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ABSTRACT 
The linear barotropic vorticity equation on an infinite polar f-plane is solved for free 
eigenmodes supported by the zonally averaged topography of Antarctica. Analytic solutions 
are derived for an exponential orographic profile. Numerical methods are used to obtain 
results for a realistic profile. The structure and frequency of these topographic Rossby waves 
are discussed and compared to observations. 

1. Introduction 

Rossby waves are found in fluids with gradi- 
ents of the potential vorticity. For topographic 
Rossby waves, the necessary gradient of potential 
vorticity is provided by the variation of the local 
depth of the fluid. In lakes, for example, these 
waves are supported by the sloping bottom 
topography (e.g., Saylor et al., 1980; Stocker and 
Hutter, 1985). Topographic Rossby waves in the 
atmosphere are tied to the slopes of the major 
mountain massifs. In particular, one would 
expect that the Antarctic ice dome with its 
enormous extent and its gentle slopes provides 
an almost ideal setting for topographic Rossby 
waves. In this note, we consider the structure and 
dispersion relation of barotrophic topographic 
Rossby waves above the Antarctic ice dome. 

2. Equations 

topography h, of the ice dome, assumed to be 
axisymmetric, and a rigid lid on top at height 
z = h, which models the tropopause. As depicted 
in Fig. 1 the orographic profile is restricted to the 
domain r < ro so that H = h, - h, = constant, for 
r > ro. 

To satisfy the equation of continuity 

with t’ = dr/dt, u = rdlldt, we introduce the trans- 
port stream function Ic/ : 

h, : t ropopause 
10 1 , rigid lid 

E 
5 5 6  - z 

We consider the motion of a barotropic fluid 
on an infinite polar fplane with coordinates r 
(distance to the pole), longitude 1 and height z .  
The depth of the fluid is determined by the 

On leave at the Bureau of Meteorology, Research 
Centre, Melbourne, Victoria 3001, Australia. 

2- Antarctic 
Ice Dome 

0 , - r  I 1 
0 1000 2000 

‘0 

South Pole Distance (km) 
Fig. 1. Schematic south-north cross-section with 
bottom topography. 
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The potential vorticity equation when 
linearized about a state of solid rotation Ro = u/r. 
takes the form 

where j'< 0 is the Coriolis parameter and $' is 
the perturbation stream function. 

To solve (2.3), we have to impose proper 
boundary conditions. We consider two cases. 
First we study the topographic Rossby waves 
which are completely confined to the Antarctic 
domain. Then we have to require $' = 0 at r = ro. 
This case corresponds with the problem of a 
closed circular basin treated by Lamb (1895) and 
Saylor et al. (1980). Holton (1971) used a rotating 
tank to study forced Rossby waves in such a 
domain. Next we proceed to consider Rossby 
waves on an infinite jlplane with $'+O for 
r +  m. 

3. Solutions 

3.1. Antarctic domain 
We introduce 

$' = r'$(r) exp(ikl- iwr) (3.1) 

in (2.3) to arrive at 

d z $  d$ 
dr' d r  

r-- + -(2k + 1 - er) 

(3.2) 

where e = d l n  Hldr. We choose an orographic 
profile with E = const. : 

for r < r o .  Then (3.2) is Kummer's equation for 
r < ro (e.g., Kamke (1951)) which is solved by the 
confluent hypergeometric function 
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provided we can choose the parameter 
a = k ( l  - f / (w - kujr)). b = 2k + I such that 
M(a ,  b, erg) = 0 (see also Lamb, 1895) is satisfied. 

Using the approximate formula 

for the position erg of the mth positive zero of M 
(e.g., Abramowitz and Stegun, 1964) we find the 
dispersion relation 

4 j k  
(n'/cro)(m - i + k)? - 2 ' (3.6) 

kif + w - -- 
r 

With h, = 4000 m at r = 0, hb = 0 at r = 2000 
km, and h, = 10,000 m, we obtain Erg = 0.5. Then, 
the denominator in (3.6) is positive for all k, 
m > 0 and, therefore, all topographic Rossby 
waves are retrograde for if= 0. The period 
T =  12n/wl increases with m, k and decreases with 
increasing "steepness" erg of the topographic 
profile. Not surprisingly, then, we arrive at a 
result which bears strong resemblance to the 
dispersion relation for conventional P-plane 
Rossby waves. We want to point out, however, 
that the topographic P-parameter Ifel is a t  least 
one order of magnitude larger than P =  d f/dr in 
the Antarctic domain. One would expect, there- 
fore, that the topographic effect is more impor- 
tant than the curvature of the earth. 

A zonal wavenumber frequency diagram (Fig. 
2a) can be constructed from (3.6) to display the 
dispersion line w(k,m). The zonal wind u should 
be regarded as a vertical and zonal average. 
Observations suggest small values for if because 
easterlies dominate in the lower, and westerlies 
prevail in the upper troposphere (see e.g. Oort, 
1983). The zonal wavenumber-frequency diagram 
(Fig. 2a) shows dispersion lines o ( k )  for eastward 
and westward (w > and < 0) phase propagations 
of topographic Rossby waves for various zonal 
winds u and meridional (or radial) wavenumbers 
(m). The related phase velocities c also refer to 
the latitude circle a t  ro = 2000 km distance from 
the pole. 

For vanishing zonal wind a = 0, the largest 
mode with rn = 1 and k = 1 has a period of 7.1 
days; small modes with k, m > 3 are extremely 
slow and have periods of a month and longer. 
Note that the group velocity cn = dw/Zk changes 
sign for k - 1m -:I. All modes are retrograde. 
For u<O, the westward phase speed is 
increased, of course. For the weak westerlies 
(u-  5 m/s), as they are observed for the 
vertically integrated zonal wind speeds over 
Antarctica (Oort and Peixoto, 1983), only smaller 
wavenumbers (larger modes) remain retrogress- 
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Fig. 2. Dispersion lines in a zonal wavenumber-frequency diagram of topographic Rossby waves for different rates 
of solid rotation no = T/r;  ii= Roro refers to a vertical mean zonal velocity at r, = 2000 km distance from the pole. 
The linear frequency axis is labelled in period of days T =  1 2 4 ~ 1 .  The upper abscissa gives the related phase 
velocity c = L/T which refers to wavelengths L = 2mo/k on a circle of r = 2000 km distance from the pole, i.e., at 
the edge of the ice dome. At r = loo0 km distance, the phase velocities c and mean zonal winds would attain half 
of the values given in this figure. Top (a): bounded domain; bottom (b): infinite /-plane. 

ive, the larger, ones, however, are progressive 
with modest phase speeds. 

3.2. Infinite fplane 
Outside of Antarctica, we obtain from (2.3) 

(3.7) 

i.e., we have irrotational flow. The harmonic 
wave solution to (3.7) is 

J/' = J /o  r - k  exp(ikl - iwt),  (3.8) 

where the boundary condition +'+O for r +  03 

has been taken into account. We have to match 
solutions of (3.2) and (3.7) a t  r = r o ,  requiring 

continuity of J/ '  and 2J/ ' /ar  at  r = r o .  It is no 
problem to work out the solution in terms of 
hypergeometric functions. The resulting 
expression 

(3.9) 

with the confluent hypergeometric function 
M = M(a,  b, Er) requires after some algebra 
(Abramowitz and Stegun, 1964, eqs. 13.4.3 and 
13.4.10) that M(a,  b - 1, Erg) = 0. Now the ap- 
proximation for the position Erg of the mth zero of 
M(a,  b - 1, Erg) yields an explicit dispersion 
relation 
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k u  4kf  
w - - +  

r (x2/cro)(m + k - ' 
(3.10) 

which is displayed in Fig. 2b. The largest mode 
with m = k = 1 has a period of 3.8 days for = 0 
which is about half of the period deduced for the 
bounded domain. Again, smaller modes with k ,  
m > 3 are extremely slow and have periods of 
about a month or more. It  is easy to show that the 
periods Znw-'(k, m) on the infinite f-plane are 
always shorter than the Corresponding periods in 
the closed Antarctic domain. This was to be 
expected since the speed of Rossby waves 
increases with their scale. For u = 0, the group 
velocity vanishes if k = Im - 41. 

The profile (3.3) has been chosen because of its 
mathematical convenience. As can be seen from 
Fig. I ,  (3.3) gives an almost linear increase of 
fluid depth with distance to the pole. To solve 
(2.3) for more realistic orography we have to use 
numerical methods. We discretize (2.3) in the 
domain 0 < r < r , :  

I 
I-:-_ I -- 

where j is the grid point index, Dr the grid 
increment and, correspondingly, r = D r ( j  - I) .  
In writing down (3.1 1) we have assumed 
JI' = $ ( r )  exp( - iwt + Lk) and, therefore, 
1 = (w - R, & ) - I .  The boundary condition at  
r = ro is posed in analogy to (3.9): 

JI, - JI., - I = - W,, Drir,, (3.12) 

where J is the index of the grid point at r = ro .  
Eq. (3.10) with the appropriate boundary 

conditions poses a self-adjoint Sturm-Liouville 
problem (e.g., Kamke (1951)) in discrete form. 
Correspondingly we expect to obtain as many 
real eigenvalues I,, with A,, < A,, + I as there are 
grid points. The related eigenfunctions have 
m - 1 zeros in the domain 0 < r < ro.  We choose 
J =  22 and present the resulting periods 
T,, = 274, for selected eigenfunctions q, , (r)  in 
Table 1 .  For intercomparison with (3.10) we first 
solve (3.11) with (3.3) as the orographic profile. 

The period of the spatially largest mode is now 
3.6 days as compared to T =  7.1 days in the case 
of a closed domain. The period increases with 
increasing m, of course. In brackets we give the 
periods according to (3.10). The agreement of the 
analytical and numerical results deteriorates with 
increasing k and m. We have to keep in mind, 
however, that (3.10) is an approximation and that 
solutions of (3.11) are subject to numerical errors 
which increase with increasing m. Thus perfect 
agreement should not be expected. 

The eigenfunctions r p , , ,  q 1 2 ,  q 2 1 ,  q13 are 
depicted in Fig. 3. For r >  ro, all the eigen- 
functions decrease - r-' and ql  has one zero in 
the Antarctic domain. We solved (3.11) for a 
strictly linear orographic profile. It turned out 
that the corresponding solutions are quite close to 
that for the profile (3.3). For example, one 
obtains TI I = 4d, T 2 ,  = Sd, T31 = 7d, Tdl = 8d in 
close agreement with Table 1. Matters are differ- 
ent when we consider a more realistic represen- 
tation of the Antarctic orography. By performing 
a zonal average over the topography of 
Antarctica we obtain a profile h, which comes as 
close as possible to reality. As compared to (3.3) 
the slope of the terrain is more gentle near the 
pole but becomes relatively steep near the 
coast line. The resulting periods are given in 
Table 1.  It is seen that topographic Rossby waves 
above the Antarctic terrain move more slowly 
than those above (3.3). The corresponding 
eigenfunctions are similar to those presented in 

Table 1.  Periods (days) of the eigenfunctions qkm 
of (3.10) with u=O, k = zonal wavenumber, 
m = mode number; number of gridpoints J = 22; 
first number: orographic projile (3.3) with 
h, = 10,000 m ;  h, = 4000 m at r = 0 

2 3 4 

1 4 (4). 5 5 (6),  7 6 (8). 9 7 ( I I ) ,  10 
2 12 (12). 15 1 1  (13), 12 12 (14). 13 I3 (17). 15 
3 24 (25). 47 20 (22), 32 20 (22). 28 20 (23). 27 
4 41 (43), 78 30 (33), 52 28 (31). 73 26 (31). 33 

The numbers in brackets refer to the approximate 
analytic dispersion relation (3.10). The second number 
gives the period for a realistic profile of the Antarctic 
ice dome with J = 24. 
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Fig. 3. Discrete eigenfunctions 'pk, of (3.11) for the 
topographic profile (3.3); k: zonal wavenumber, m: 
number of eigenvalue. The eigenfunctions are 
normalized to have a maximum cpk, = 1.  The number of 
gridpoints is J =  22 in the domain O < r  < r o .  The 
circles give the eigenfunctions ( P , ~  for a realistic profile 
of the Antarctic ice dome. 

Fig. 3. As an example we give (p13 (circles) in Fig. 
3. The maximum of ( p I 3  is somewhat to the north 
of that of the eigenfunction for (3.3) and the 
minimum is deeper. This means that the analytic 
solution of the problem provides a reasonably 
good approximation. 

4. Discussion 
We presented the free topographic modes of 

the barotropic vorticity equation for a closed 
domain and also for the case of an infinite 
f-plane. Approximate dispersion relations have 
been derived for the profile (3.3) which compared 
favorably with the corresponding numerical 
results. The structure of the free modes depends 
to some extent on the specific assumptions 
underlying the basic equation. For example, we 
can replace the rigid lid at z = h, by a free surface 
or we can increase the height of the tropopause. 
Corresponding computations showed, however, 
that the solutions are fairly robust with respect to 
such changes. It is more difficult to assess the 
influence of the curvature of the earth on the 
results. We have extended (3.2) to include the 
conventional /?-effect. As had to be expected, /? 
has almost no influence on the modes for the case 
of a closed Antarctic domain. As for the infinite 
domain we have free Rossby modes which are 

only partly influenced by the topography of 
Antarctica. To obtain meaningful results one 
would have to consider a spherical domain. It has 
been felt that this problem was beyond the scope 
of this note. 

Is there observational evidence of topographic 
Rossby waves over Antarctica? Spekat and 
Fraedrich (1983) present vertical phase and 
amplitude profiles of short period ( T <  5 days) 
disturbances obtained from Halley Bay (75"S, 
26" W) rawinsonde observations, which reveal 
barotropic structures dominating the dynamics in 
the troposphere above the shallow boundary 
layer: the disturbances show small tilts of the 
vertical axes of geopotential height and 
meridional wind velocity, and the vertical 
changes of the related amplitudes are small. 
Quite recently, Daley and Williamson (1985) 
provided evidence of distortions of global Rossby 
modes over Antarctica. We speculate that these 
distortions are caused by the orography. 

To eventually provide further evidence we 
have to consider the data requirements for a 
verification of the theoretical results. We found 
that the Rossby wave dispersion is fairly sensitive 
to (i) boundary conditions (Fig. 2;  (3.6), (3.10)), 
(ii) orographic profile (Table I ,  Fig. 3) and (iii) 
zonal wind (Fig. 2 ) ;  in particular, the frequency 
strongly depends on the meridional (radial) wave 
number m. Thus it is not sufficient to verify the 
Rossby modes along a latitude circle but one has 
to observationally include the meridional struc- 
ture over the ice dome. Although there is a rather 
dense rawinsonde network along the Antarctic 
coast, data coverage in the interior is sparse. 
Thus it is only possible to deduce the zonal wave 
number and/or frequency structure at the coast 
(as attempted by Spekat and Fraedrich, 1983; see 
also Daley and Williamson (1985)). However, it is 
not possible to deduce the meridional structure 
from the available data which is necessary for a 
verification. 
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