Welcome guest. Please login.

Summary tables for mesoscale chemistry & transport models

Prognostic equations and calculated meteorological variables

uvwζpvTθθlpGphρqvqtqlcqfqscqlrqshqsgqssNEεKziother variables iother variables iiother variables iii
ADREA
AERMOD
ALADIN-CAMxnet radiationconvective/large scale precipitation
AURORA
AUSTAL2000
BOLCHEM
CAC
CALGRID
CALMET/CALPUFF
CALMET/CAMx
CAMx
CHIMERE
CHIMERE (ARPA-IT)
CMAQ
CMAQ(GKSS)
COSMO-MUSCAT
EMEP
ENVIRO-HIRLAM
EPISODE1 hour concentration values Meteorological dispersionwind conditions
EURAD-IM
FARM
FLEXPART
FLEXPART V6.4
FLEXPART/Asurface sensible heat fluxsurface solar radiationfriction velocity
GEM-AQ
LOTOS-EUROS
LPDM
M-SYS
MARS (UoT-GR)concentrations deposition
MARS (UoA-PT)
MATCH
MC2-AQ
MCCM
MECTMconcentrations
MEMO (UoT-GR)Turbulence data, deposition, cloudsOptionally concentrations of inert pollutantsGridded precipitation data can optionally be provided for calculating soil infiltration and moisture profiles.
MERCUREconcentration in pollutants, including heavy gaz
MOCAGE
MUSE concentrationsdeposition
Meso-NH
NAME
OFISconcentrationdepositionSurface wind
Polyphemus
RCG
SILAM
TAPM
TCAM
TREX
WRF/ChemDependent on dynamic core and choice of physicscan be run dry or with second moment microphysicsMay also produce probabilistic non-resolved convective parameterization output
» Save query in profile | View this table as:

Diagnostically calculated meteorological variables

Model type

Approximations

Boussinesqanelastichydrostaticflat earthremarks
ADREA
AERMOD
ALADIN-CAMx
AURORACartesian grid (Lambert projection)
AUSTAL2000
BOLCHEM
CAC
CALGRID
CALMET/CALPUFFCALMET is a diagnostic 3-dimensional meteorological model; it iterpolate meteorological data (surface and radiosoundins)also using kinematic effects, slope flow, blocking effects. It includes divergency minimization procedure and micrometeorological model for overland and overwater boundary layers. In Krakow we replace radiosoundings by data from ALADIN/PL.
CALMET/CAMxCALMET is a diagnostic model; it interpolates the meteorological data (surface and radiosoundings) also using kinematic effects, slope flows and blocking effects. Vertical velocity is derived from a divergence minimization scheme.
CAMxCAMx can perform simulations on three types of cartesian map projections: Universal Transverse Mercator, Rotated Polar Stereographic, and Lambert Conic Conformal. CAMx also offers the option of operating on a curvi-linear geodetic latitude/longitude grid system as well.
CHIMERE
CHIMERE (ARPA-IT)
CMAQ
CMAQ(GKSS)
COSMO-MUSCATNon-hydrostatic, compressible, surface heterogeneity (orography, land use)
EMEP The model can be run in local/regional/hemispheric/global modes with optional resolution.
ENVIRO-HIRLAM
EPISODEThe subgrid scale line source model is intended for a relatively flat area and does not take into account any complex terrain effects. The subgrid scale line source and the point source segmented plume/puff trajectory model does not take into account any complex photochemistry, except for the fast NO-NO2-O3 cycle.
EURAD-IM
FARM
FLEXPART
FLEXPART V6.4
FLEXPART/Ahybrid coordinates
GEM-AQ
LOTOS-EUROS
LPDM
M-SYS
MARS (UoT-GR)
MARS (UoA-PT)
MATCHMATCH relies on meteorological input data on hybrid and sigma vertical coordinates, and as such terrain following.
MC2-AQFully compressible, non hydrostatic Euler equations [Tanguay et al. 1990; Benoit et al. 1997}
MCCM
MECTM
MEMO (UoT-GR)
MERCUREtakes into account topography but not earth curvature
MOCAGE
MUSE
Meso-NHThe model is based upon the Lipps and Hemler anelastic system.
NAME
OFIS
Polyphemus
RCG
SILAMFor Lagrangian dynamics, a well-mixing assumption for the boundary layer, fixed mixing in the free troposphere are taken. Eulerian dynamics computes full 4D physics and chemistry
TAPM
TCAM
TREX
WRF/Chemfully compressible equations
» Save query in profile | View this table as:

