somewhere between 5 and 6. Rates of separation calculated from this
algorithm also gave short predictability time-scale estimates of about one day for the
error doubling time. These results are consistent with estimates of error doubling

times found by studies of other baroclinically active regions of the globe.

Introduction

There is a growing interest in the application of
numerical weather prediction (NWP) systems to
the Antarctic region, as the increasing scientific
and economic importance of the region is being
recognised. The Australian Bureau of Meteor-
ology, in particular, is currently developing a
regional Antarctic NWP data assimilation system
for short-term, high-resolution (approximately 90
km) operational prediction out to 48 hours. As
part of the development of forecasting strategies
for the region, estimates of predictability time-
scales for Antarctica are very important as they
will give an indication of the time-scales for which
the deterministic NWP forecasts will be valid.
The predictability of a dynamical system like
the atmosphere is closely related to the problem of
its stability during its time evolution, and a rel-

Corresponding author address: Dr Lance Leslie, Bureau of
Meteorology Research Centre, GPO Box 1289K, Melbourne
3001, Australia.

*On leave from the Institute for Meteorology, Free University of
Berlin.

evant measure of the potential predictability of a
dynamical system is the rate at which initially
small errors grow. Early studies of the potential
predictability of meteorological systems were
based on the analogue approach described by
Lorenz (1969), and two basic measures were

-introduced for quantification: the doubling (or

e-folding) time of initially small errors, and a
time-scale after which initially close weather pat-
terns have lost their similarity. In recent years,
however, new techniques have been developed for
measuring the predictability of dynamical
systems. These are the so-called non-linear
systems analysis techniques (see, for example,
Eckmann and Ruelle (1985); Lorenz (1985))
which form part of the rapidly developing theory
of chaos.

There are two basic properties characterising
the atmosphere as a non-linear dynamical system:
the dimension and the entropy. Dimension is a
static measure of a dynamical system describing
the degrees of freedom involved; if the dimension
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is fractal, it indicates chaotic behaviour which, in
a qualitative sense, is related to a sensitive depen-
dence oninitial conditions. Initially close weather
states do not remain as nearest neighbours but
spread with increasing time; though similar, they
are distinct (because of the fractal structure of the
attractor). The entropy is a measure of the degree
of chaos and characterises this spread of initially
close trajectories in phase space. In this sense the
entropy measures the predictability of a system in
terms of a rate of divergence of initially close
weather patterns. If estimated from data it de-
scribes a natural (or potential) predictability of
the system as will be discussed in this study.

In a study of the predictability of tropical
cyclone tracks in the Australian region, Fraedrich
and Leslie (1989) applied non-linear systems
analysis techniques to tropical cyclone storm
tracks. The divergence of initially close pieces of
tropical cyclone tracks was calculated by suitably
averaging their rate of separation, using the algor-
ithm of Grassberger and Procaccia (1984). The
method described by Fraedrich and Leslie can be
used for other meteorological systems in different
parts of the globe and in the investigation de-
scribed below it is used to provide predictability
estimates for 500 hPa cyclone storm track data in
the Weddell Sea sector of Antarctica. These esti-
mates are compared with those obtained from the
older, analogue approach to predictability. It is
noted that the Australian Bureau of Meteorology
archived operational data used in the present
study are composed to a considerable extent of
satellite retrievals and interpreted satellite ima-
gery. While these data are of lower quality than
conventional data, they are now available twice
daily on the Global Telecommunication System
(GTS) and are used operationally by the major
global numerical weather prediction centres, such
as the European Centre for Medium Range
Weather Forecasts (ECMWEF) (Shaw et al
1987).

