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Abstract. The equation of turbulent diffusion is solved for a vertical area source within the planetary 
boundary layer. The traditional Gaussian-plume approach is compared with the spectral solution of 
the diffusion equation used together with the barotropic boundary-layer model of Lettau and 
Dabberdt (1970). The results of the numerical computations are presented and the differences 
between the solutions are discussed. 
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1. Introduction 

The equation of turbulent diffusion describes the space and time variations of the 
concentration of contaminants added to the atmosphere. In a Lagrangian coordi- 
nate system, a simple solution of this equation can be obtained assuming a 
Gaussian distribution of the concentration, the standard deviation of which 
depends on the prevailing meteorological conditions. However, concentration 
profiles deviating from the Gaussian plume cannot be handled as simply. The 
boundary conditions at the earth’s surface or at an inversion layer have to be 
considered by adding mirror-image sources to the system, which leads to multiple 
reflection and thereby reduces the clarity of the statistical approach. 

These disadvantages do not exist for analytical solutions of the diffusion 
equation in an Eulerian system. But, analytical solutions are known only for a few 
special cases. They crucially depend on the distribution of the turbulent diffusion 
coefficient and the wind field, which are related to the meteorological conditions 
governing the diffusion process. Additionally, the lateral decrease of the concent- 
ration at greater distances from the source has to be artificially prescribed. 

A numerical solution of the diffusion equation in the Eulerian coordinate 
system has the same advantages as the analytical solution, but it is possible to 
account for the vertical structure of the atmosphere in more detail. Experimen- 
tally and theoretically derived configurations of the turbulent diffusion coefficient 
and wind components can be applied. 

The following note shows the results of some calculations of atmospheric 
diffusion models. The discussion of these results concentrates on the Gaussian- 
plume approach and the spectral solutions of the diffusion equation for a 
barotropic boundary with varying angular wind spiral and for vertically-constant 
coefficients. These models have been designed for and applied to the diffusion 
process of water (liquid and vapor) and sensible heat as an interacting system 
which occurs subsequent to the convective phase of a cooling tower plume 
(Fraedrich et al., 1977). A comparison of these methods is presented here under 
more general aspects. 

2. Equation of Turbulent Diffusion 

The turbulent transport of a concentration I within a planetary boundary layer 
can be described by 

assuming steady-state conditions, horizontal homogeneity of the wind field and 
negligible vertical motion and density variations. Two additional simplifications 
can be introduced: (a) in the forward (x) wind direction, the mean transport is 
significantly greater than the diffusion process (turbulent transport), which is valid 
for u>lms-‘; (b) the contribution of the mean horizontal transport divergence 
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along the main direction is larger than in the normal direction (McCormick and 
Gutsche, 1973). This can easily be verified if the wind at the top of the boundary 
layer is directed along the x-axis with a wind spiral underneath. Thus, a simplified 
equation of the turbulent diffusion process can be obtained 

(2) 

The lateral diffusion term is kept because a fully two-dimensional treatment 
appears to be too restrictive for our purposes. Different approaches to solve this 
equation will be discussed in later sections according to the following boundary 
conditions: 

(i) At the surface (z = 0), there is no absorption of the substance (reflectivity 
condition): 

aI 
azo 

= 0; (3) 

(ii) At the top of the layer, two different conditions can be introduced depend- 
ing on the meteorological situation which is related to the thermal stratification of 
the atmosphere influencing the turbulent fluctuations: 

z = IL, (without inversion): I = 0 

z = H (with inversion): aI/az = 0; 
(4) 

(iii) At the lateral boundaries (y = *I,,), the concentration is assumed to 
vanish: 

II, =o; (5) 

(iv) At the upwind boundary (x = x0), a puff of a given concentration 1(x0, y, z) 
moves with wind speed u into the system so that the total area source at this 
boundary yields 

Lz +q 

Q= IC 
MI dy dz. (64 

0 -Ly 

This is a conservation condition which holds for all x. For the spectral approach, 
the area distribution of the source density rather than the total area source (6a) is 
to be prescribed: 

where the concentration 1(x = x0, y, z) within a cross-section of a Gaussian plume 
is spectrally approximated. 
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3. The Gaussian Plume 