Parametrizations

turbulence schemedeep convectionsurface exchangesurface temperaturesurface humidityradiationunresolved orographic dragclouds / rainremarks
ADREAzero, one (k-l, k-ζ) or two-equations (k-ε) schemeIn the surface heat budget equation, the net radiative flux balances the fluxes of sensible, latent and soil heat.The infrared radiation follows Pielke (1984). The net longwave irradiance is based on Stephens (1984).constant drop model (Rogers, 1989)
AERMOD
ALADIN-CAMx
AURORA
AUSTAL2000
BOLCHEME-lKain-Frisch, 1990. J. Atmos. Sci. 47, 2784-2802.Heat and specific humidity fluxes are computed with iterative procedure based on the Monin-Obukhov similarity theory. Soil model (4 layers)Soil model (4 layers)Infrared and solar, interacting with clouds (Ritter and Geleyn, 1992, Mon. Wea. Rev. 120 (2), 303-325) + Morcrette J. J.roughness proportional to unresolved orographic varianceMicro-physical processes included
CAC
CALGRIDSimilarity theory for stable and convective boundary layer. Diffusion coefficients based on PBL scaling parameters supplied by the CALMET meteorological model. Given by the CALMET meteorological model. Given by the CALMET meteorological model.Internally estimated.Internally estimated from hourly solar angles computed at theNone
CALMET/CALPUFFbased on similarity theory or Parsquill-Gifford-Turner class Overland Holtslag and van Ulden (1983)during unstable conditions and Weil and Brower (1983)based on Venkatram (1980)during stable conditionsinterpolationHoltslag and van Ulden (1983)
CALMET/CAMxHolstag and van Ulden (1983), Venkatram (1980) for momentum flux in stable conditionsinterpolation.Holstag and Van Ulden (1983)
CAMx
CHIMERE
CHIMERE (ARPA-IT)
CMAQ
CMAQ(GKSS)
COSMO-MUSCATBased on prognostic turbulent kinetic energy and mixing length; considering e.g. vertical wind shear and thermal stabilityTiedtke mass-flux scheme with equilibrium closureDrag-law formulation with Louis transfer coefficients; considering resistances in the turbulent, viscous, and surface sublayersEnergy budget considering vertical heat fluxes in atmosphere and soil as well as melting and freezing (snow, ice, water) on surface; with prognostic multi-layer soil modelHumidity budget considering vertical water fluxes, horizontal runoff, and plant transpiration in atmosphere and soil; with prognostic multi-layer soil modelTwo-stream transfer equations for 8 spectral intervals; shading by cloudsClouds: Kessler bulk scheme with saturation adjustment. -- Rain: autoconversion of cloud water, accretion of cloud water by rain drops, evaporation, and sedimentation.
EMEP
ENVIRO-HIRLAMHIRLAM TKE-l scheme. Modification of the CBR (Cuxart et. al, 2000, Quart. J. Roy. Met. Soc., 126, 1-30) scheme.STRACO (Soft TRAnsition COndensation) scheme.ISBA (Interactions Soil-Biosphere-Atmosphere) surface analysis.ISBA surface analysis.ISBA surface analysis.HIRLAM radiation scheme, modified from Savijarvi (1990, j. Appl. Metor. 29, 437-447)STRACO (convective), Rasch-Kristjansson (stratiform), Kain-Fritsch (meso scale convective)
EPISODEMeasurements of turbulence intensity. Vertical scale of turbulence based on Venkatram’s approximation. MeasuredMeasuredEstimated, based on sun elevation, ground classification and wetnessObservations
EURAD-IM
FARM
FLEXPART
FLEXPART V6.4
FLEXPART/A
GEM-AQPrognostic equation for turbulent kinetic energy [Benoıt et al., 1989]. Shallow convection is simulated using a method described by Mailhot (1994) and is treated as a special case of the turbulent planetary boundary layer to include the saturated case in the absence of precipitation.Kuo-type convective parameterization [Kuo, 1974; Mailhot et al., 1989]; Kain-Fritsch (1990, 1993)Force-restore [Deardorff, 1978; Benoıt et al., 1989], ISBA, CLASSThe infrared radiation scheme [Garand, 1983; Garand and Mailhot, 1990; Yu et al., 1997] includes the effects of water vapour, carbon dioxide, ozone, and clouds. The solar radiation scheme follows the method described by Fouquart and Bonnel (1980).Gravity wave drag parameterization based on a simplified linear theory for vertically propagating gravity waves generated in statically stable flow over mesoscale orographic variations [McFarlane, 1987; McLandress and McFarlane, 1993]
LOTOS-EUROS
LPDM
M-SYSfirst order closure, different schemes for different scales and within one scale (TKE-l, TKE-epsilon, counter gradient scheme; mixing length approach..)resolved with km grid and higher resolution; vertical averaging for devergence of radiative fluxesConstant flux layer; surface energy /humidity budget over land, constant temperature/humidity with Charnock (1955) for roughness over water, subgrid scale land use with flux aggregationEnergy budget (force restore method)humidity budget (force restore method)Short and long wave radiative fluxes: 2 way scheme; vertical averaging for devergence of radiative fluxesnot consideredKessler-type
MARS (UoT-GR) See model MEMO See model MEMOSee model MEMOSee model MEMOSee model MEMOClouds only diagnostically, no icing and rain
MARS (UoA-PT)
MATCH
