Welcome guest. Please login.

List, classification & detail view

Note:
More information on some input arrays can be found when moving the cursor above the corresponding field in the questionnaire. Those fields are also explained in the glossary.

M-SYS: Multiscale model system

General information

Model name and version

short nameM-SYS
full nameMultiscale model system
revision1.0
date01-01-2006
last change

Responsible for this information

nameHeinke Schlünzen
instituteKlimaCampus, Meteorological Institute, University
addressBundesstr. 55
zip20146
cityHamburg
countryGermany
phone+49-40-42838 5082
fax+49-40-42838 5452
e-mailheinke.schluenzen(belongs-to)zmaw.de

Additional information on the model

Contact person for model code

same as person above
nameHeinke Schlünzen
instituteKlimaCampus, Meteorological Institute, University
divisionsBundesstr. 55
street
zip20146
cityHamburg
countryGermany
phone+49-40-42838 5082
emailheinke.schluenzen(belongs-to)zmaw.de
fax+49-40-42838 5452

Model developer and model user

developer and user- Meteorologisches Inst., Univ. Hamburg, Germany - Forschungszentrum Jülich, Abt. Sicherheit und Strahlenschutz, Germany - Division of Environmental Health and Risk Management, School of Geography, Earth and Enivonmental Sciences, University of Birmingham, UK

Level of Knowledge needed to operate model

basic
intermediate
advanced
remarks

Model use at your institution

operational
for research
other use

Model code available?

is available?yes
more detailsfor research purposes

Minimum computer resources required

typesupercomputer, workstation
time needed for runProblem dependent
storageA few tens MWords for full model

Further information

documentation
model referencesTrukenmüller A., Grawe D. and Schlünzen K.H. (2004): A model system for the assessment of ambient air quality conforming to EC directives. Meteorol. Zeitschrift, 13, No.5,387-394. Schlünzen K.H. & Meyer E.M.I. (2006): Impacts of meteorological situations and chemical reactions on daily dry deposition of nitrogen into the Southern North Sea. Atmospheric Environment, doi:10.1016/j.atmosenv.2006.08.013.
webpagehttp://www.mi.uni-hamburg.de/Mesoscale_Chemistry_Model_MECTM.603.0.html
additional informationMeyer, E.M.I. (2006): Die Bedeutung atmosphärischer Prozesse für den Stickstoffeintrag in Küstengewässer. Dissertation, Department Geowissenschaften, University of Hamburg, Germany, 129 pp. http://www.sub.uni-hamburg.de/opus/volltexte/2006/2939/

Model properties

Model type

2D
3D
meteorology
chemistry & transport

Model scale

microscale
mesoscale
macroscale
short term
long term

Meteorological variables

PrognosticDiagnostic
u
v
w
ζ
pv
T
θ
θl
p
Gph
ρ
qv
qt
qlc
qf
qsc
qlr
qsh
qsg
qss
N
E
ε
K
zi
other variables i
other variables ii
other variables iii

Chemical substances

PrognosticDiagnosticDry depositionWet depositionInput data
SO2
NO
NO2
NOX
NH3
HNO3
O3
CH4
DMS
H2O2
VOC
C6H6
HCHO
CO
CO2
POP
PM 10
PM 2.5
PPM10
PM 0.1
PM 1
NH4
SO4
dust
sea salt
BC
POM
SOA
NO3
Other gasespassive tracer
1st radioactivity
2nd radioactivity
3rd radioactivity
Cd
Pb
other heavymetals
pesticides
1st radioactivity
2nd radioactivity
3rd radioactivity
remarks

Approximations

Boussinesq
anelastic
hydrostatic
flat earth
remarks

Parametrizations

Meteorology

turbulence schemefirst order closure, different schemes for different scales and within one scale (TKE-l, TKE-epsilon, counter gradient scheme; mixing length approach..)
deep convectionresolved with km grid and higher resolution; vertical averaging for devergence of radiative fluxes
surface exchangeConstant flux layer; surface energy /humidity budget over land, constant temperature/humidity with Charnock (1955) for roughness over water, subgrid scale land use with flux aggregation
surface temperatureEnergy budget (force restore method)
surface humidityhumidity budget (force restore method)
radiationShort and long wave radiative fluxes: 2 way scheme; vertical averaging for devergence of radiative fluxes
unresolved orographic dragnot considered
radiation in vegetationempirical reduction of radiatve fluxes
radiation between obstacles2 way scheme
treatment of obstaclesblockout approach; internal boundaries at building walls
clouds / rainKessler-type
remarks

Chemistry & transport

photolysis rateSTAR
dry depositionresistance model
wet deposition
remarks

Chemical reactions

Gas & wet phase chemistry

chemical transformations calculated
chemical transformations neglected
other
gas phase chemistry (give details)RADM2
wet phase chemistry (give details)
more informationLenz C.-J., Müller F. and Schlünzen K.H. (2000): The sensitivity of mesoscale chemistry transport model results to boundary values. Env. Monitoring and Assessment, 65, 287 -298. Müller F., Schlünzen K.H. and Schatzmann M. (2000): Test of numerical solvers for chemical reaction mechanisms in 3D air quality models. Environmental Modelling & Software, 15, 639-646. Müller F., Schlünzen K.H., Schatzmann M. (2001): Evaluation of the chemistry transport model MECTM using TRACT-measurements - effect of different solvers for the chemical mechanism. Air pollution modeling and its application; Gryning, Schiermeier (eds.);New York, 2001; XIV, 583-590.

