Welcome guest. Please login.

List, classification & detail view

Note:
More information on some input arrays can be found when moving the cursor above the corresponding field in the questionnaire. Those fields are also explained in the glossary.

TM5: TM5-JRC-cy2-ipcc-v1

General information

Model name and version

short nameTM5
full nameTM5-JRC-cy2-ipcc-v1
revision
date01/01/2007
last change

Responsible for this information

namedentener
instituteJRC
addressv. E. Fermi 1
zip21032
cityispra
countryItaly
phone00390332786392
fax
e-mailfrank.dentener(belongs-to)jrc.it

Additional information on the model

Contact person for model code

same as person above
namedentener
instituteJRC
divisionsv. E. Fermi 1
street
zip21032
cityispra
countryItaly
phone00390332786392
emailfrank.dentener(belongs-to)jrc.it
fax

Model developer and model user

developer and userMain developer of TM5: krol@phys.uu.nl. IT Infrastructure KNMI: segers@knmi.nl

Level of Knowledge needed to operate model

basic
intermediate
advanced
remarksTM5 is a two-way nested model running on variable resolution ECMWF meteorological data. This version has a quadruple 1x1 degree nest over North America, Europe, South Asia, and East Asia; 3x2 degree over most of the NH, and 6x4 (lonxlat) over the SH.

Model use at your institution

operational
for research
other use

Model code available?

is available?no
more details

Minimum computer resources required

typemassive parallel
time needed for runfew days per year
storage10 Gb/per year

Further information

documentation
model references
webpagewww.phys.uu.nl/~tm5
additional information

Model properties

Model type

2D
3D
meteorology
chemistry & transport

Model scale

microscale
mesoscale
macroscale
short term
long term

Meteorological variables

Input data
u
v
w
ζ
pv
T
θ
θl
p
Gph
ρ
qv
qt
qlc
qf
qsc
qlr
qsh
qsg
qss
N
E
ε
K
zi
other variables i
other variables ii
other variables iii

Chemical substances

PrognosticDiagnosticDry depositionWet depositionInput data
SO2
NO
NO2
NOX
NH3
HNO3
O3
CH4
DMS
H2O2
VOC
C6H6
HCHO
CO
CO2
POP
PM 10
PM 2.5
PPM10
PM 0.1
PM 1
NH4
SO4
dust
sea salt
BC
POM
SOA
NO3
Other gasesCBM4 scheme components
1st radioactivity
2nd radioactivity
3rd radioactivity
Cd
Pb
other heavymetals
pesticides
1st radioactivityradon, pb210
2nd radioactivity
3rd radioactivity
remarks

Approximations

Boussinesq
anelastic
hydrostatic
flat earth
remarks

Parametrizations

Chemistry & transport

photolysis rateKrol and van Weele
dry depositionWesely, as modified by Ganzeveld
wet depositionbased on Giorgi and Chameides, as described in Jeuken et al. [2001] discriminating between large scale and convective precipitation formation.
remarksJeuken, A., P. Veefkind, F. Dentener, S. Metzger, and C. Robles-Gonzalez., Simulation of the aerosol optical depth over Europe for August 1997 and a comparison with observations, Journal of Geophysical Research, 106, 28295-28311, 2001.

Chemical reactions

Gas & wet phase chemistry

chemical transformations calculated
chemical transformations neglected
other
gas phase chemistry (give details)Follows a modified CBM4 scheme as described in Houweling et al. [1998];Houweling, S., F. Dentener, and J. Lelieveld, The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry, J. Geophys. Res., 103 (D9), 10673-10696, 1998.
wet phase chemistry (give details)SO4 formation according to Jeuken et al. [2001]; Jeuken, A., P. Veefkind, F. Dentener, S. Metzger, and C. Robles-Gonzalez., Simulation of the aerosol optical depth over Europe for August 1997 and a comparison with observations, Journal of Geophysical Research, 106, 28295-28311, 2001.
more information

Aerosol chemistry

passive aerosol
dry aerosol
wet aerosol
sectional approach
modal approach
other
nucleation
coagulation
condensation
aerosol mixing
aerosol ageing
primary aerosol formation
aerosol-gas phase interactions
optical properties
give detailsThis model version considers bulk aerosol for the inorganic components supplemented with a modal approach for seasalt and mineral dust

Initialization & boundary treatment

Initialization

chemistry & transportmodel can start from scratch; for HTAP model runs a spin-up of 6 months is choosen
meteorology

Input data (name sources for data, e.g. website)