MC2-AQturbulence variables (TKE, mixing length,...) for a partly cloudy boundary layer, in the framework of a unified turbulence-cloudiness formulation. Uses moist conservative variables diagnostic relations for the mixing and dissipation lengths, and a predictive equation for moist TKE. Mixing length formulation based on Bougeault and Lacarrere.several schemes available, but not used for tracer transport: classical Manabe-type moist convective adjustment scheme (Daley et al., 1976), three Kuo-type schemes, relaxed Arakawa-Schubert scheme ((Moorthi and Suarez, 1992), Fritsch-Chappell convective scheme (Fritsch and Chappell, 1980)'Force-Restore' method or ISBA schemeadvanced scheme in finding the infrared and solar radiation and calculation of clouds (Infra-red rate of cooling, Visible rate of heating, Visible flux to ground, Infra-red flux to ground, Infra-red flux to the top of the atmosphere, Visible flux to the top of the atmosphere, Planetary albedo) gravity wave drag parameterization is based on a simplified linear theory for vertically propagating gravity waves generated in statically stable flow over mesoscale orographic varations (McFarlane, 1987)explicit microphysics for cold cloud (warm + cold, graupel category included) - combined Kong & Yau (1997, AO, Gamma distribution for ice/snow) microphysics with graupel
MCCM--
MECTMSeveral schemes (TKE-l, counter gradient scheme; mixing length approach..)Constant flux layer; surface energy /humidity budget over land, constant temperature/humidity with Charnock (1955) for roughness over water, subgrid scale land use with flux aggregationEnergy budget (force restore method)humidity budget (force restore method)Short and long wave radiative fluxes: 2 way schemeKessler-type
MEMO (UoT-GR)Optionally zero-, one- and two-equation schemes.Surface energy balance, Monin-Obukhov length theory.Surface energy balance.Parameterised (function of saturation).Efficient scheme based on the emissivity method for longwave radiation and an implicit multilayer method for shortwave radiation.Clouds only diagnostically, Gridded precipitation data can optionally be provided for calculating soil infiltration and moisture profiles. No ice.
MERCUREdifferent levels can be used : E-eps (standard and Duynkerke), E-L (Bougeault-Lacarrere), L (Louis, 1979) explicit resolutionMonin-Obukhov similarity and Louis (1982)-ECMWF formulationForce-resore method inspired by Deardorff (1978)idem (two layers model)solar : derived from Lacis-Hansen (1974), including simulated cloud and cloudy fraction and aerosol evolutions infra-red : based on emissivity approximation Musson-Genon (1987) for both schemes, gaseous absorbent are : H2O and its dimeres, O3, CO2 and aerosolsexplicitly resolvedtwo moment semi-spectral warm microphysical scheme, including interaction with turbulent scheme (Bouzereau, 2004)
MOCAGE
MUSE See model MEMOSee model MEMOSee model MEMOSee model MEMOSee model MEMOClouds only diagnostically, no icing and rain
Meso-NH1.5 order closure scheme with different mixing lengths Cuxart, J., Bougeault, Ph. and Redelsperger, J.L., 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. Meteorol. Soc., 126, 1-30.Kain-Fritsch-Bechtold scheme Bechtold, P., E. Bazile, F. Guichard, P. Mascart and E. Richard, 2001: A Mass flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127, 869-886.Externalized surface model - For vegetation, ISBA scheme : Noilhan, J. and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev., 117, 536-549. - For urban area, TEB scheme : Masson V. 2000, A physically based scheme for the urban energy budget in atmospheric models, Bound. Layer Meteor., 94, 357-397. - For ocean : Charnock formulation - No lake schemeComputed by surface model, according to atmospheric and radiative fieldsComputed by surface model, according to atmospheric and radiative fieldsECMWF radiation scheme for LW (RRTM) and SW. Morcrette, J.-J., 1991: Radiation and cloud radiative properties in the European center for medium range weather forecasts forecasting system. J. Geophys. Res., 96, 9121-9132. NoDifferent microphysical schemes with 1 or 2 moments The most used is a mixed 1-moment scheme with 5 or 6 prognostic species Pinty, J.-P. and P. Jabouille, 1998: A mixed-phase cloud parameterization for use in mesoscale non-hydrostatic model: simulations of a squall line and of orographic precipitations. Proc. Conf. of Cloud Physics, Everett, WA, USA, Amer. Meteor. soc., Aug. 1999, 217 - 220.
NAME
OFISAlgebraic Surface energy balance, Monin-Obukhov-length theory Surface energy balanceParameterised (function of saturation)Efficient scheme based on the emissivity method for longwave radiation and an implicit multilayer method for shortwave radiationDiagnostic/none
Polyphemus
RCG
SILAM
TAPMThe turbulence terms area determined by solving equations for turbulence kinetic energy and eddy dissipation rate, and then using these values in representing the vertical fluxes by a gradient diffusion approach, including a counter-gradient term for heat flux.Boundary conditions for the turbulent fluxes are determined by Monin-Obukhov surface layer scaling variables with stability functions from Dyer and Hicks.If the surface type is water, then the surface temperature is set equal to the water surface temperature, and surface moisture is set equal to the saturation value. If the surface type is permanent ice/snow, then the surface temperature is set equal to –4°C, and surface moisture is set equal to the saturation value.Surface temperature and moisture are set to the deep soil values specified, with surface temperature adjusted for terrain height using the synoptic lapse rate.Conservation equations are solved for specific humidity.Radiation at the surface is used for the computation of surface boundary conditions and scaling variables, with the clear-sky incoming short-wave component from Mahrer and Pielke.Explicit cloud micro-physical processes are included.
TCAM
TREX
WRF/Chemlevel 2.5 MYJ, or non local YSU schemeGrell and Devenyi, Betts-Miller, Kain Fritsch, Simplified Arakawa-Schubert, Relaxed Arakawa-SchubertNoah Land Surface model, or RUC Land Surface Model, or simple schemesGFDL, Goddard, Dudhia, or CAM radiation schemes. Goddard scheme is coupled to aerosolsMany microphysics Choices
» Save query in profile | View this table as:

Boundary Conditions

surfacetoplateral inflowlateral outflow
ADREAThe concept of surface layer func-tions is adopted to avoid an excessive number of meshes near the ground due to very steep parameter gradients, occurring at the region.
AERMOD
ALADIN-CAMxlateral fields from ARPEGE
AURORA
AUSTAL2000
BOLCHEMSurface model usedNo vertical motion condition at the topRelaxation conditionRelaxation condition
CAC
CALGRIDDeposition.Diffusive and/or advective interaction with a concentration boundary value above the top of modelling domain.Proper treatment in the chapeau algorithm.Proper treatment in the chapeau algorithm.
CALMET/CALPUFF
CALMET/CAMx
CAMx
CHIMERE
CHIMERE (ARPA-IT)
CMAQ
CMAQ(GKSS)
COSMO-MUSCATFriction boundary conditions for constant-flux layer with surface budget Free slip (vanishing vertical velocity and gradients)Relaxation conditions forcing adaption to profiles of outer-nest model or to reanalysis data of global model GME (within a zone of few cells at each lateral boundary)Same as lateral inflow
EMEP
ENVIRO-HIRLAMSurface analysisClimate filesu,v,t,q,psu,v,t,q,ps
EPISODEFlux to the ground; deposition specification of areas sourcesBackground concentrations estimated or measuredMeasured or estimated upstream concentrationSpecification of flux out of the area
EURAD-IM
FARM
FLEXPART
FLEXPART V6.4
FLEXPART/Aas in ECMWF and ALADINas in ECMWF and ALADINas in ECMWF and ALADINas in ECMWF and ALADIN
GEM-AQland-sea mask, roughness length, sea surface temperature, land surface temperature, deep soil temperature, soil wetness, snow fraction on the ground, sea ice, surface albedo
LOTOS-EUROS
LPDM
M-SYSSeveral options (constant values, surface energy budgets, constant fluxes)rigid lid, damping layers; towards forcing dataTowards forcing data (relaxation area) or modified radiation boundary conditionTowards forcing data (relaxation area) or modified radiation boundary condition
MARS (UoT-GR)Energy balance, non-slip, deposition, emission.NeumannDirichlet (Regional background concentrations of NO, NO2, O3 and all other species included in the chemical reaction mechanism either from measurements of from large scale model application)Neumann
MARS (UoA-PT)
MATCH
MC2-AQvarious geophysical and climatological fields (land-sea mask, roughness length, sea surface temperature, land surface temperature, deep soil temperature, soil wetness, snow fraction on the ground, sea ice, surface albedo)rigid lid with no vertical motion at the model toptime varying meteorological fields coming either from global model (GEM-AQ) results or from objective anaysis
MCCMSoil model
MECTMSeveral options (constant values, simple energy budgets, constant fluxes)rigid lid, Damping layerTowards forcing data (relaxation area) or modified radiation boundary conditionTowards forcing data (relaxation area) or modified radiation boundary condition
MEMO (UoT-GR)The lower boundary coincides with the ground (or, more precisely, a height above ground corresponding to its aerodynamic roughness). For the nonhydrostatic part of the mesoscale pressure perturbation, inhomogeneous Neumann conditions are imposed. All otheNeumann for the horizontal velocity components and the potential temperature. To ensure non-reflectivity, a radiative condition is used for the hydrostatic part of the mesoscale pressure perturbation. For the nonhydrostatic part of the mesoscale pressure Radiation conditions for u,v,w, potential temperature and pressure. For the nonhydrostatic mesoscale pressure perturbation, homogeneous Neumann conditions are used.see above
MERCUREsurface exchange parameterization (two layer model; cf. above)- prescribed large scale flow - optional absorbing layer- standard Dirichlet - optional absorbing layer- standard Neuman - optional absorbing layer
MOCAGE
MUSE Energy balance, non-slip, deposition, emission.NeumannDirichlet (Regional background concentrations of NO, NO2, O3 and all other species included in the chemical reaction mechanism either from measurements of from large scale model application)Neumann
Meso-NHGiven by the externalized surface modelRigid For the coarser model, open boundary conditions with radiative properties from the LS coupling model. For the inner models, interpolation from the coarser grid.Radiative open boundary conditions
NAME
OFISEnergy balance, non-slip,deposition, emissionNeumannDirichletNeumann
Polyphemus
RCG
SILAM
TAPMThe soil and vegetation parameterisations are based on those from Kowalczyk et al. (1991).At the model top boundary, all variables are set at their synoptic values.One-way nested lateral boundary conditions are used for the prognostic equations.
TCAM
TREX
WRF/ChemSST'smass coordinateAnalysis data from operational centers, or 1-way nesting, also forecasts from operational centers
» Save query in profile | View this table as:

