ECMWF Workshop on: ‘New developments in predictability’
13-15 November 1991

SHORT RANGE SKILL PREDICTION

Klaus Fraedrich
Institut fiir Meteorologie
1000 Berlin 41, Federal Republic of Germany

1 INTRODUCTION

Methods for predicting the skill (or accuracy) of weather forecasts may be categorized as either
stochastic-dynamical or ensemble predictions: Stochastic-dynamical forecasts incorporate
uncertainties of the initial conditions (and of the model) leading to a deterministic problem in
stochastic terms. Thus the model predictions provide forecasts of means and variances (Epstein,
1969). For routine use with numerical weather prediction (NWP) models, however, this technique
still seems to be beyond computer technology. Ensemble forecasts lead to an average prediction
and, in addition, the forecast skill can be estimated from the dispersion of the ensemble. The
required multiple forecasts may be obtained from a set of (randomly) perturbed initial conditions
(Leith, 1974). Or, alternatively, ensembles of lagged forecasts based on previous initial analyses
may be used, which are available on routine basis (Hoffinann and Kalnay 1983, Kalnay and
Dalcher 1987). Applied to medium and extended range NWP forecasting, the prediction of the
forecast skill is related mainly with the limits of predictability and the breakdown of the forecast.
In short term NWP forecasting, however, one is generally not concerned about the predictability
limit but about the growth rate of errors and their more precise predictions. These purely numerical
methods describe basically a NWP model’s sensitivity on initial conditions which, if the model

performs well, leads to a measure of the predictability of the atmosphere.

On the other hand, one may define the predictability (or the forecast error) as an atmospheric
variable (like the temperature or pressure at a weather station) to be predicted. Then, at least in
principle, there are two basic methods to estimate the forecast of weather variables from NWP
models, Model Output Statistics (MOS) and Perfect Prog: (i) The Model Output Statistics (Glahn
and Lowry, 1972) relates the observed weather (predictand) to the variables forecast by the NWP
model. In order to use this approach, a sample of model forecast data (and observations) must be
available to develop the statistics. (ii) The Perfect Prog approach (Klein, Lewis and Enger, 1959)
is based on the assumption that NWP forecasts are perfect. Thus an observed weather variable
(predictand) can be related to other variables observed at the same time. Two examples of these
approaches towards forecast-skill predictions will be briefly discussed (and some preliminary results

presented).
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The MOS-approach leads to a statistical-numerical regression scheme (Leslie, Fraedrich and
Glowacki, 1989) which predicts the model forecast error (predictand) from the initial analysis and
the model forecast at neighbouring points (predictors). Here it can be interpreted as an extension
of a statistical correction scheme by which regression relationships between the NWP output and
the desired variable (the forecast error) are established. This technique has been developed at the
Australian Bureau of Meteorology Research Centre (BMRC). (ii) The perfect-prog approach to
short term predictability forecasts is based on the estimates of the Liapunov exponents determined
from ensembles (or clusters) of past weather analogues (Fraedrich and ZiehmannSchlumbohm,
1991). The members of an ensemble are 3 hourly single station (mesoscale) weather trajectories
which are embedded in large scale regimes of similar structure defined by cluster analysis. The
observed mesoscale dynamics evolves in a phase space spanned by time delay coordinates. In this
sense it is guaranteed that the faster developing mesoscale dynamics is appropriately embedded in

the slower synoptic scale regime defined by a subregion of the daily weather map.

2: MODEL FORECAST ERROR (MFE) PREDICTIONS: A STATISTICAL-NUMERICAL
REGRESSION

METHOD: The statistical prediction of the model forecast errors is based on multiple linear

regression methods. Predictands are the model forecast errors (MFE’s) at grid points; predictors are

initial analyses and the model forecasts (both detrended). The regression technique applied

(Glowacki, 1988) is based only on a small number (about 10) of proximate grid points, because up

to 36 hours ahead the forecast errors are found to be uncorrelated with distant locations. Thus, at

a grid point, j, the MFE, ej is estimated:

n 2n
ej"=C°+E C'-P‘-a+ E CiPim

i=1 i=n+1

where the bias is bj; ej " is the estimated model forecast error at j using the predictors of the

3

subregion s, the multiple correlations are R. 7 and k is the number of subregions, which include

At
the point j; t is a power law weight. Furthermore, the model forecast error e, § depends on the

number n of gridpoints within the subregions s, the analysis and model predictors are P? and P™

associated with the regression coefficients Ci for each point j in all subregions s.
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APPLICATION: The regression technique has been applied to NWP-model forecasts and analyses
of the Australian Bureau of Meteorology operational regional model in the Australian region: The
basic NWP grid has a resolution of 150 km and consists of 65x40 points. The 13x8 point subgrid
was used for the MFE regressions. This subgrid was further subdivided into overlapping subregions
(of n=10 points) to reduce the number of predictors as large distances do not effect the predictand.
Finally, four 5x3 point areas were chosen for localized MFE-forecasts (FIGURE 1). Predictors are
the analysis and the 24 hour prediction of the sea level pressure field; the predictand is the 24 hour
rms forecast error. The regression coefficients are calculated monthly from 5 years (1980-84)
archived operational numerical analyses and forecasts to obtain a 24 hour MFE-prediction scheme.
It has been tested by an independent data set for the summer period, December-February 1984/85,
and for winter, June-August 1985.

ACCURACY MEASURES OF MFE-PREDICTIONS: The independent sea level pressure forecast
errors (FIGURE 2a) are evaluated by the following measures: significance of the correlations,
categorical predictions, and local forecast error. The significance of the predicted and observed
MFE must be tested before MFE-predictions can be used. The student’s t-test, t=r[(N-2);’(1-r2)] 1z
with sample size N, was employed at each gridpoint using the null-hypothesis of zero correlation.
Categorical predictions: Four forecast classes can be identified in the MFE-distribution, (1) very
good, (2) good, (3) mediocre, and (4) poor to very poor. They are are associated with the rms
MFE-intervals < 2.5,2.5t02.9,3.0to 3.4 and = 3.4 mb, respectively. The skill score (Panofsky
and Brier, 1958), S=(C-E)/(T-E), is based on the expected number of correct forecasts E, the total
number of forecasts T and the number of correct chance forecasts C=EPiOi;’T fori=1,...4, where
Pi and 0i are the subtotals of predicted and observed values of each category. A chi-squared test
needs to be applied to reject/accept that the MFE-predictions were obtained by chance. Local
forecast errors: Four subregions have been chosen to provide the forecast quality in specific areas:
two in the Australian tropics (east and west: TE, TW); two in the higher latitudes of the Australian

continent (southeast and southwest: SE, SW).

RESULTS OF MFE-PREDICTIONS: The method was applied to a summer and a winter season
(December-February 1984/85, June-August 1985, see FIGURE 2). The following results are noted:
Correlation coefficients were calculated at all 104 gridpoints leading to averages of 0.54 for
summer and 0.51 for winter. The null-hypothesis of zero correlations was rejected for r>0.2 at the
99% level (for r>0.28 at the 99.9% level) based on the Student’s t-test. A scatter diagram
(FIGURE 2) supported the high level of correlation between predicted and observed rms-MFE and
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the 13x8 subgrid used

for model forecast error (MFE) predictions; the overlapping subregions used for multiple

linear regression; the local subregions for local MFE predictions.

3

The 65x40 point Australian region NWP grid of 150 km resolution;

Fig. 1
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Fig. 2 Actual rms 24 hour model forecast errors (dashed line) for the Australian Bureau of
Meteorology operational regional model for summer and winter (left); rms errors of
persistence (full line) are also shown. Scatter diagram for predicted and actual rms
24 hour model forecast errors for summer and winter (right).
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showed only very small bias (see also the distributions in FIGURE 3). From the 4x4 contingency
table of categorical predictions the summer (winter) skill score was S = 0.27 (0.25). The
subsequent chi-squared test lead to a rejection of the null-hypothesis that MFE-predictions were
obtained by chance on a 99.9% level.

OBSERVED/PREDICTED: 1 2 3 4
1 very good 13; 10 9;: 5 3 1 0% 0
2 good 5 9 1 17 5, 8 15 1
3  mediocre 1; 3 6, 6 10; 10 4; 3
4  poor 0; 0 2; 1 8, 8 12; 8

Table 1: Contingency table of forecast errors (summer; winter)

The four small (5x3 point) local areas within Australia allow a detailed MFE-prediction to analyse
errors which may be systematic, orographically induced or related to a particular weather system
at a given day. The averaged correlations in these small areas are above r> .52 (both winter and
summer). In particular in the tropical eastern and southeastern Australian region, the high

correlation coefficient r > 0.55 indicates the usefulness of the skill prediction scheme.

3. SHORT-TERM PREDICTABILITY ESTIMATES BY PHASE-SPACE ANALOGUES
METHOD: The analysis consists of two steps: Large scale flow patterns are defined as clusters of

daily weather maps and the associated short term predictability is determined by the largest
Liapunov exponent using 3-hourly single station observations characterising the mesoscale; this

exponent is a measure of the exponential growth-rate of infinitesimally small *errors’.

First, the synoptic scale patterns are defined by cluster analysis (proposed by Ward, 1963, see also
Wishart, 1969) of daily observations. Given a base point (Berlin), its regional synoptic scale
environment (a subregion of the weather map) is deduced from daily observed surface pressure
anomalies: North-South gradient (NS) is defined by a pressure difference (Prague-Fand); an East-
West pressure gradient (EW) by another difference (Potsdam-Uccle), and the pressure mean of the
four stations, <P>. These three variables span the synoptic scale state space characterizing the

direction and strength of the large scale flow and the amplitude of the pressure system. The
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Fig. 3 Histograms showing numbers of predicted and observed rms 24-hour model forecast errors
in four categories for summer and winter.

47



FRAEDRICH, K. SHORT RANGE SKILL PREDICTION

subsequent cluster analysis is based on the Euclidean distances in phase space between all possible
pairs of realisations (leading to a symmetric distance matrix with zero main diagonal). The cluster
analysis procedure commences from the two nearest neighbours, which are averaged to replace its
two predecessors with the weight 2. Now the procedure is iterated with the revised distance matrix
comparing the remaining pairs of weather states; new nearest neighbours are identified, averaged
and the procedure is repeated until only one map (the climate mean) remains. That is, the climate
mean is comprised by the average of two clusters, both of which are generated by two predecessors
etc. (see also Wallace et al., 1991). The cut-off for clustering can be defined by the measure of
homogeneity (or heterogeneity) in terms of (a sum of) cluster variances. Now large scale regimes
can be identified by centroids (Molteni, Tibaldi and Palmer, 1990) defined by the mean and
standard deviation of each cluster. Within these regimes the short term predictability can be
deduced.

Secondly, given the large scale regime, the short term predictability is determined from 3-hourly
single station weather observations (at Berlin) by the estimated Lyapunov exponent. It is determined
by the Wolf et al. Algorithm (Wolf, Swift, Swinney and Vastano, 1985) using only those pieces of
the single station mesoscale weather time series which belong to the same large scale cluster:
"Given the time series x(t), an m-dimensional phase portrait is reconstructed with delay coordinates,
i.e. a point on the attractor is given by {x(t), x(t+T),....x(t+(m-1)T} where T is an almost
arbitrarily chosen delay time. We denote the distance between these two points L(t,). At a later time
tl’ the initial length will have evolved to the length L’(tl). The length element is propagated
through the attractor for a time short enough so that only small scale attractor structure is likely to
be examined. If the evolution time is too large we may see L’ shrink as the two trajectories which
define it pass through a folding region of the attractor. This would lead to an underestimation of
A 1 We now look for a new data point that satisfies two criteria reasonably well: its separation
L(tl) from the evolved fiducial point is small, and the angular separation between the evolved and
replacement elements is small. If an adequate replacement point cannot be found, we retain the
points that were being used. This procedure is repeated until the fiducial trajectory has traversed the

entire data file, at which point we estimate

- L'ty
Ay £t 2 L
M ‘o k=1 k-1

where M is the total number of replacement steps, t,,,-t.’
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ESTIMATING THE SHORT TERM PREDICTABILITY CLIMATE: A first application of the
procedure is confined to a relatively small data set of 33 winter months (January 1953-84 or 992
maps). Weather regimes are defined by the centroids of the 5 major clusters (FIGURE 4) which
account for about 90% of all weather maps. These regimes represent two high pressure patterns (1
and 5; anticyclonic), 2 low pressure structures (2 and 3, cyclonic) and one (4) with pressure near
the climate mean. The transition matrix between these clusters shows a relatively high degree of
regime persistence. Relatively frequent transience is observed from regime 4 to 1, which occurs
after the passage of a disturbance when, starting with a cold air outbreak, a high pressure system
follows from the west. A Markov chain approach leads to the eigenvalues, r, for i=1,...,5, of the
transition probability matrix: (ri) = (1.0, 0.53+/-i10.01, 0.33, 0.24) which characterize the time

evolution of a stochastic process. The first eigenvalue r. =1 is attached to the climate mean state

1
vector given by the relative occurence of the weather regimes: (0.35, 0.20, 0.16, 0.15, 0.14); the
second and third give a strong decay associated with a small-amplitude oscillation (that is the
passage of disturbances), and the last two also contribute to the decay towards the climate mean

state. The largest decay rate is InRe(r2)=~0.63 per day.

FROM/TO L EW NS P 1 2 3 “ 5 )\TE )\P

1. South-East-High 307 44 -5.1 9.5 JgJioo.12 .02 .05 .10 1.13 1.29
2. South-West-Low 198 4.9 4.8 -7.6 Ad0 63 .13 A1 03 1.02 1.17

3. West-Low i53 -39 £33 H£2 B 18 51 19 .11 1.00 115
4. North-West-Mean 130 -39 -86 13 .45 .05 .08 .32 .10 1.01 1.00
5. West-High i19 48 36 85 .15 06 .18 .14 47 091 1.10

Table 2: The five synoptic scale clusters which classify about 90% of all daily patterns: EW and NS
are the zonal and meridional pressure differences, P is the mean pressure level, T the number of
objects. Estimates of the transition probabilities and of the local Liapunov exponents for equivalent

potential temperature, )\TE’ and pressure, A, are also given (in 1/day).

P)
Short term predictability can now be estimated for these dominating weather regimes from 3-hourly
time series of surface pressure, P, and the equivalent temperature, TE=t+1.55p(v) at Berlin; p(v)
is the water vapour pressure in mb. The estimates of the Liapunov exponents O\TE and )\P) are
made only from those pieces of trajectories which commence within the same cluster or large scale

weather regime. The embedding dimension of the delay coordinate phase space is chosen to cover
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Fig. 4 Position of centroids of the five clusters representing regional weather regimes in terms of
east-west and north-south pressure differences (Potsdam-Uccle, Prague-Fand) and the four
station means. Their locus is given by the respective means of the clusters, arrows
indicating the standard deviation, the circle size is proportional to the number of objects
in the cluster.
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one day: m=35 for T=6h (or m=9 for T=3h). The calculations of the Liapunov exponents are
based on a 27 hours evolution time to obtain the estimate of the spread of the nearby trajectories
from independent (that is non-overl apping;data. These regime related Liapunov exponent estimates
are shown in TABLE 2; the results do not change considerably when varying the embedding m and
" the sampling time T. Furthermore, the extreme values (bold) are significantly different from one

2 1;’2’ with

another on a 99% level using the two-tailed t-test statistic t=()\El -?\b)i(sazlna Sy f‘nb)
variances si2 and sample size .. That is, the null-hypothesis can be rejected that the A\-estimates are

obtained from the same sample.

The following results should be noted: (i) The estimates of the Liapunov exponent show differences
between the thermodynamic and dynamic variables OLI,E and )\P) and the weather regimes
A(i=1,...5). (ii) The West-Low and West-High clusters (3) and (5) reveal the best predictability
estimates (smallest error growth rate or Liapunov exponent) for )LFE‘ )\TE (3.5) < XTE (1,2,4):
Westerly flow advects relatively homogeneous maritime air masses which lead to an enhanced
predictability of the thermodynamic properties. (iii) The South-East-High cluster (1) shows worst
predictability for both dynamic and thermodynamic properties. It is known from other nonlinear
system analyses that predictability is reduced in high pressure situations with weak gradients
(Kepenne and Nicolis, 1989; see also summer versus winter forecast skill). There is a local
downstream effect from the Alps (cluster 1) on the Berlin cloudiness and temperature depending
sensitively on the direction of the meridional flow. (iv) The cluster sequence 2-3-4 represents the
passage of a disturbance centered about the regime (3). RP(Z,?;) > )\P(4): Wave disturbances are

a less common feature behind the trough.

S DISCUSSION

A statistical correction scheme (Glowacki, 1988) has been applied to predict model rms-forecast
errors (MFE) from neighbouring gridpoints of a regional NWP model initial analysis and forecast
using multiple linear regression. This leads to a MOS-type forecast error prediction scheme which

shows the following results:

* Independent predictions of the MFE and the actual error are highly correlated (with correlation
coefficients of 0.54 and 0.51 in summer and winter).
* Categorical forecast error predictions (four categories) of the rms MFE lead to highly significant

information compared to chance.
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* Forecast error predictions of local subareas of the Australian region are more useful than for the

entire domain.

Furthermore, a basis for a single station Perfect Prog approach towards short term predictability
forecasts has been introduced. It is related to an estimate of the Liapunov exponent from observed
time series. The estimates can be obtained from analogues of a (predicted) short term or mesoscale
weather trajectory embedded in a larger scale regime which are obtained from local past weather

observations. However, a real time trial for testing the procedure has not been made.
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