orographyas in ECMWF
land useas in ECMWF
obstacles
vegetation
meteorologyECMWF 6 hour forecast products.
concentrations
emissionsEmissions (for base simulation + units): For aerosol: give also assumed size of emitted particles (mass median of lognormal, or diameter of size bin for dry paerticles) Global emissions per component+reference). Total Anthropogenic (including biofuel) Biomass (open) Natural Reference NOx 48.83 Tg N 28.35 Tg N 6.93 Tg NO2 5 Tg N (Lightning) ACCENT/PHOTOCOMP( Stevenson, 2005) CO 1076 Tg CO 470.5 Tg CO (ACCENT) 507 Tg CO (GFED1; PHOTOCOMP) 100 Tg CO ACCENT/PHOTOCOMP NH3 77.87 58.87 Tg NH3 5.96 Tg NH3 (MNP; PHOTOCOMP) 12.82 Tg NH3 8.15 Tg N (oceans;2.43 land) ACCENT/PHOTOCOMP SO2 68.74 Tg S 54.20 Tg S 0.67 Tg S 14.23 Tg S AEROCOM (Dentener, 2006) SO4 1.36 Tg S ((mmd=0.287) 0.88 Tg S 0.02 Tg S 0.36 Tg S AEROCOM (Dentener 2006) BC 7.84 Tg C (mmd=0.287) 4.67 3.04 Tg C (mmd= 0 AEROCOM (Dentener 2006) POM 67.72 Tg POM (mmd=0.287) 12.29 Tg POM 37.2 Tg POM 19.1 (from SOA) AEROCOM Dust 1678: in 3 modes (mmd=0.21,1.3,7.2) AEROCOM Seasalt 7925: in 2 modes (mmd=1.8,5) AEROCOM VOC 550.4 115.5 Tg C (113.5 in reported emission file DVS_fixed) 35.5 Tg C 399 Tg C ; (452 Tg Isoprene) Isoprene (Guenter et al., 1995 scaled) ; VOCs : PHOTOCOMP (with conversion) VOC : Parafines 80.1 70.3 Tg C 9.8 Tg C Conversion to CBM4 components using TNO inventory. VOC : ethene 34.5 23.9 Tg C 10.6 Tg C VOC : olefine 20.6 9.4 Tg C 11.2 Tg C VOC : aldehyde2 4.1 2.6 Tg C 1.46 Tg C VOC : glyoxal 6.9 4.7 Tg C 2.25 Tg C VOC : ch2o 1.5 1.5 Tg C 0.02 Tg C VOC : isoprene 399 399 Tg C VOC : terpene Not separately included but SOA source included. AEROCOM DMS 35.77 Tg DMS/year Kettle+Liss&Merlivat
remarks

Data assimilation

Chemistry & transport
nudging technique
adjoint model
3D-VAR
4D-VAR
OI
detailsnot here

Boundary conditions

Chemistry & transport
surfacein this version CH4 concentrations are constrained according to HTAP recommendations.
topUARS (NOX); TOMS/GOME above 50 hPa.
lateral inflow
lateral outflow

Nesting

Chemistry & transport
one way
two way
other
variables nested
nesting online
nesting offline
data exchange by array
data exchange by file
time step for data exchangebase time step 3600+subtimesteps for zoom regions
explain methodDescribed in Krol et al. [2005] Krol, M.C., S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W. Peters, F. Dentener, and P. Bergamaschi, The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos. Chem. Phys., 5,None, Atmos. Chem. Phys., 5, 417-432, 2005., 2005.
variables nestedmeteorology+all tracers
other

Solution technique

Coordinate system and projection

Horizontal

cartesian
Lambert conformal
latitude / longitude
rotated lat. / long.

Vertical

z coordinate
surface fitted grid
pressurecoordinate
sigma coordinate
remarks

Numeric

Chemistry & transport

Grid

Arakawa A
Arakawa B
Arakawa C
Arakawa D
Arakawa E
uniform grid
nonuniform grid
Euler
Lagrange
Gauss

Time integration

explicit
split-explicit
semi-implicit
time step same as meteorology
other

Spatial discretisation

scalar quantities6x4 3x2 1x1 degrees All surface processes are resolved on 1x1 degree.
additional information
other
chemistry solverEBI+ taylored explicit wet chemistry scheme

Model resolution

Chemistry & transport

HorizontalVertical
max
minca. 100 km34 layers

Domain size

Chemistry & transport

HorizontalVertical
max
min600060000 m

Model Validation and Application

Validation & evaluation

Used validation & evaluation methods

analytic solutions
evaluated reference dataset
model intercomparison
additional validation & evaluation efforts
remarks

Application examples

application examplesKrol, M.C., S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W. Peters, F. Dentener, and P. Bergamaschi, The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos. Chem. Phys., 5,None, Atmos. Chem. Phys., 5, 417-432, 2005., 2005. Dentener, F., J. Drevet, D.S. Stevenson, K. Ellingsen, T. Van Noije, M.g. Schultz, C. Atherton, N. Bell, T. Butler, B. Eickhout, A. Fiore, J.N. Galloway, C. Galy-Lacaux, U.C. Kulshestha, J.F. Lamarque, V. Montanaro, J.-F. Muller, J. Rodriguez, M. Sanderson, N. Savage, S. Szopa, K. Sudo, O. Wild, and G. Zeng, Nitrogen and Sulphur Deposition on regional and global scales: a multi-model evaluation, Global Biogeochemical Cycles, 20, GB4003, doi:10.1029/2005GB002672, 2006. Bergamaschi, P., C. Frankenberg, J.F. Meirink, M. Krol, F. Dentener, T. Wagner, U. Platt, J.O. Kaplan, S. Koerner, M. Heimann, E. Dlugogkencky, and A. Goede, Satellite Chartography of Atmospheric Methane from SCIAMACHY Onboard ENVISAT: (II) Evaluation Based on Inverse Model Simulations, Journal of Geophysical Research, 112, D02304, doi:10.1029/2006JD007268, 2007. De Meij, A., M. Krol, F. Dentener, V. E., E. Cuvelier, and P. Thunis, The sensitivity of aerosol in Europe to two different emission inventories and temporal distribution of emissions, Atmospheric Chemistry and Physics, Vol. 6, pp 4287-4309, 25-9-2006.

Participation in specific model evaluation exercises

AQMEII
List experiments (AQMEII)
Cost728
List experiments (COST728)
HTAP
List experiments (HTAP)
MEGAPOLI
List experiments (MEGAPOLI)