Data Assimilation

nudging techniqueadjoint model3D-VAR4D-VAROIdetails
ADREA
AERMOD
ALADIN-CAMx
AURORA
AUSTAL2000
BOLCHEMAssimilation of TEMP and SYNOP data (u, v, T, q).
CAC
CALGRID
CALMET/CALPUFFThe objective analysis procedure
CALMET/CAMx
CAMx
CHIMERE
CHIMERE (ARPA-IT)
CMAQ
CMAQ(GKSS)
COSMO-MUSCATInterpolated reanalysis data of global model GME serve as lateral boundary conditions at least for the outermost-nest model
EMEP
ENVIRO-HIRLAM
EPISODE
EURAD-IM
FARM
FLEXPART
FLEXPART V6.4
FLEXPART/A
GEM-AQCanadian Meteorological centre operation 4D-Var
LOTOS-EUROS
LPDM
M-SYS
MARS (UoT-GR)
MARS (UoA-PT)
MATCH
MC2-AQ
MCCM
MECTM
MEMO (UoT-GR)
MERCUREnudging also used for 'Davies' type lateral boundary conditions
MOCAGE
MUSE
Meso-NHNo
NAME
OFIS
Polyphemus
RCG
SILAM
TAPMThe method used to optionally assimilate wind observations is based on the approach of Stauffer and Seaman (1994), where a nudging term is added to the horizontal momentum equations (for u and v).
TCAM
TREX
WRF/Chem4d-VAR under development
» Save query in profile | View this table as:

Initialization

chemistry & transportmeteorology
ADREAOne-dimensional wind speed and temperature profiles are provided to be used as initial and boundary conditions. Models are also available for providing the meteorological input data. These are the code FILMAKER which provides meteorological three-dimensional fields from sparse observations and the code ADREA-diagn, a diagnostic meteorological model which provides mass-conserving three-dimensional wind fields
AERMOD
ALADIN-CAMxozone forecast runs twice a day are once initialized with average fields at beginning of forecast period (May) and continuously initialized with the output of the previous model run during the forecast period (until September)
AURORA3-D fields interpolated from a larger-scale model such as CHIMERE, EURAD, TM4
AUSTAL2000
BOLCHEMInterpolated fields from global models or 1-way nestInterpolated fields from ECMWF or GFS or 1-way nest
CACFive days spin-up period. Daily operational files are used for restarts.
CALGRIDThe model uses the 3D concentration fields for each species, coming either from measurement or coarser model grid results.24h pre-run
CALMET/CALPUFF
CALMET/CAMxrestart from previous concentrationssurface data and radiosoundings.
CAMx
CHIMEREThere are two possible initialization modes: • Initialization by reading initial concentrations in a restart file. This file must contain the 'end' concentrations of a previous simulation, as provided in the end.[label].nc. The species list is contained in the end.[label].nc file itself and is read by CHIMERE during initialization. • Initialisation by interpolating boundary conditions. This is the case when no initial file is available.
CHIMERE (ARPA-IT)There are two possible initialization modes: • Initialization by reading initial concentrations in a restart file. • Initialisation by interpolating boundary conditions. This is the case when no initial file is available.
CMAQ
CMAQ(GKSS)constant fields are applied at the beginning of each simulation. The simulation is run 5 days before the period of interest (which is typically one month), to allow for concentrations which are almost independent on initial conditions.
COSMO-MUSCATClimatological background profiles (or zero) or global data for outermost-nest model as initialisation and boundary valuesInterpolated reanalysis data of global model GME or COSMO-DE (DWD, Offenbach, Germany) as initialisation and boundary values
EMEP Default Logan climatology for ozone. Based on combination of measurements and global model results for other species. Other initializations and boundary concentrations may also be used. Can also be started with spinnup results (HTAP started with spin-up files based on 6 -12 months model run)
ENVIRO-HIRLAMVariant of digital filtering
EPISODEInitial concentrations (3D grid) for each pollutant can be provided by the user (usually set equal to zero). Final concentrations from a previous run may be used as initial concentrations for a new run. Background values are given
EURAD-IMThree different data sources are available for the initialisation of the EURAD-IM: 1) Climatological profiles. Nested grids can be initialized by linear interpolation of output from a coarser model simulation. 2) Concentration fields from a preceeding model run. 3) Initial values optimized by 3- and 4-d variational data assimilation.
FARMGridded IC from coarser models runs and/or measurements
FLEXPART
FLEXPART V6.4
FLEXPART/Asource termas in ECMWF and ALADIN
GEM-AQfields from previous runs
LOTOS-EUROSinterpolation of boundary conditions or restart files
LPDM source term optional: data assimilation
M-SYSinitialised with measured profiles, precalculation of first day to initialise 3d fields, second day and later to be evaluatedDynamic initialisation: calculation of balanced fields with 1D pre-processors based on METRAS, cold run starts with flat terrrain and constant large nudging, which decreases during the initialisation phase, restart uses METRAS results to continue
MARS (UoT-GR)Either data assimilation or 24h prerun
MARS (UoA-PT)Three-dimensional wind field from MEMO, boundary conditions
MATCHInitial state can be taken from other model runs (at any model resolution) or based on the boundary concentrations specified by the user (interpolated to fill the model volume).
MC2-AQMC2 model uses a type of dynamic initialization. This is performed by first integrating the model forward intime for a small, O(10), number of timesteps (without physics) and then backward to the starting time to begin the forecast itself. As in other models, the initialization timestep is usually smaller then the one used for the regular intergration.
MCCMHorizontally homogeneous typical values or fields extracted from previous simulationFrom global model output (identical to MM5)
MECTMinitialised with measured profiles, precalculation of first day to initialise 3d fields, second day and later to be evaluatedDynamic initialisation: calculation of balanced fields with pre-processors based on METRAS and decreasing nudging, cold run starts with flat terrrain, restart uses METRAS results to continue
MEMO (UoT-GR)Initialisation is performed with suitable diagnostic methods: A mass-consistent initial wind field is formulated using an objective analysis model. Scalar fields are initialised using appropriate interpolating techniques. Data needed to apply the diagnostics methods may be derived either from observations or from larger scale simulations.
MERCURE- from radio sounding - interpolation from large scale model fields - use of an objective analysis pre-processing for field campaign (MINERVE code)
MOCAGESpin-up period (some weeks to some months depending upon the species of interest) from a model monthly climatology. For dates beyong 01/07/2005, daily operational files are available for restarts.
MUSE Either data assimilation or 24h prerun
Meso-NHMOCAGE or MOZARTECMWF, ARPEGE, ALADIN for real cases Possibility of ideal cases.
NAMESpun up using emission data plus background fields for Ozone and H2O2.
OFISMeteorology and Boxmodel: 24h prerun, 2D: initialised with boxmodel results: Background boundary layer concentrations are calculated with a multi-layer box model representing the local-to-regional conditions in the surroundings of the city considered. This model uses at input non-urban emission rates as well as regional scale model results for meteorological quantities and pollutant concentrations
Polyphemus
RCG
SILAMZero or prescribed initial concentrations
TAPMThe model is initialised at each grid point with values of u, v, θ,q interpolated from the synoptic analyses. Iso-lines of these variables are oriented to be parallel to mean sea level (i.e. cutting into the terrain). Turbulence levels are set to their minimum values as the model is started at midnight. The Exner pressure function is integrated from mean sea level to the model top to determine the top boundary condition. The Exner pressure and terrain-following vertical velocity are then diagnosed using equations. Surface temperature and moisture are set to the deep soil values specified, with surface temperature adjusted for terrain height using the synoptic lapse rate.
TCAMThe model uses the 3D concentration fields for each species, coming either from measurement or coarser model grid results.
TREX
WRF/Chem
» Save query in profile | View this table as:

Nesting

one waytwo wayothervariables nestednesting onlinenesting offlinedata exchange by arraydata exchange by filetime step for data exchangeexplain method
ADREAuser defined (usually 1 hour)updating of boundary conditions
AERMOD
ALADIN-CAMx
AURORA
AUSTAL2000
BOLCHEMdepends on resolution
CAC
CALGRIDAccording to the resolution, in typical applications each hour
CALMET/CALPUFF
CALMET/CAMx
CAMx
CHIMERE
CHIMERE (ARPA-IT)
CMAQ
CMAQ(GKSS)
COSMO-MUSCATUser-defined (e.g., 1 hour)Relaxation conditions forcing adaption to profiles of outer-nest model or to reanalysis data of global model GME (within a zone of few cells at each lateral boundary)
EMEP
ENVIRO-HIRLAMC & T model online coupled in limited area forecast model, i.e possibility of data exchange every time step of met. model.
EPISODEon line calculations exchange of data for each time stepEmission – stationary plume model, interaction with sourrounding atmosphere – contribution to grid system data exchange by Calculating contribution from point, line and area
EURAD-IM
FARM
FLEXPART
FLEXPART V6.4
FLEXPART/A
GEM-AQspecified by the user
LOTOS-EUROS
LPDM
M-SYSdepends on resolutionDavies scheme
MARS (UoT-GR)Variable, e.g. 1 hour
MARS (UoA-PT)
MATCH
MC2-AQOpen boundaries for one-way nesting implemented for semi-Lagrangian advection
MCCMUser defined
MECTMAccording to the resolution, in typical applications once per hourDavies scheme
MEMO (UoT-GR)5 - 30 seconds
MERCUREevery- unstructured mesh allow for solving directly on the nested domains - only the largest nesting is one way
MOCAGE
MUSE Variable, e.g. 1hour
Meso-NHThe only constraint is that the ratio must be an integer. The exchange between both models occurs at the time step of the father model.Clark and Farley nesting technics Stein J., E. Richard, J.P. Lafore, J.P. Pinty, N. Asencio and S. Cosma, 2000: High -resolution non-hydrostatic simulations of flash-flood episodes with grid-nesting and ice-phase parametrization. Meteorol. Atmos. Phys., 72, 101-110
NAME
OFIS
Polyphemus
RCG
SILAM
TAPM
TCAM
TREX
WRF/Chemfor 1-way nesting, time step is by choice, for 2-way nesting timestep depends on nesting ratio
» Save query in profile | View this table as:

Coordinate System

HorizontalVertical
cartesianLambert conformallatitude / longituderotated lat. / long.z coordinatesurface fitted gridpressurecoordinatesigma coordinateremarks
ADREA
AERMOD
ALADIN-CAMx
AURORAAURORA employs exactly the same grid as its meteorological 'driver' (the ARPS model)
AUSTAL2000Possibility to apply nested grids.
BOLCHEMThe grid is staggered in the horizontal (Arakawa C) and in the vertical (Lorenz).
CACVertical: hybrid (sigma, p) coordinate.
CALGRIDTerrain following co-ordinate system.
CALMET/CALPUFFThe terrain-following vertical coordinate system The Lambert conformal grid for the large domain
CALMET/CAMx
CAMx
CHIMERE
CHIMERE (ARPA-IT)hybrid sigma-p coordinate
CMAQ
CMAQ(GKSS)depends on the prescribed meteorology grid. CMAQ runs on the same grid.
COSMO-MUSCATVertical hybrid grid for Met and CT: terrain-following coordinates in lower, horizontal coordinates in upper atmosphere (based either on height or reference pressure). -- Horizontal grid: Uniform with nested sub-domains of raised spatial resolution (for CT only).
EMEP Horizontal projection/coordinate system optional.
ENVIRO-HIRLAM
EPISODEThe advection and diffusion equations of the grid model contains a sigma coordinate transform where the grid cells follows the terrain close to the ground, while being more independent of the terrain higher up (stretched vertical sigma-coordinate).
EURAD-IMThe polar stereographic and Mercator projections are also available.
FARMComputational grids fixed in time
FLEXPART
FLEXPART V6.4
FLEXPART/Ahybrid eta coordinates
GEM-AQsigma-pressure hybrid vertical coordinate
LOTOS-EUROS
LPDM hoizontal and vertical (hybrid sigma) grids identical with LME or GME NWP model grids, see resp. docus.
M-SYS
MARS (UoT-GR)
MARS (UoA-PT)
MATCHThe model accounts for up to 6 different projections on input and output. The grid could either be defined by the input weather data, or be specifically set up. For the latter interpolation of weather data (if needed) is made on the fly. The model is mainly adapted to weather data on so called hybrid vertical coordinates, and the vertical coordinates of weather data define the model vertical coordinates.
MC2-AQvertical: Hybrid Terrain Following Vertical coordinate [SLEVE variation of Gal-Chen, Shaer et al. 2002] horizontal: rotated lat/long, polar-stereographic, mercator
MCCM
MECTM
MEMO (UoT-GR)
MERCUREunstructured mesh
MOCAGEvertical : hybrid (sigma,P) coordinate
MUSE
Meso-NHFor the vertical, Gal-Chen-Somerville coordinate. For the horizontal, different conformal projections (Polar stereographic, Lambert, Mercator)
NAMENAME can cope with a wide variety of coordinate systems both for input meteorology and for output data. Standard systems include: lat-long, rotated lat-long, UK national grid, EMEP grid. Further coordinate systems are user definable.
OFIS
Polyphemus
RCG
SILAMFor Lagrangian core, the particles use lat-lon coordinates horizontally and pressure system vertically (all axes are continuous, no grid). Input and output are independent from each other and from the internal model routines. Eulerian core uses one of the above grids in projection tied to that of meteorological data (not the grid size, though)
TAPM
TCAMTerrain following co-ordinate system.
TREX
WRF/ChemDepends on choice of dynamical core. WRF allows for different choices...
» Save query in profile | View this table as:

Numeric I: Grid

Numeric II: Spatial discretisation

momentum equationsscalar quantitiesadditional information
ADREAFor the numerical solution, the SIMPLER/ADREA algorithm is used, based on the SIMPLER algorithm given in Patankar, (1980). The mixture mass conservation equation is turned to a full pressure (Poisson) including the transient term. Pressure correc-tion is avoided. Under-relaxation factors are also avoided.
AERMOD
ALADIN-CAMx
AURORA
AUSTAL2000
BOLCHEM
CAC
CALGRIDHorizontal advection: finite difference scheme based on spectrally-constrained cubics (Yamartino, 1993) that conserves mass exactly, prohibits negative concentrations, and exhibits a level of numerical diffusion that is intermediate between class E and F (PGT class) dispersion. and Horizontal diffusion: stability dependent, Smagorinsky, or both schemes for turbulent diffusion coefficients. Vertical dispersion and turbulence: similarity theory for stable and convective boundary layer. Diffusion coefficients based on PBL scaling regimes. A chemical integration solver based on an adaptive time-step implementation of the quasi-steady-state method of Hesstvedt et al. (1978) and Lamb (1984). This solver can efficiently and accurately handle the stiffest of modern schemes.
CALMET/CALPUFF
CALMET/CAMx
CAMx
CHIMERE
CHIMERE (ARPA-IT)
CMAQ
CMAQ(GKSS)
COSMO-MUSCATSecond-order centered finite differencesSecond-order centered finite differences
EMEP
ENVIRO-HIRLAM
EPISODEHorizontal advection is calculated numerically by using a positive definite and 2D monotone version of the Bott scheme using 4th degree polynomials (Bott, 1993). Horizontal diffusion is calculated by using a simple 2D explicit scheme. Vertical advection is calculated using an upwind scheme. The vertical component of the wind is generated internally in the model based on the horizontal wind-components and a 3D divergence free condition for the wind field. Vertical diffusion (turbulent exchange of mass) is calculated based on a formulation of increasing sigma-z values. This formulation accounts for variations in the vertical grid resolution and typical scale of turbulence (Gronskei et al., 1993).
EURAD-IM
FARM
FLEXPART
FLEXPART V6.4
FLEXPART/A
GEM-AQ
LOTOS-EUROS
LPDM
M-SYScentered differences or (W)ENOupstream or (W)ENOvalues interpolated to other grid points by linear or higher order interpolation
MARS (UoT-GR)MARS uses a fully implicit selfadaptive method i.e. an implicit algorithm by a variable time step and a variable order. Also a semi-implicit selfadaptive method may be used which allows to drastically reduce the computer memory requirements. The latter algorithm is a second order backward difference scheme solved with a Gauss-Seidel iteration technique.
MARS (UoA-PT)
MATCH
MC2-AQThe discretization of the space derivatives is by finite differences on a grid staggered in the three dimensions. This arrangement is known as a Arakawa C-grid for the horizontal and a Tokioka B-grid for the vertical. The center of the elementary matrix is the pressure surrounded horizontally by U and V, and surrounded vertically by w, W and the scalars.
MCCMsee MM5 online tutorialsee MM5 online tutorial
MECTM
MEMO (UoT-GR)The conservation equations for mass, momentum, are solved.The conservation equations for scalar quantities as potential temperature, turbulent kinetic energy and specific humidity are solved.Fast elliptic solver, which is based on fast Fourier analysis in both horizontal directions and Gaussian elimination in the vertical direction.
MERCUREfinite volume, cell centeredidempossibility to use different cell elements (tetrahedral, hexahedral...)
MOCAGE
MUSE MUSE uses a semi-implicit selfadaptive method (i.e. a second order backward difference scheme solved with a Gauss-Seidel iteration technique)
Meso-NH2nd order or 4th centred advection scheme2nd order or 4th positive definite advection scheme (PPM)
NAME
OFISSecond-order-backward-difference (BDF2) with Gauss-Seidel-Iteration
Polyphemus
RCG
SILAM
TAPM
TCAM
TREX
WRF/ChemFor details check references
» Save query in profile | View this table as:

Numeric III: Time Integration

Validation & evaluation - Overview

Validation & evaluation - Application in Comparison Projects

AQMEIIList experiments (AQMEII)Cost728List experiments (COST728)HTAPList experiments (HTAP)MEGAPOLIList experiments (MEGAPOLI)
ADREA
AERMOD
ALADIN-CAMx
AURORA
AUSTAL2000
BOLCHEM
CAC
CALGRID
CALMET/CALPUFF
CALMET/CAMx
CAMx
CHIMERE
CHIMERE (ARPA-IT)
CMAQ
CMAQ(GKSS)
COSMO-MUSCATEU 2006Winter 2003, Spring 2006
EMEP TP1x, SR1 - SR6
ENVIRO-HIRLAM
EPISODE
EURAD-IM
FARMEurope_2005
FLEXPART
FLEXPART V6.4
FLEXPART/A
GEM-AQ
LOTOS-EUROS
LPDM
M-SYS
MARS (UoT-GR)
MARS (UoA-PT)
MATCH
MC2-AQ
MCCM
MECTM
MEMO (UoT-GR)
MERCURE
MOCAGE
MUSE
Meso-NH
NAME
OFIS
Polyphemus
RCG
SILAMEurope-2006AllEurope_2005 Paris_2009_winter Paris_2009_summer
TAPM
TCAM
TREX
WRF/Chem
» Save query in profile | View this table as: