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The short-term prediction of precipitation remains a major forecasting problem.
Most Australian Regional Forecasting Centres (RFC) still use basically subjective
techniques and exhibit modest levels of skill.

In this study it is shown that the Markov chain technique has sufficient skill to form
an objective basis for the short-term operational prediction of the probability of
precipitation. This is demonstrated by the performance of the technique in two
comparative trials. The first trial was a real-time trial for Melbourne, carried out
over a period of more than two years. In this trial the performance of the Markov
chain model, as judged by the standard measurement of skill (half-Brier scores),
was clearly superior to probability of precipitation forecasts issued by the Victorian
Regional Office. The second trial involved comparing the Markov chain technique
with persistence and climatology forecasts for all eight Australian RFCs, using 14
years of data for verification. Again it was found that the Markov chain technique
showed such a high level of skill relative to persistence and climatology that it can be
considered for use as an operational technique for short-term rainfall prediction.
Finally, we discuss how the skill level of the Markov chain technique can be
enhanced by combining it in a linear manner with other independent forecasting
techniques, such as numerical weather prediction, as part of an integrated

system.

Introduction

There are currently three methods (not necess-
arily independent) used by the Australian Bureau
of Meteorology for the prediction of precipi-
tation. These are: subjective forecasts by duty
forecasters; deterministic forecasts obtained from
numerical weather prediction models; and stat-
istical forecasts. The last two methods fall into the
class of objective techniques. Predictions from
both ‘deterministic and statistical methods are
available to the duty forecaster and are part of the
information used in formulating the subjective
predictions.

Subjective forecasts still remain the official
Bureau of Meteorology forecasts and are provided
by the RFCs. They take two main forms: worded
forecasts issued directly to the public, and
quantitative precipitation forecasts in discrete
ranges. The quantitative forecasts are not given
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directly to the public, but reflect the worded
forecasts and form the basis for verifying the
precipitation forecasts.

The deterministic forecasts of precipitation for
the Australian region are obtained from the
operational numerical weather prediction (NWP)
model, FINEST, which is run twice per day (based
on 1100 UTC and 2300 UTC data). These
36-hour forecasts are quantitative and amounts
predicted at each grid-point are contour-plotted
and distributed to the RFCs by the National
Meteorological Centre (NMC).

The statistical predictions of precipitation at
present are Model Output Statistics (MOS) fore-
casts of rainfall amount, based on regressions
between observed rainfall and forecasts of various
parameters produced by FINEST. The MOS
forecasts also are distributed by NMC, but unlike
the US MOS forecasts, are not issued as
probabilities.
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During the past twenty years the level of skill of
short-term forecasts (up to 24 hours) of synoptic-
scale fields prepared for the Bureau of Meteor-
ology by NMC has improved dramatically. For
example, the standard measure of skill, the S, skill
score, for 24-hour Australian region NWP fore-
casts of mean sea level pressure (MSLP) has been
reduced from the low 50s to the mid 30s (see Fig.
1). The improvement of FINEST forecasts over
subjective (manual) forecasts of MSLP is now
greater than five skill points. However, the level of
skill in forecasting precipitation has not shown
such a level of improvement and subjective
forecasts remain the official Bureau of Meteor-
ology product. As an illustration, the percentage
of correct forecasts for the Victorian Regional
Office (VRO) of measureable rainfall (amounts
equal to or greater than 0.1 mm in the Melbourne
rain-gauge) are shown in Fig. 2(a) for the years
1982-1987. The forecasts were issued at 0600
hours local time and had a period of validity of 18
hours. The mean annual percentage of correct
forecasts are seen to lie in a band approximately
between 40 to 60 per cent correct. It is seen also, in
Fig. 2(b), that there is a strong tendency to
overforecast rainfall occurrence with the annual
values of bias consistently lying between +30 and
+90 per cent. Although there are some fluctu-
ations, these results do not seem to indicate a
significant improvement of the forecasts with
time. Similar percentages of correct scores and
bias values are recorded at most other RFCs in
Australia, with one notable exception, Adelaide,
for which the forecasts do appear to improve with
time as shown in Figs 3(a) and (b). It should be
pointed out that tiie percentage of correct fore-
casts depends on the sample relative frequency, so
that higher percentages of correct forecasts in
Adelaide do not necessarily indicate higher levels
of skill. Rainfall verification statistics for all
RFCs are available from the authors and are
currently being prepared for publication by the
Bureau of Meteorology.