Aerosol chemistry

passive aerosol
dry aerosol
wet aerosol
sectional approach
modal approach
other
nucleation
coagulation
condensation
aerosol mixing
aerosol ageing
primary aerosol formation
aerosol-gas phase interactions
optical properties
give detailssectional model SEMA von Salzen K. and Schlünzen K.H. (1999): A prognostic physico-chemical model of secondary and marine inorganic multicomponent aerosols I. Models description. Atmos. Environm., 33, 567 - 576. von Salzen K. and Schlünzen K.H. (1999): A prognostic physico-chemical model of secondary and marine inorganic multicomponent aerosols: II. model tests. Atmos. Environ., 33, 1543 - 1552. von Salzen K. and Schlünzen K.H. (1999): Simulation of the dynamics and composition of secondary and marine inorganic aerosols in the coastal atmosphere. J. Geophys. Res., 104 (D 23) , 30201 - 30217.

Initialization & boundary treatment

Initialization

chemistry & transportinitialised with measured profiles, precalculation of first day to initialise 3d fields, second day and later to be evaluated
meteorologyDynamic initialisation: calculation of balanced fields with 1D pre-processors based on METRAS, cold run starts with flat terrrain and constant large nudging, which decreases during the initialisation phase, restart uses METRAS results to continue

Input data (name sources for data, e.g. website)

orographyGLOBEFILE (1 km resolution); higher resolution if available
land useSmiatek data (based on CORINE data set and satellite images)
obstacleshigh resolution maps
vegetationhigh resolution maps
meteorologyGerman Weather Service or other larger scale model results or METRAS results or measurement analyses with pre-processor consistent with METRAS or MITRAS model physics; in chemistry models meteorology of meterology models is directly used
concentrationsmeasured data or large-scale model results
emissionsemission data set (e.g. IER Stuttgart); biogenic emissions: emission functions; Pollen: dependent on vegetation; sea salt emission dependent on wind speed
remarks

Data assimilation

MeteorologyChemistry & transport
nudging technique
adjoint model
3D-VAR
4D-VAR
OI
details

Boundary conditions

MeteorologyChemistry & transport
surfaceSeveral options (constant values, surface energy budgets, constant fluxes)gradient zero or constant flux or fixed values or deposition flux
toprigid lid, damping layers; towards forcing datagradient zero or constant flux or fixed values or large-scale value
lateral inflowTowards forcing data (relaxation area) or modified radiation boundary conditiongradient zero or constant flux or fixed values or large-scale value
lateral outflowTowards forcing data (relaxation area) or modified radiation boundary conditiongradient zero or constant flux or fixed values or large-scale value

Nesting

MeteorologyChemistry & transport
one way
two way
other
variables nested
nesting online
nesting offline
data exchange by array
data exchange by file
time step for data exchangedepends on resolutiondepends on resolution
explain methodDavies schemeconcentration values at boundaries
variables nestedall prognostic
other

Solution technique

Coordinate system and projection

Horizontal

cartesian
Lambert conformal
latitude / longitude
rotated lat. / long.

Vertical

z coordinate
surface fitted grid
pressurecoordinate
sigma coordinate
remarks

Numeric

Meteorology

Grid

Arakawa A
Arakawa B
Arakawa C
Arakawa D
Arakawa E
uniform grid
nonuniform grid
Euler

Time integration

explicit
split-explicit
semi-implicit
othervertical dffusion semi-implicit, all aother explicit first and second order

Spatial discretisation

momentum equationscentered differences or (W)ENO
scalar quantitiesupstream or (W)ENO
additional informationvalues interpolated to other grid points by linear or higher order interpolation
other

Chemistry & transport

Grid

Arakawa A
Arakawa B
Arakawa C
Arakawa D
Arakawa E
uniform grid
nonuniform grid
Euler
Lagrange
Gauss

Time integration

explicit
split-explicit
semi-implicit
time step same as meteorology
othertime splitting approach

Spatial discretisation

scalar quantitiesadvection upstream with time splitting (large Courant number); diffusion central differences
additional informationvalues interpolated to other grid points by linear or higher order interpolation
other
chemistry solverhybrid scheme Müller F., Schlünzen K.H. and Schatzmann M. (2000): Test of numerical solvers for chemical reaction mechanisms in 3D air quality models. Environmental Modelling & Software, 15, 639-646. Müller F., Schlünzen K.H., Schatzmann M. (2001): Evaluation of the chemistry transport model MECTM using TRACT-measurements - effect of different solvers for the chemical mechanism. Air pollution modeling and its application; Gryning, Schiermeier (eds.);New York, 2001; XIV, 583-590

Model resolution

Meteorology

HorizontalVertical
max161000
min0,0011

Chemistry & transport

HorizontalVertical
max161000
min0,0011

Domain size

Meteorology

HorizontalVertical
max200014000
min107000

Chemistry & transport

HorizontalVertical
max200010000
min103000

Model Validation and Application

Validation & evaluation

Used validation & evaluation methods

analytic solutions
evaluated reference dataset
model intercomparison
additional validation & evaluation efforts
remarks

Application examples

application examplesmaps for Lower Saxony

Participation in specific model evaluation exercises

AQMEII
List experiments (AQMEII)
Cost728
List experiments (COST728)
HTAP
List experiments (HTAP)
MEGAPOLI
List experiments (MEGAPOLI)