Finally, two points should be emphasised. First,
that the non-linear systems analysis as described
in this study focuses largely on the predictability
time-scales of a particular system, in this case the
high-latitude cyclones of the Weddell Sea region,
using observational data. In that sense it differs
from the analogue approach and also from the
recent work on the predictability characteristics
of numerical models, which cover a whole range
of weather phenomena resolvable by the model,
thereby including other systems (for example,
anticyclones as well as cyclones) which could have
quite different predictability time-scales. Second,
that although this study is concerned with predic-
tability estimates based on observations, it should
be pointed out that a large and growing body of
work on the predictive ability of NWP models
also exists (see, for example, the recent extensive
survey by Murphy (1990)). Inadequacies in both

initial conditions and model formulation (Smago-

rinsky 1969; Miyakoda et al. 1972) determine the
predictability of a NWP model.

Methodology and data

The traditional approach (using analogues)

This method calculates the distance between two
only slightly different initial atmospheric states
evolving-in time. In an atmospheric model one
solves the non-linear equations twice with differ-
ent sets of initial conditions (Thompson 1957;
Smagorinsky 1969):

dx;

dt
with n suitably normalised variables x;. Denoting
an initial weather state, or realisation, by a vector
x=(Xi,..., Xp) in the n-dimensional phase space,
and another realisation by a vector deviation
x + 8x, then their Euclidean distance

D(t) = (8% . 8x)12 2

is proportional to the root mean square error
(rms) of the deviation. The time limit of predict-
ability can be determined by the time required for
the Euclidean distance D(t) to evolve to a state in
which it oscillates about a saturation value Dsy,
not greater than that calculated from two ran-
domly selected states of the system. If the distance
is below this threshold, one would expect the pre-
dictability to be longer.

Actual atmospheric observations have been

used in only a few predictability studies. Here the
two initially close but different states x and x + 8x
are obtained from analogue pairs of past weather
maps (Lorenz 1969; Gutzler and Shukla 1984).
Pairs of observed analogues have generally been
found to be only of mediocre quality. They yield
doubling times of 6-8 days for hemispheric and
3-4 days for regional scales; that is, larger errors
grow less rapidly than initially small errors
because they approach a saturation level. There-
fore, approximate theories for error growth have
been developed (Lorenz 1969, 1985; Kalnay and
Livezey 1985) from which the growth of small
errors can be inferred.
Logistic error growth. Randomly chosen small
errors are represented in the phase space of the
dynamical system by an infinitesimally small
sphere which eventually expands into an error
ellipsoid. Assuming the semi-axis with the largest
expansion rate, A1, to contribute most to the over-
all error growth, the magnitude of the error will
then be governed approximately by the equa-
tion

=fi (Xi,..., Xn)

dD

dt
The common measure of the error growth, its
doubling time T, is then given by T=In 2/A;.

-AD. B
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Errors, however, do not undergo Malthusian
growth but reach a saturation level, Dsy¢, which is
due to the non-linearity of the system. Lorenz
(1969) included this by a quadratic limitation of
the growth rate to obtain the Verhulst equation
with the familiar logistic solution

which has the limiting value Dga = Aj/c. Although
there is no rigorous justification for Eqn 4 it seems
to be plausible because, as Lorenz says, ‘the prin-
cipal nonlinear terms (which limit the error
growth) in the atmospheric equations are quad-
ratic and thus the nonlinear terms in the equa-
tions governing the field of errors will also be
quadratic’. As a further extension, error growth
should not be confined to the mode with the lar-
gest growth rate, ;, and all expanding semi-axes of
the error sphere (A > 0) with their related errors,
D;, need to be considered (Lorenz 1985).
Analogue data. The data consist of daily 0000
UTC southern hemisphere 500 hPa geopotential
heights for a 15-year period (1972-1986). The
data were derived from the archived Australian
Bureau of Meteorology operational analyses on a
polar stereographic projection with a resolution of
about 380 km at 60°S. Linear interpolation in
time was used to replace a few missing data. In this
study we considered 500 hPa heights for the
southern hemisphere winter months June, July
and August in the Weddell Sea area, defined to be
the region from 50° to 80°S and 80°W to 40°E. The
annual cycle was removed from each grid-point by
a parabolic best fit to the entire 15 winter time-
series to provide 500 hPa height anomalies for
further analysis.

Definition of analogues. The 500 hPa height
anomalies are scaled by the cosine of latitude to
obtain area-weighted daily weather maps A;(t) for
j=1,..., N grid-points. A measure of analogue
quality is the rms difference between pairs of
maps Aj, B;. It is proportional to their Euclidean
distance and is small for good analogues:

N
rms (ta, tB) = % El(Aj—Bj)% .5
=

However, instead of minimising the distance be-
tween pairs of instantaneous daily maps (Lorenz
1969; Gutzler and Shukla 1984), analogues in the
time evolution of weather patterns will be dis-
cussed. Thus, the distances between pairs of (at
least) two-day sequences of daily weather maps
are analysed, that is, rms (ta, Tg) and rms (ta + 1,
tg+ 1).

The best analogues are found by comparing all
91 two-day sequences within a single winter with
all two-day sequences of the remaining 14 winters,
Thus we obtain a total number of 869 505 ana-
logues. Only those from independent synoptic

situations are chosen, to guarantee good ana-
logues as recurrent circulation patterns and not
generated by persistence.

An alternative approach (using non-linear systems
analysis)

Storm track data. Storm tracks are constructed
from 500 hPa lows by tracing their daily centres of
minimum height during the fifteen Julys in the
data period. However, whenever necessary, prior
and subsequent days were added to document the
life cycle of storms over the Weddell Sea as com-
pletely as possible. Only 26 of the total of 32 storm
tracks analysed are shown in Fig. 1, to avoid clut-
ter. They are shown in the two sets of 13 tracks
labelled A-M (top) and N-Z (bottom). Qualitativ-
ely, the results show similarity with a ten-year
climatology of cyclone tracks deduced from sur-
face pressure maps (Kep 1984). The observed
average duration of the 32 storm tracks ( + stan-
dard deviation) is 6.4 + 1.8 days. The mean initial
position ( + standard deviation) is 63.6° £ 7.1°S
and 59.8° + 12.5°W.

Distribution of distances between pairs of inde-
pendent storms. Whereas the analogue method is
used in a phase space defined by the weather map,
a substitute phase space is constructed in applying
the following non-linear systems analysis method.
This phase space is spanned by delay-coordinates
lagging a (scalar or vector) time-series of a dynam-
ical system. Subsequently, a point in this substi-
tute phase space, which embeds the dynamics of
this system, corresponds to a piece of a time tra-
jectory; its length is the number of lags used or,
which is equivalent, is proportional to the embed-
ding dimension of the substitute phase space. For
sufficiently large embedding dimension, the sub-
stitute phase space retains the (attractor of the)
dynamical system and its related static and
dynamical properties, dimension and entropy,
may be derived (Packard et al. 1980; Takens
1981): that is, the number of active modes in-
volved in the process and the rate of divergence of
initially close pieces of trajectories on the attrac-
tor. Applying this approach to storm tracks, their
position vectors, x(t) = [x(t), y(t)], define the ob-
served time-series and the sequence of lags pro-
vides the delay coordinate system of the substitute
phase space, xm(ti) = [x(ti), x(ti + 1), . . ., x(ti +(m
— 1)7)]. Therefore, the number of all pairs of pieces
of trajectories from independent storms, which
are less than a distance / apart from one another
(Grassberger and Procaccia 1983, 1984), can be
deduced:

Cm(/) =lim N~2{number of pairs (t;, t;) with

Ne—soo
m—1
rij= X [x(ti+n71)
n=0
—x(t; +n1)]2 < /2}, .6
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where t; and t;j belong to different (that is, inde-
pendent) storm tracks. This number distribution
function estimates an ensemble average over all
independent pieces of storm trajectories (that is,
positions in the phase space of time-lagged coor-
dinates) which are less than the distance rjj</
apart. Thus, Cn(/) described the mean relative
number of pairs of points which occurs in a phase
space volume element (or ball) of radius / sur-
rounding every individual piece of trajectory.
With increasing distance threshold, / (or size of
ball), the number of pairs of points grows. Fur-
thermore, Cp(/) changes its shape with increasing
duration or length of the trajectory pieces (embed-
ding dimension). Following Grassberger and Pro-
caccia (1983), for a sufficiently large number N of
points in phase space the distribution function,
Cm(/), leads to estimates of the dimension of
attractors (D7) and the divergence (K32) of nearby
pieces of trajectories evolving on them; that is,
Cm(/) scales for m — co, I — 0 as