Fig. 1 The improvement in MSLP forecasting with
time as measured by the S, skill score. The
straight line indicates the 12-month running
mean.
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Fig. 2 (a) Percentage of correct rain forecasts for
Melbourne for the period 1982-87. Percentage of
forecasts correct = number of correctly forecast
raindays/total number of forecast raindays.
(Perfect score = 100%.) (b} Forecast bias for
Melbourne for the same period. Forecast bias =
[(total number of forecast raindays/total number
of observed raindays) — 1]. (Perfect score =

0%.)
(a)
100% [

H

S 80

4

|

4

g

g

g

8

i 1982 1983 1584 1988 1986 1987

(b)

200%

Under Forecast | Over Forecast

1982 1983 1984 1985 1986 1987

Fig. 3 Same as Fig. 2, except for Adelaide.
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Recently, an alternative statistical approach
was tested in an attempt to improve the skill of
short-term rainfall prediction, particularly over
the first 12 hours. The technique used was the
Markov chain model in which the probability of
precipitation being recorded at a given station is
assumed to depend only on the present and
immediately preceding weather state defined
from routine surface observations (Fraedrich and
Mulier 1983; Miller and Leslie 1985).

Two major real-time trials of methods for
predicting precipitation for the 12-hour period 6
am to 6 pm were carried out. These studies were
for the RFCs at Melbourne and Darwin for the
winter season of 1986 and the summer season of
1986/87, respectively (Fraedrich and Leslie 1987,
1988). In both of these trials a wvariety of
techniques for predicting precipitation were
evaluated and compared, and it was found that in
each trial the best scheme was the Markov chain
technique. It was also found that the Markov
method could be improved significantly by
linearly combining the results with those from
other techniques, such as rainfall predictions
from the NWP model, FINEST.

Statistical models, such as the Markov model,
produce probability forecasts as their output.
These probability forecasts have an important
advantage over the currently used worded fore-
casts, e.g. mainly fine, isolated showers, etc.,
because they quantify the degree of certainty
present in the forecasts. This quantification is
helpful to users in making decisions which
depend on the weather. Issuing probability fore-
casts also reflects the true character of the
forecasting process, which is not purely
deterministic. At international meteorological
centres numerical weather predictions are begin-
ning to be issued along with estimates of confi-
dence in the forecast, or are statistically corrected
because of errors in the initial conditions,
deficiences in the model formulation, and the
essentially stochastic nature of turbulent flow. For
these reasons this paper will concentrate on
evaulation of probability forecasts of precipi-
tation. We note that in Australia probabilistic
forecasts of precipitation currently are available
in real-time in Melbourne and Canberra (Stern
1980; Dahni et al. 1984; Mason 1982), but are
issued officially to the public only in Canberra.

The present study has a two-fold purpose. First,
a Markov chain technique, which is an improved
version of that used by Fraedrich and Leslie
(1987, 1988), is introduced. The new version
incorporates a large number of additional
covariates such as the north-south wind
component, the change in low-level cloud amount
and the middle-level cloud amount. Second, two
investigations are made of the skill of the
techniques in 12-hour probability of precipitation
forecasting. In the first investigation the Markov

chain model forecasts are compared directly with
the probability forecasts produced by the VRO
duty forecasters in real-time over the 25-month
period from the end of May 1986 to the end of
June 1988. It is important to note that the VRO
duty forecasters have not been trained in making
probability of precipitation forecasts and this
may have implications for their level of skill. In
the second investigation, the Markov chain
technique is applied to all eight RFCs and
evaluated against persistence and climatological
forecasts in an attempt to see if the skill levels are
sufficiently high to justify operational implemen-
tation by the NMC. A summary of the results of
the second investigation is presented here; full
details will be published as a separate report by
the Bureau of Meteorology Research Centre.

Finally, some comments are made in the
discussion and conclusions section on how the
ever-increasing range of techniques for forecast-
ing precipitation can best be used.

Methodology

Markov technique

The basis of the statistical forecasting technique
to be used in this study is the Markov chain
process. A first-order Markov process is one in
which knowledge of a parameter at time t, such as
a weather state (for example, the current cloudi-
ness or the amount of rain recorded since the last
observation time), is sufficient to predict the
parameter at some later time (see Essenwanger
1985, pp. 349-359, for a comprehensive treat-
ment of the application of Markov techniques to
meteorological problems). A discrete, second-
order Markov process uses knowledge of the
present state and a previously observed state (at
time t - At) to predict future states. High-order
Markov processes use progressively more infor-
mation from past states for their predictions.

By using climatological records it is possibie to
determine the conditional probabilities that a
particular state will occur (for example rain) given
various present states. These conditional prob-
abilities are called transition probabilities. In our
study we use a hybrid, discrete, second-order
Markov technique in which the transition prob-
abilities are approximated by employing multi-
linear regression over a number of covariates.

Our model is similar to, but more extensive
than, the one used by Fraedrich and Leslie (1987,
1988), which in turn was based on the earlier
studies by Fraedrich and Muller (1983) and Miller
and Leslie (1985). A related, independent model
has been developed by Miller (1984).

In our model four mutually exclusive weather
states are defined: State 1 is when there is 0-2
octas of total cloud cover and no rain has fallen in
the previous 3 hours; State 2 is 3-5 octas of total
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cloud cover and no rain; State 3 is 6-8 octas of
total cloud cover and no rain; and State 4 is when
0.1 mm or more of rain has been recorded at the
station in the 3-hour period since the previous
observation. The weather states have been chosen
to characterise the progression from clear, fine
conditions to rainy weather situations in a
reasonable manner. No attempt has been made to
investigate the effects of choosing different states
or more states.

The available three-hourly surface climatic
data (which cover the years 1960-1988) have been
collected for eight Australian capital cities, and
two major studies of the performance of the
Markov chain technique have been carried out.
The first was a comparison of the Markov method
with the probability forecasts of the VRO. For this
case Melbourne data from the entire period from
1960 — 1985 were used to develop the Markov
model and data from the period 22 May 1986 — 30
June 1988 were used for validation. In the second
case data chosen from random years, comprising
approximately half of the data for each of the
eight stations, were used to develop the models.
The remainder of the data were used to verify the
models and compare them with persistence and
climatology.

The probability that rain will occur is found by
performing linear least squares regression on 14
covariates: previous weather state (i, where i hasa
value of 1-4); the station pressure minus 1000
hPa; the change in station pressure in the last
three hours; the dry-bulb temperature minus
18°C; the change in dry-bulb temperature in the
last 3 hours; the wet-bulb depression; the change
in the wet-bulb depression in the last 3 hours; the
east-west component of the wind; the north-south
component of the wind; the change in total wind
speed in the last 3 hours; the amount of low cloud
cover; the change in the amount of low cloud
cover in the last 3 hours; the amount of middle
cloud cover; and the change in the amount of
middle cloud cover. Two additional covariates,
sine and cosine harmonics, are employed to
represent the annual cycle.

We can write the probability of rain Pr as a
function of the month m, the current weather
state j, the time of day t, and the forecast period
(the number of hours ahead for which the forecast
is valid) h:

14
Pr(,h,t m)=a(,h,t, m}y+Z b, (, h) X,
+ b5 (, h) sin (2nm/12) k=t
+ b4, h) cos (2nm/12) 1

where a (j, h, t, m) is the intercept, b,(j, h) are the
regression coefficients, and X, are the covariates.
There is a different intercept for each starting
time, e.g. for 0600, 0900 and 1200 hours.
Linear least squares regression is used to fit the
data. With a linear model it is possible to calculate
probabilities less than zero or greater than unity.

To exclude this possibility we explicitly set
negative probabilities equal to zero and prob-
abilities greater than unity equal to unity.

Measure of skill
The accuracy of the probability forecasts is judged
by the half-Brier score (Brier 1950), defined as

N
Br=(I/N) X (5, - Pr)? 2
i=1

where 8. is the observed probability for the ith day
(8, =1 if rain occurred within the forecast period;
otherwise 8, = 0), Pr, the forecast probability for
the ith day, and N the total number of days.
Half-Brier scores can be computed for the
Markov model, the VRO predictions, persistence
and climatology by substituting the appropriate
values of probability into Eqn 2.

The half-Brier score can be interpreted as the
mean square error of the probabilistic forecasts.
Lower scores indicate more skill; the scores range
from zero (perfect score) to unity.

Results

The results of two major investigations of the
Markov chain technique for forecasting precipi-
tation are described below.

VRO trial

A direct comparison of the probability of precipi-
tation predicted by the Markov chain model and
the duty forecasters of the VRO was carried out
for a 25-month period. The relative skill in the
forecasts is determined by comparing the half-
Brier scores. The monthly half-Brier scores for
12-hour forecasts issued at 6 am local time are
shown in Fig. 4. Also included are the half-Brier
scores for persistence (if it rained yesterday
during the forecast period, it will rain today) and
for climatology (the observed frequency of rain-
fall for the years 1960-1985).

The half-Brier score, like the percentage of
correct forecasts, depends on sample climate. It
also tends to get worse as the sample relative
frequency of rain goes from 0 to 0.5, regardless of
the skill or calibration of the forecasts (Glahn
1985). However, the comparison shown in Fig. 2
is valid because we are testing different forecast
methods for the same station and sample climate.

The Markov model performs very well. It
outperforms the VRO, climatology and persist-
ence in most months. There are two exceptions. In
January, when there are few days when it rains,
climatology is the best guide, and in times of
transition, when the weather patterns are highly
variable (April, September to November), the
VRO forecasts are slightly better than the Markov
forecasts, although the standard one-tailed t-test
(Miller 1962) shows that these differences are not
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Fig. 4 Monthly half-Brier scores for rain forecasts for
the Markov model, the VRO, climatology and
persistence for the period 22 May 1986 to 30
June 1988. A perfect forecast gives Br = 0.
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significant at the 5 per cent level. However, for the
rest of the year the Markov model performs better
than the other schemes. Especially notable is the
low monthly variability for the Markov
predictions.

The VRO gives the best results for April, but
during the winter months the VRO forecasts

deteriorate. In June, when there are many rain
days, the VRO predictions are not as good as
climatology.

Table 1 shows the monthly, seasonal and
annual half-Brier scores (means and standard
errors). The most reliable comparison is based on
the annual values. In this case the Markov model
shows an improvement of 19 per cent compared
to the VRO forecasts. The improvements over
climatology and persistence are 27 and 56 per
cent, respectively.

The reliability diagrams for the VRO and
Markov model forecasts for this trial are shown in
Figs 5(a) and (b), respectively. These diagrams
were prepared by dividing up the predicted
probability into intervals of 5 per cent and
calculating the percentage of occasions on which
rain was observed (the relative frequency of rain
events) for each prediction interval. The diagonal
line indicates a perfect forecast. The VRO results
in Fig. 5(a) exhibit a tendency to prefer predic-
tions in tens of per cent rather than values in
between. In general the subjective forecasts are
biased to predicting probabilities that are too
high. The Markov model predictions in Fig. 5(b)
are closer to the diagonal line, but for low
predicted probabilities are also biased to predict-
ing values that are too high. The Markov model
predictions should improve by increasing the
length of the validation period (so that the period
better reflects the climatological data), but the
subjective bias in the VRO forecasts may not
change with a longer validation period. The
improvement in the Markov model reliability for
Melbourne is seen in Fig. 6 when a period of 14
randomly selected years between 1960 and 1988
is used instead of the 25-month period of the VRO
trial.

Table 1. Monthly, seasonal and annual half-Brier scores (means and standard errors) for 12-hour rainfall forecasts for
Melbourne for the period 22 May 1986 — 30 June 1988.

Period VRO CLIM PERSIST MARKOV

January 0.148+0.037 0.092+0.026 0.210=%0.049 0.137x0.014
February 0.166x%0.046 0.12220.030 0.263+0.061 0.099+0.015
March 0.149+0.035 0.203+0.033 0.2584+0.056 0.112+0.017
April 0.100+£0.029 0.146+0.024 0.217+0.053 0.113x0.017
May 0.186::0.035 0.232+0.019 0.408+0.059 0.149+0.019
June 0.294+0.058 0.210+0.019 0.378%0.052 0.17940.021
July 0.221+0.040 0.235+0.022 0.403x0.063 0.145%0.024
August 0.2010.040 0.20420.013 0.355+0.061 0.164+0.023
September 0.169£0.039 0.222+0.020 0.3834+0.064 0.190+0.022
October 0.150%0.038 0.268+0.024 0.355+0.061 0.154+0.018
November 0.125+0.032 0.182+0.023 0.300+0.059 0.143+0.020
December 0.13940.029 0.19240.029 0.290£0.060 0.105£0.011
Summer 0.150+0.021 0.136:+0.017 0.25440.033 0.11440.008
Autumn 0.148%0.019 0.196+0.015 0.301%+0.033 0.126+0.010
Winter 0.246+0.029 0.21630.011 0.379+0.033 0.165+0.013
Spring 0.148%+0.021 0.225%0.013 0.346:0.035 0.162+0.011
Annual 0.176x0.012 0.194+0.007 0.322+0.017 0.142+0.006
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Fig. 5 Reliability diagrams for Melbourne for: (a) VRO
predictions; and (b) Markov predictions for a
forecast period of 12 hours. A perfect forecast is
indicated by the diagonal line.
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Comparisons with persistence and climatology for
the capital cities

Although Markov chain models were developed
for eight capital cities, because of space limi-
tations we only present the results for three
representative cities here: Brisbane, a subtropical
coastal station; Canberra, a continental station
and Adelaide, a southern coastal station. Results
for the other cities will be published in a separate
report by the Bureau of Metcorology Research
Centre.

Fig. 6 Reliability diagram for the Markov model
rainfall predictions for Melbourne for a forecast
period of 12 hours, where a validation period of
14 randomly selected years between 1960 and
1988 is used. A perfect forecast is indicated by
the diagonal line.
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Figure 7 shows the reliability diagrams for
Brisbane for forecasts of 3, 6, 9 and 12 hours. The
reliability of the forecast increases with increasing
length of forecast period, owing to the increase in
the number of rain events. This is seen by the
improvement at the high predicted probability
end of the diagram. For 12 hours ahead the
forecast reliability results are excellent.

Fig. 7 Reliability diagrams for the Markov model
rainfall predictions for Brisbane for: (a) 3 hours
ahead; (b) 6 hours ahead; (c) 9 hours ahead; and
(d) 12 hours ahead. A perfect forecast is
indicated by the diagonal line.
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In Fig. 8 the seasonal half-Brier scores relative
to climatology and persistence are shown for the
validation data set; the absolute half-Brier scores
are given in Table 2. There are no operational
probability predictions of rain available for the 14
randomly selected years of this trial; however, the
gains in the half-Brier scores relative to clima-
tology and persistence are comparable with those
obtained in the VRO trial and therefore provide
convincing evidence that the method has oper-

Fig. 8 Percentage improvement in Markov model half-
Brier scores compared to climatology (lines
denoted by c¢) and persistence (lines denoted by
p) for Brisbane for; (a) summer; (b) antumn; (c)
winter; and (d) spring.
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ational utility. The diagrams are based on the
average half-Brier scores computed from data
with starting times of 0600, 0900 and 1200 hours
for the Markov model, persistence and clima-
tology. The label ‘hours ahead’ indicates the
length of validity of the forecast.

For the diagrams shown in Fig. 8 persistence is
defined more stringently than above. Here per-
sistence is defined as a prediction that the
conditions (rain/no rain) which existed for the
past three hours will continue to exist over the
forecasting period. The improvement for the
Markov model over persistence and climatology
is about 30 per cent or greater, except in summer
where it dips down to about 27 per cent at 12
hours ahead. We show the percentage improve-
ment in half-Brier scores relative to those for
climatology and persistence in Fig. 8, rather than
the half-Brier scores themselves, because this
quantity is a better measure of the performance,
particularly in cases where climatology and
persistence do well. As forecasts get better (that is,
have smaller half-Brier scores) it becomes much
harder to gain improvements. The use of relative
values takes account of this difficulty.

In Fig. 9 we show the reliability diagrams for
Canberra. Again the improvement at the high
frequency end of the diagrams is noticeable as the
length of the forecast increases. By 12 hours ahead
the reliability is good.

The corresponding improvement in the
seasonal half-Brier scores is given in Fig. 10. The
Markov model shows an improvement compared
to climatology and persistence of about 30 per
cent or greater.

Figures 11 and 12 show that the model
performs well for Adelaide. The results for the
stations not presented were comparable to those
shown,

Table 2. Seasonal half-Brier scores for 12-hour precipitation forecasts for Brisbane, Canberra and Adelaide for the

validation data set.

Season Method Brisbane Canberra Adelaide
Summer Markov 0.164 0.097 0.060
Persistence 0.250 0.137 0.091
Climatology 0.225 0.147 0.086
Autumn Markov 0.125 0.086 0.102
Persistence 0.186 0.130 0.165
Climatology 0.193 0.130 0.161
Winter Markov 0.083 0.114 0.153
Persistence 0.122 0.175 0.279
Climatology 0.141 0.163 0.230
Spring Markov 0.109 0.114 0.106
Persistence 0.158 0.172 0.178
Climatology 0.156 0.176 0.163
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Fig. 9 Same as Fig. 7, except for Canberra.
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Discussion and conclusions

In addition to the Markov chain technique, a
number of other objective techniques for short-
term prediction of rainfall have been developed:
nowecasting based on radar observations, MOS
and NWP. Each technique has its strengths and
weaknesses and time-scales for optimal perform-
ance. For example, nowcasting techniques are
powerful for the 0 to 3-hour period, NWP

Fig. 11 Same as Fig. 7, except for Adelaide.
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Fig. 12 Same as Fig. 8, except for Adelaide.
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methods and techniques based upon them, such
as MOS, currently perform best beyond 12 hours.
The optimal time-scale for Markov methods
appears to lie neatly in the 3 to 12-hour gap.

It has been shown in the section describing the
VRO trial that the Markov chain technique has
sufficient skill to be used operationally either
individually or as part of a larger system for the
short-term prediction of precipitation at meteoro-
logical centres for which there are long records (at
least 15 years) of 3-hourly surface observations.
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Operations

In the first instance it is expected that the Markov
chain technique will be implemented by NMC to
provide 12-hour probability of precipitation fore-
casts for the period 6 am to 6 pm local time. These
predictions will be issued to all eight RFCs. It is
proposed that this will be followed by a second
stage of implementation in which the Markov
chain technique will be ‘cycled’ in 3-hourly
increments around the clock so that at each
observation time (e.g. 3 am, 6 am, etc.) a 12-hour
forecast will be available as soon as the obser-
vations for the RFC are available on the data
stream.

Further extensions of the work

In order to take advantage of the variety of
objective techniques available it is becoming
essential that a modern RFC develop an inte-
grated systems approach. In this approach all the
objective predictions available at the time of the
forecast are blended together in an optimal
fashion. For example, it has been shown by
Thompson (1977), Woodcock and Southern
(1983) and Fraedrich and Leslie (1987, 1988) that
independent forecasting techniques, such as stat-
istical and deterministic forecasts, or subjective
and objective forecasts, can be combined in a
linear manner to produce optimal error
reduction. Some progress towards reaching this
goal on an operational basis has already been
achieved. Within the Bureau of Meteorology,
systems for automated forecasting guidance have
been developed (Stern 1980) and pilot schemes
have been tested (Dahni et al. 1984).
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