All particles originating from a distant point source contribute to the diffusion 
process by way of their random fluctuations (Sutton, 1953). They move along 
finite paths at the end of which they lose their identity. These mixing-length 
vectors of a large number of particles can be described by a Guassian distribution, 
whose standard deviations (a,, and crz) are different for the y- and z-components 
normal to the mean wind and dependent on the downwind travel distance x 
according to the following power law (Singer and Smith, 1960): 

a, = axb, a, = ad. (7) 

The parameters a, b, c, d depend on the thermal stability of the atmosphere as 
specified in Section 5. Neglecting the fluctuation of the mean (vertically averaged) 
wind component 

all particles fluctuate in the y-z directions while drifting with the mean wind ii for 
a representative travel time r = x/U. The coefficient of turbulent diffusion (Equa- 
tion (2)) can be directly derived (see e.g., McCormick and Gutsche, 1973): 

For a point source, the solutions of Equation (2) are now obtained in agreement 
with the boundary conditions (Section 2; with L, = m). 

Without inversion (L, = m); 

I= Q 

2 

[ { 
-y exp 

2mr,a,d exp 24 
-(Z-H1)2+exp ++w* 

2a: II 2a: . (104 
With inversion and multiple (n) reflexion (L, = H); 

+ exp 
-(z+H1+2nH)* 

2u: II (lob) 
where HI is the height of the point source. 

For a vertical area source, similar solutions are applicable if a virtual point 
source of the same intensity Q can be introduced, the upwind distance being 
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derived from the following condition. The elliptical area of the Gaussian plume 
within the closed boundary of the 10% concentration isoline 

F=~x~x~~~u,,u, (11) 

should be as large as the area of the area source (Pasquill, 1961). 
Given the area (or point) source, the thermal stability, and the mean wind, then 

the three-dimensional field of the concentration of air contamination can be 
calculated. 

4. The Spectral Approach 

Assuming that the horizontal turbulent diffusion coefficient is proportional to the 
main wind component 

KY =a u, (12) 

and letting the following product represent the solution of Equation (2) 

1(x, Y, 2) = A(xMyMz), (13) 

one obtains two eigenvalue problems 

$ K$ +huC=O 
( ) 
2 

cY=+lB=O 

dY2 

(14) 

and an ordinary first-order differential equation which depends on the eigenvalues 
1, A: 

g+(h+l)A=O. 

The solution of Equation (2) with respect to the boundary conditions (Section 2) 
and the above assumptions yields 

I=CCI::exp-(A,+I,)xcos IT m , (2NTYC (z) 
n m ‘Ly 

where the eigenvalues 

(17) 

are given by Equation (15) with respect to the boundary conditions (Section 2). 
The coefficients 1: are chosen in order to fulfil the windward boundary condition 
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(6b) of the vertical area source, which was shown to be possible by Courant and 
Hilbert (1968): 

Lr,H+L 

(19) 

An average error of less than 2% allows the spectral series to be cut off after 
wave number 10 (which holds for both directions x, y). The vertical eigenfunc- 
tions C,,, and the related eigenvalues A, (14) depend on the vertical profiles of u 
and K, which are specified in the following. 

4.1. U AND & VERTICALLY CONSTANT 

The vertical eigenfunctions C, can simply be derived. 
With inversion (z = 23); 

C,(z)=cosJy, m=o, 1,2,. ,. 

and the related eigenvalue 
- 

Without inversion (z = L,): 

C*(z) =cos (2m2;1)Tz, 
z 

and the eigenvalue 

(204 

Wb) 

(214 

4.2. A BAROTROPIC BOUNDARY LAYER WITH VERTICAL K, AND U PROFILES 

The wind field and the turbulence structure of this planetary boundary layer are 
given by a model of Lettau and Dabberdt (1970). They assume a linear height 
dependence of the angle PO between stress and departure from the geostrophic 
wind vg so that analytical solutions are able to describe realistically the boundary- 
layer structure. The coefficient of turbulent diffusion is obtained from a fourth- 
order polynomial and the main wind component can also be represented by such a 
polynomial: 

u(z)= i u,zn 
n=O 

K,(z)= i K,z”. 
n=O 
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TABLE I 
Parameter values (see Section 5.1), metric units 