Cm(/)~ P2 EXP (—m 1 K3) it

Before actually estimating the cumulative dis-
tance distributions Cp(/) for increasing embed-
ding dimension m, the geographical distances
between the individual pairs of independent
storm positions need to be derived, that is, for
relatively small distances

[ x(t:)—x(t;)|2 = R2[cos2{(O(t;) + O(t;))/2}
(ML) — At))2 + (B(t) — 6(t;))2]

which then enters the algorithm; 0(t), A(t) are the
latitude and longitude of the storm positions, R is
the earth’s radius. Estimates of the cumulative
distribution function are presented in a In (Cr({))
versus In / diagram for embedding dimensions
m=1,2,3,..., that is, for pieces of trajectories
lasting from one, two, three. . ., etc. days.

The growth rates of errors in an atmospheric
model (Lorenz 1965) can be determined by the set
of i (=1,...,n) linear differential equations,
whose coefficients A(i, j) = 8fi/8x; at x(t) are ele-
ments of the Jacobian matrix of Eqn 1 and vary
with the time evolution (x(t), say). The eigenvec-
tors of A(i, j) provide a local coordinate system
which describes the semi-axes of an infinitesi-
mally small error sphere expanding into an ellip-
soid. After suitable time-averaging the associated
positive characteristic exponents (that is, Lyapu-
nov exponents), Ai(xo, 8x0)=>0, can be used to
define predictability as the average rate of diver-
gence of an infinitesimally small phase space
volume, K= ZA;, with A;>0.

Applying this approach to atmospheric obser-
vations one should note that for smooth continu-
ous evolution, this average growth rate, K, is
equivalent to the average production of infor-
mation per unit time (Kolmogoroff entropy). As
the information production can also be defined in
probabilistic terms, it can, at least in principle, be

estimated from data. For practical purposes the
order-2 entropy K suffices as an estimator (see
Grassberger and Procaccia (1983, 1984) and in
particular Schuster (1988) for more details):
K=K;= —lim Lln X p2io,..,in), -9
nt g
for n—>oo, A—0. The sum X p2(ip, ..., in) is the
probability that a pair of pieces of time trajec-
tories in the state space (of dimension n) x(t;),
x(t;), falls into the same sequence of boxes (ig, . . .,
1n—1) of the space-time (/, T) partitioning with (/, 1)
—0, while the system evolves from (t;, tj) to
(t; +nt, tj+nt.) This is equivalent to the prob-
ability that two independent pieces of trajectories
of length or duration n remain less than a distance
[ apart. Estimates of the entropy are based on a
counting algorithm of the relative number of
sequences of trajectories in phase space, where
|)_g(ti) _)'E(tj)l <l...|x(ti+nt)— x(t; + nt)| </,
using a sufficiently large number of data points.
In this study the two methods described above
are applied to study the predictability of the Ant-
arctic atmosphere using observations. In the next
section the results of the study are presented. The
best past weather analogues and the time devel-
opment of their ensemble mean rms errors are
analysed. This is basically an error analysis in an
Eulerian framework, which follows the more tra-
ditional approach. Storm tracks are also analysed
and the related rate of divergence is estimated
from nearby pieces of storm trajectories of inde-
pendent tracks. This is basically a predictability
analysis (on attractors) in the Lagrangian sense,
which follows the alternative route.

Table 1. List of the ten best analogue pairs of 500 hPa
geopotential height anomalies over the Wed-
dell Sea region for the period 1972-1986,
based on the rms height difference averaged
over two consecutive days. The rms error
shown in the Table is the minimum of the two
consecutive daily differences, with the corre-
sponding pairs of dates.

Analogue rms error
pairs Ratss (m)
1 8.7.76—17.6.82 26.1
2 17.7.85— 5.8.82 25.2
3 23.6.73—24.7.74 28.9
4 27.8.73—13.6.81 314
5 8.7.74— 8.6.84 30.0
6 23.7.72—16.7.84 29.1
7 17.7.79— 4.6.83 27.4
8 23.8.83—21.6.84 31.7
9 25.7.73—30.6.84 32.3
10 17.6.74—28.7.77 26.6
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Fig. 1 Climatology of July storm tracks over the Wed-
dell Sea area deduced from daily 500 hPa height
analyses (1972—1986).
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Results

Predictability estimates using past weather

analogues

Analogue quality and error evolution. The ten best

independent analogues and their related two-day

sequential rms errors are listed in Table 1. Note
that the dates refer to those pairs of days for which
the one-day error rms (ts, tg) of the two-day
sequence Eqn 8 is minimal. An example of an ana-
logue pair of 500 hPa weather maps evolving in
time is shown in the first two sets of three panels of

Fig. 2. It is the second-best pair of analogues in

terms of the two-day sequence of rms differences

(and the fourth best if analogues are selected from

one-day sequences). The daily rms evolutions of

the analogues are composited about the minimum
rms error. The ensemble means <rms (t + m)=>

and the standard deviations are plotted in Fig. 3

for both positive and negative time lags, m. The

following results should be noted:

(a) The symmetry between negative and positive
time lags found by Lorenz (1969) is not obvi-
ous here. The error growth with progressing
time (m > 0) appears to be initially more rapid
than for time reversal. Also the standard devi-
ation of errors is significantly different for the
m=1 and m=—1 time lags. The larger
forward time error growth could possibly be
an indication of sudden developments due to
an instability in the flow, whereas the rela-
tively slow approach towards similarity in the
weather maps reflects a process less disturbed
by instabilities.

Fig. 2 An example of one of the best Weddell Sea weather analogues. Maps of the 500 hPa fields are shown for 18 J uly
1985 and 6 August 1986 with two consecutive days each. The 1986 analogue sequence is compared with 24 and
48-hour NWP model forecasts initialised on 6 August (see Fig. 6).
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(b) After about m =5 days the ensemble mean
errors < rms > of the analogue pairs rises to a
saturation level <<rmsg,; > of about 90 m.

(c) Compared with this saturation level the best
analogues should not be judged as very good
but rather, perhaps with the exception of
m = 0, as mediocre for the study of the natural
growth rate of small errors.

(d) Persistence forecasts are better than the best
analogues, although their mean rms error, ex-
cept for m = 1, lies within one standard devi-
ation of the analogue ensemble average
<rms>,

Estimating error growth. The estimates of error

growth are based on the rms differences shown in

Fig. 3. The growth rate can be determined after

suitable normalisation by a saturation value

<rms (t) > .10

EQ= < I'MSgat =

Fig.3 Error evolution of daily best analogue pairs before
and after error minimum. Averages and standard
deviations are taken over the ten best analogues.
The time-series is centred on the day of error
minimum (lag 0). Persistence forecast errors are
also shown for comparison.
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from an E(to+ 1) versus E(tg) diagram (Fig. 4)
using Eqns 3 and/or 4, where to is any initial value.
First, assuming errors to be initially small, that is,
E =0, doubling times are deduced from the slopes
dE(to + 1)/dE(tp) = exp(+ A;) through the origin
(Fig. 4, upper margin). From the data points
(to+ 1) one observes that only the first iteration,
that is, E(0) to E(1), may be considered to be suf-
ficient to provide a reasonable estimate of the
error growth rate of initially small errors. This cal-
culation gives a doubling time of T~1 day.
However, T increases to about 5-8 days for later
time steps because the analogues have degraded
rapidly and errors are approaching saturation
(E=1). In this case, the quadratic (non-linear)
effect is limiting the growth rates so that the sol-
ution of the logistic equation

Fig.4 Observed values of errors, E, plotted ina E(t + 1)
versus E(t) diagram. The errors are normalised
by the ensemble mean saturation rms error
<IMSgq;=>. The numbers in brackets refer to the
time lags evolving from the day of error minimum
(Fig. 2). Error doubling times are indicated on the
upper and left margins as linear slopes through
(E=0) and (E=1) for small and large errors (sat-
isfying the model of logistic error growth).

FOR E~O

ERROR DOUBLING /
TIMES (DAYS)

FOR E=I

(1+3)3 H0¥¥3 Jd3ZINMVYWYON

; 1.0
w/ 0 0.5

NORMALIZED ERROR E(t)

E(to + m) = E(to)/[exp(—X; m)
+ (1 —exp(—A; m) E(to)] sl

needs to be considered. Consequently, near satu-
ration, predictability has to be estimated by the
slope dE(tp+ 1)/dE(tg) =exp(—X1) of (1, 3)
through E=1 (left margin in Fig. 4). Now the
error doubling time, T = In 2/A;, for initially small
errors can be inferred from errors near saturation
using the logistic equation (Eqns 3 or 4; see Lorenz
(1969)). It appears that not only the first iteration
(0, 1) with the largest growth rate but also all oth-
ers (except the iteration (1, 2)) lie close to the same
regression, leading to the error doubling time
T ~ 1 day for initially small errors (as indicated on
the left margin in Fig. 4). Furthermore, as the first
iteration (0, 1) can be extrapolated to similar error
growth rates using both E=0 (Eqn 3) and E=1
(Egn 4), the best Antarctic analogues may be
regarded as no better than mediocre (which was
the same conclusion concerning analogue quality
obtained by Lorenz (1969) or Gutzler and Shukla
(1984) in their analogue studies). This, however,
would increase the initial (0, 1) error growth rate
to less than one day doubling time when the com-
plete logistic solution is considered and not only
near its boundaries (E =0 or 1). Thus the initial
growth rate estimate for E=0 also satisfies the
logistic equation.
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Predictability estimates from non-linear systems
analysis of storm track data. In this section, the
chaos theory outlined above is now applied spe-
cifically to the tracks of 500 hPa cyclones in the
Weddell Sea sector of Antarctica, as shown in
Fig. 1.

Estimating predictability of storms (and their at-
tractor dimension). The estimates of the attractor
dimension are obtained from the slopes Cun(/)
~ [D of the In Cy(/) versus In / graphs (Fig. 5,
straight lines) for small /. These slopes tend to
approach a saturation value of D3 ~ 5-6 for em-
bedding dimensions m > 3. The attractor is now
embedded in a new phase space of delay coordi-
nates. Its pointwise dimension, Dj, does not
change if further coordinates are added to the
embedding phase space. The dimension of the
attractor provides a measure of the minimum
number of independent variables necessary (but
not sufficient) to model the dynamics of the
system. This estimate coincides with similar re-
sults obtained from single-station surface pressure
time-series (Fraedrich 1987) and 500 hPa heights
(Essex et al. 1987), which provides further support
for the hypothesis of low-dimensional attractor
describing weather dynamics (see also Henderson
and Wells (1988); Tsonis and Elsner (1988);
Fraedrich and Leslie (1989)).

A non-integer (fractal) dimension characterises
qualitatively the chaotic behaviour of a system
(that is, its sensitive dependence on initial con-
ditions) and thus provides evidence for the poss-
ible existence of a strange attractor governing the
time evolution. The degree of chaos, however, is
characterised by the Kolmogoroff entropy (or pre-
dictability), a lower bound of which is estimated
by the order-2 entropy K> from Fig. 5 using Eqn 7.
More specifically, the distance between the slopes,
Cm(/) and Cy, + 1(/) for m=> 3, (at a fixed small /)
provides an estimate of the degree of chaos or
(un)-predictability on attractors. Increasing the
embedding dimension from m to m + 1 prolongs
the pieces of trajectories by one time step. Thus
the new cumulative distribution at fixed [ de-
scribes the now reduced number of trajectory
pairs which still remain within the distance <</,
the others having exceeded it. Thus the change
from Cy, to Cp, + 1 provides a measure of the mean
separation rate (divergence) of two (initially close)
pieces of trajectories. Their chance of diverging
beyond the fixed threshold / during the next time
step, T, rises proportionally to exp (+ma;t). On
the other hand, their chances of remaining
trapped within the threshold / decreases pro-
portionally to the expansion rate along the prin-
cipal axes of the growing error volume element,
exp (—mh; 1); ie. Cp~exp (—mt(h; +Ax+..)
= exp (—mtK3), with 1; > 0. Therefore predicta-
bility is interpreted as an ensemble mean of the
exponential expansion rate or divergence of (in-
itially close =0) pairs of pieces of trajectories;
averaging occurs over all points on the attractor.

Fig. 5 Cumulative number distributions Cy(7) of all
pairs of storms which are less than a distance /
apart. The first 26 of the storm tracks are shown
in Fig. 4. The results are presented in a In Cy,(/)
versus In / diagram; m denotes the number of
consecutive storm days (that is, the embedding
dimension) considered for the distance evalu-
ation; [ is the Euclidean distance.

En C_ (e}
&

Thus, it is the difference between In(Cp,(/)) and
In(Cn, + 1()) at fixed [ which yields a measure of
the mean predictability from Eqn 7; that is,
K7 =In(Cp, + 1)/1. The time-scale of predictability
can be deduced from Fig. 5, 1/K2~ 1 day; this
value reduced to about 0.7 days when considering
doubling times of the rms errors. There is good
agreement with one of the other non-linear
analyses based on the 500 hPa heights (Essex et al.
(1987), using Fig. 1), but not with the surface
pressure analysis, where a time lag of the order of
the autocorrelation time (t = 3 days, in compari-
son to =1 day) has been used to guarantee inde-
pendent delay coordinates for the substitute phase
space. Furthermore, it appears that very similar
results are obtained applying the two different
approaches to estimate predictability: (a) from the
traditional approach of comparing past weather
analogues occurring in an Eulerian frame; and (b)
the non-linear systems analysis of the divergence
of initially close pieces of storm trajectory time
series (that is, a Lagrangian view) as they evolve
on an attractor.

Forecasts from a numerical weather prediction
model. Given that the predictability limits appear
to be short, especially for cyclone tracks, for the
Weddell Sea region, it was decided that it would
be a worthwhile exercise to compare the perform-
ance of a numerical weather prediction model
with one of the analogue pairs. The analogue pair
chosen was the second best pair, 18 July 1985 and
6 August 1986. This pair was chosen because fore-
casts from the operational hemisphere N'WP
model of the Australian Bureau of Meteorology -
(Bourke et al. 1977) have been archived for that
period. In Fig. 6 a comparison is shown of the
500 hPa height difference from the analysis for
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Fig. 6 Analogue, persistence, and NWP forecast errors
for the 500 hPa geopotential heights starting at 6
August 1986, 0000 UTC at 12-hourly intervals.
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the analogue pairs and the NWP model forecast,
at 12-hourly intervals out to 48 hours. For refer-
ence purposes, persistence is included.

It is immediately clear from Fig. 6 that the
NWP model has a much greater level of accuracy
than the analogue approach and is more accurate
than persistence after 12 hours. After two days the
rms error of the model is only 30 m, compared
with about 60 m for the analogue and persistence.
It is worth noting that the analogue of the chosen
situation in this case does poorly in that the rms
rises quickly to the saturation value after only 1
day whereas (from Fig. 3), on the average, it
reaches saturation at about 2.5 days.