Barotropic Constant 
Gaussian plume boundary layer coefficients 

Inversion 
a b C d PO % L ii I;, height H 

Stable 0.273 0.691 0.217 0.610 43" 5 300 4.2 0.41 210 
Neutral 0.306 0.885 0.072 1.021 35” 10 1000 8.1 15.7 210 

The dependence of the external parameters PO, vp and additional coefficients on 
the thermal stratification of the atmosphere is shown in Table I (Section 5). The 
related vertical profiles of the wind and the turbulent diffusion coefficient are 
shown in Figure 1. 

The eigenvalue Equation (14) is self-adjoint and positive definite so that the 
Rayleigh and Ritz-method can be applied for its solution (Collatz, 1963). After 
Rayleigh, the first eigenvalue is given by the minimum of the following quotient: 

(22) 

0 

where g is obtained from a set of continuous functions satisfying the boundary 
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Fig. 1. Barotropic boundary-layer structure, left: neutral case with a boundary-layer height of 
1000 m. right: stable case with a boundary-layer height of 300 m. 
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conditions. They are represented by a linear combination of p linearly- 
independent functions 

g(z) = “$, GIfn(z), (23) 

the coefficients a, of which are defined for R, being a minimum. This variational 
problem leads to the Galerkin-equations (Collatz, 1963): 

(24) 

r=l,...p 

s=l,...p 

which is a linear and homogeneous system for the p unknowns 4. A non-trivial 
solution exists for a vanishing determinant of the coefficients. 

Thus, the problem of solving the differential equations has been reduced to a 
matrix problem: 

j.&r(,$+=ir rt,dz, r=l,..., p; s=~,...,P. (25) 
0 0 

As the matrices are symmetric and positive definite, all eigenvalues A’ are real and 
positive. 

The functions f,, are prescribed by the eigenfunctions of Equation (14) with 
vertically constant u and K,, as solved via Equations (20) and (21) with respect to 
the boundary conditions (Section 2). The eigenfunctions for vertical profiles in u 
and k, (i.e., for the barotropic boundary layer described above) are obtained if 
the eigenvectors gS of the system (24) are substituted into Equation (23). The 
following relation holds for the eigenvalues of the matrix approximation A’ and of 
the differential equation A: 

Arm 2 A,. (26) 

In our numerical calculations, the value of p was continuously increased until the 
first ten eigenvalues (needed for the spectral representation of the solution by ten 
wave numbers) no longer diminished. These eigenvalues are thereby exact, which 
was the case for ~230. 

5. A Comparison 

5.1. THE INPUT PARAMETERS 

Some specifications have to be introduced to make the different solutions of the 
diffusion Equation (2) compatible. 
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(a) The vertically-averaged u-component of the barotropic boundary-layer 
model is used for the Gaussian-plume approach and one of the spectral solutions 
(Section 4.1) which also incorporates the vertically-averaged diffusion coefficient. 

(b) The maximum strength of the source is situated at 150 m above the surface; 
its shape is described by the profile of a Gaussian-plume which, for the spectral 
approach, is represented by the eigenfunctions of Equation (13). 

(c) The empirical constants incorporated into the Gaussian and spectral solu- 
tions as well as into the boundary-layer model are shown in Table I. The stability 
parameters a, b, c, d (Section 3) are classified according to Klug (1969). The free 
parameter (Y = 6 of the spectral solution (Equation (12)) is chosen such as to fit 
optimally the diffusion of the Gaussian plume, because there is no direct transfor- 
mation between the horizontally varying standard deviations and the diffusion 
coefficient. The parameters defining the internal structure of the boundary layer 
are the geostrophic wind zig in the x-direction, its height 2, the angle between the 
surface stress and the geostrophic wind, which depends on the atmospheric 
stability, and the Coriolis parameter (50”N). 

The vertically averaged wind and diffusion coefficient are also given. It should 
be noted that not the magnitudes but the vertical profiles are of major interest; 
the latter are hardly influenced by slightly varying parameter values. 

(d) Two classes of thermal stability (neutral, stable) are discussed in the 
following, which are studied with and without an inversion. Without inversion, the 
top of the barotropic boundary-layer model is at 1000 m (300 m) for the neutral 
(stable) case. For both stability classes, the height of the boundary layer has been 
reduced to the height of the inversion, i.e. H = 210 m. 

As the three methods of solution are hardly to be distinguished in the 
y-direction, only the vertical profiles are presented, depending on the downwind 
distances 0.5, 1.0, and 2.0 km from the area source. The concentrations are 
normalized by the area average. 

5.2. THE RESULTS (Figures 2a-d) 

(a) Stable Stratification 

The diffusive process modelled by the Gaussian plume shows slightly stronger 
concentrations than the spectral solutions which certainly depend on the external 
parameters chosen. However, it is important to note that there is hardly any 
difference of the vertical profiles in the spectral solutions. Only at larger distances 
from the source the spectral solution of the vertically structured boundary 
layer produces higher concentrations near the ground compared with the other 
approaches. 

(b) Stable Stratification wirh an Inversion 

Also in this case the Gaussian plume shows higher concentrations, especially 
below the inversion. This is due to the effect that the inversion is (implicitly) 
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Fig. 2a 
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Fig. 2b. 

Fig. 2a-d. Comparison of the vertical profiles of the normalized concentration at a distance of 0.5, 
1.0, and 2 km from the vertical area source: Gaussian plume (full); spectral solution with constant 
coefficients (dotted), with vertically varying wind spiral (dashed). (a) stable, (b) stable with inversion (c) 

neutral, (d) neutral with inversion, 

incorporated as a rigid lid in order to fulfill the boundary condition (4). Compar- 
ing the two spectral models, the case of variable coefficients shows a more 
pronounced vertical structure, as expected. At =2 10 m, the wind has its maximum 
whereas the diffusion coefficient is decreasing so that advective transport pre- 
dominates over the vertically decreasing diffusive flux; thus, a maximum appears 
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Fig. 2c. 

x= 1.0 km 

x=2.0km 
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Fig. 2d. 

at the height of the area source (150 m) and a minimum at the inversion; these are 
smoothed by the solution with vertically-constant wind and diffusive coefficients. 

(c) Neutral Stratification 

In comparison to the stable stratification, the following two examples of neutral 
stability (i.e., thermally well-mixed!) are calculated using a stronger wind (by a 
factor 2) and a larger diffusion coefficient (an order of magnitude). The Gaussian 
plume and the spectral solution with constant coefficients give essentially the same 
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profiles. But the important result is the relatively high surface concentration 
determined by the vertically-structured spectral solution; in the lower layers, the 
wind is more rapidly decreasing than the diffusion coefficient, which leads to an 
increasing downward diffusive transport to be balanced by horizontal advection. 
Thus, the relatively weak surface wind has to be correlated with relatively large 
horizontal gradients (of the concentration) compared to the Gaussian plume or 
the spectral solution with constant coefficients, respectively. This result is in good 
agreement with tracer experiments (Vogt and Geiss, 1974), which yield higher 
surface concentrations than predicted by a Gaussian-plume model. 

(d) Neutral Stratification with an Inversion 

The Gaussian plume predicts generally smaller concentrations. Besides the effect 
of higher surface values, the vertically-structured model shows lower concentra- 
tions under the inversion (see Figure 2b). 

(e) The Unstable Stratification 

The unstable stratification is of no practical importance. After a short travel 
distance downwind, the calculations show a nearly uniform distribution of the 
concentration with, again, slightly higher values at the surface for the vertically- 
structured case. 

6. Conclusions 

In comparison with the Gaussian-plume approximation of the diffusive boundary- 
layer processes, the incorporation of a realistic vertical structure of the atmos- 
phere leads to higher concentrations at the surface and lower values beneath the 
inversion. The effects appear weakest for stable conditions because it takes a 
greater distance for the stable plume to interact with the ground. Thus, under 
these circumstances the Gaussian plume is still quite a realistic approximation. 
For the other cases, however, if diffusive transports (e.g., of cooling-tower 
plumes) have to be realistically modelled, it appears reasonable to include 
explicitly the vertical structure of the planetary boundary layer. 
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