The fact that the NWP model shows skill, with
rms errors of only 30 m at 2 days, is most likely

due to the relatively low number of degrees of
freedom observed for the high latitude synoptic-
scale dynamics (Fig. 5). It appears that the NWP
model can simulate the observed dynamics on the
relatively low-dimensional attractor involved. It
is emphasised that only one forecast has been
made as the aim of the study was not to examine
the predictability characteristics of the NWP
model. In addition, the model predicted a number
of systems, unlike the Grassberger-Procaccia the-
ory which looked only at high latitude cyclones.
Further work, which is beyond the scope of this
article, will be carried out in the future on the
topological structure of the model attractor to
confirm that the results obtained here hold in
general.

Discussion and conclusions

The main results may be summarised as follows.
An attempt has been made to estimate the pre-
dictability of a sector of the Antarctic atmosphere
and, in particular, the predictability of high lati-
tude cyclone tracks. Two different types of me-
thods were used to achieve this aim. First, an
analogue method was applied to the entire sector.
However, the analogues derived using the 15-year
daily winter 500 hPa height fields proved to be
mediocre and even the ten best analogues had a
very rapid rms error doubling time of about one
day. When the definition of the analogues was
altered to include consecutive pairs of days, the
growth rates of rms errors still remained very
rapid. Second, it was decided to try an alternative,
Lagrangian, method. In this technique, the algor-
ithm of Grassberger and Procaccia (1984) was
applied to 500 hPa cyclone centres. Once again a
rapid rms error doubling time of about one day
was found.

The results obtained from the Grassberger and
Procaccia theory reveal that there is a relatively
low number of degrees of freedom (about six)
involved in Antarctic cyclone weather dynamics.
Therefore, it is reasonable to expect that numeri-
cal weather prediction models would be able to
provide skilful forecasts in high latitudes because
they have many more than six degrees of freedom.
This was confirmed in the single NWP case study
where the NWP model forecasts were found to be

" the most accurate of the three techniques. It was

also confirmed that analogue prediction methods
have less skill than persistence. The skill of NWP
model forecasts depends on the static and
dynamic properties of both the processes in-
volved and the forecast model, plus the model’s
ability to capture these properties from the initial
data and physically simulate them.

The estimated dimension of 5-6 merely pro-
vides a lower bound of the expected degrees of
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freedom governing the atmospheric dynamics;
the possibility that saturation has not been
reached and more degrees of freedom could be
involved cannot be excluded. The amount of data
is limited (500 hPa storm tracks of finite life time)
and parts of the dynamics are hidden by noise.
Accordingly, predictions by analogues must suffer
from this deficiency so that they are able to
recover only these 5-6 degrees of freedom for the
prediction, whereas NWP models can resolve
more details from the initial analysis and adjust
them to a system of more degrees of freedom. In
particular, whereas the analogues have been de-
duced from the 500 hPa level only, the NWP
makes use of more levels; boundary conditions,
which analogues disregard, can also play a crucial
role. It is not, therefore, surprising that the NWP
model forecasts are superior to analogue fore-
casts, particularly in areas where the natural
growth of small errors is large. Even persistence
without initial error may, in some situations, also
perform better than good analogues (Fig. 2).

The estimates of predictability time-scales ob-
tained in this study appear to be shorter than those
obtained by Gutzler and Shukla (1984) who re-
ported rms doubling times of up to a week for
some limited area 500hPa height fields.
However, the present estimates are much closer to
those found by Lorenz (1969) and Errico and
Baumhefner (1987). In particular, Errico and
Baumbhefner suggested that error doubling times
of the order of one day are found within active
baroclinic regions. Parts of the Weddell Sea area
appear to be such a region with rapidly developing
and fast moving cyclones present in many of the
analyses.

In conclusion, it is suggested that the predicta-
bility time-scales for cyclone tracks in the Weddell
Sea area of the Antarctic are quite short, being of
the order of one day in the rms error doubling
sense and that the best approach in terms of prac-
tical methods for achieving these predictability
limits rests with the NWP models either alone,
or in combination with other statistically based
methods.
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