Welcome guest. Please login.

List, classification & detail view

Note:
More information on some input arrays can be found when moving the cursor above the corresponding field in the questionnaire. Those fields are also explained in the glossary.

NHHIRLAM: Nonhydrostatic extension to HIRLAM

General information

Model name and version

short nameNHHIRLAM
full nameNonhydrostatic extension to HIRLAM
revisionapplies to HIRLAM 6.4.0
date
last change

Responsible for this information

nameAarne Männik
instituteInstitute of Environmental Physics, University of
addressÜlikooli 18
zip50090
cityTartu
countryEstonia
phone(372)7-376 296
fax(372)7-375 556
e-mailaarne.mannik(belongs-to)ut.ee

Additional information on the model

Contact person for model code

same as person above
nameAarne Männik
instituteInstitute of Environmental Physics, University of
divisionsÜlikooli 18
street
zip50090
cityTartu
countryEstonia
phone(372)7-376 296
emailaarne.mannik(belongs-to)ut.ee
fax(372)7-375 556

Model developer and model user

developer and userdeveloper: Institute of Environmental Physics, University of Tartu users: University of Tartu, Estonian Meteorological Hydrological Service, experiments in Finnish Meteorological Service

Level of Knowledge needed to operate model

basic
intermediate
advanced
remarks

Model use at your institution

operational
for research
other useexperimental semi-operational runs at Estonian Hydrological Meteorological Institute

Model code available?

is available?yes
more detailsbut the NWP model of HIRLAM consortium has to be obtained already

Minimum computer resources required

type
time needed for run
storage

Further information

documentationRõõm, R., A. Männik, 2002: Nonhydrostatic adiabatic kernel for HIRLAM. Part III. Semi-implicit Eulerian scheme. HIRLAM Technical Report, 55, 29p Männik, A., R. Rõõm, 2001: Nonhydrostatic adiabatic kernel for HIRLAM. Part II. Anelastic, hybrid-coordinate, explicit-Eulerian model. HIRLAM Technical Report, 49, 53p. Rõõm, R., A. Männik, A. Luhamaa, 2005:Nonhydrostatic adiabatic kernel for HIRLAM. Part IV. Semi-implicit semi-Lagrangian scheme. HIRLAM Technical Report, (in preparation)
model referencesMännik A., R. Rõõm, A. Luhamaa, 2003: Nonhydrostatic generalization of pressure-coordinate based hydrostatic model with implementation in HIRLAM: Validation of adiabatic core. Tellus A, 55, 219 - 231.
webpagehttp://www.physic.ut.ee/~aarnem/nhhirlam/
additional information

Model properties

Model type

2D
3D
meteorology
chemistry & transport

Model scale

microscale
mesoscale
macroscale
short term
long term

Meteorological variables

PrognosticDiagnostic
u
v
w
ζ
pv
T
θ
θl
p
Gph
ρ
qv
qt
qlc
qf
qsc
qlr
qsh
qsg
qss
N
E
ε
K
zi
other variables isurface pressure
other variables ii
other variables iii

Approximations

Boussinesq
anelastic
hydrostatic
flat earth
remarksAll approximations are possible as options. However HIRLAM is pressure coordinate based model and the approximations do not match exactly.

Parametrizations

Meteorology

turbulence schemeCBR (Cuxart et al., 2000)
deep convectionSTRACO
surface exchangeISBA
surface temperatureISBA
surface humidityISBA
radiationSavijärvi
unresolved orographic drag
radiation in vegetation
radiation between obstacles
treatment of obstacles
clouds / rainSlingo(1987)/Sundqvist(1988)
remarks

Initialization & boundary treatment

Initialization

chemistry & transport
meteorologyNormal mode initialisation

Input data (name sources for data, e.g. website)

orography
land use
obstacles
vegetation
meteorology
concentrations
emissions
remarks

Data assimilation

Meteorology
nudging technique
adjoint model
3D-VAR
4D-VAR
OI
details

Boundary conditions

Meteorology
surface
topno condition or weak sponge
lateral inflowDavies, 1976
lateral outflowDavies, 1976

Nesting

Meteorology
one way
two way
other
variables nested
nesting online
nesting offline
data exchange by array
data exchange by file
time step for data exchange6h
explain method
variables nestedu,v,T,p_s,q
other

Solution technique

Coordinate system and projection

Horizontal

cartesian
Lambert conformal
latitude / longitude
rotated lat. / long.

Vertical

z coordinate
surface fitted grid
pressurecoordinate
sigma coordinate
remarkshybrid coordinate

Numeric

Meteorology

Grid

Arakawa A
Arakawa B
Arakawa C
Arakawa D
Arakawa E
uniform grid
nonuniform grid
Euler

Time integration

explicit
split-explicit
semi-implicit
other

Spatial discretisation

momentum equations
scalar quantities
additional information
otherLagrange

Model resolution

Meteorology

HorizontalVertical
max
min

Domain size

Meteorology

HorizontalVertical
max
min

Model Validation and Application

Validation & evaluation

Used validation & evaluation methods

analytic solutions
evaluated reference dataset
model intercomparison
additional validation & evaluation efforts

Analytic solutions

Meteorology

u
v
w
T
qv
qlc
qsc
qlr
zi
other
testcase description
testcase references
used data set
reference for evaluation
remarks

Evaluated reference dataset

Meteorology

u
v
w
T
qv
qlc
qsc
qlr
zi
other
testcase description
testcase references
used data set
reference for evaluation
remarks
remarks

Application examples

application examplesNiemelä S., C. Fortelius, 2005: Applicability of large-scale convection and convection parameterization to meso-gamma-scale HIRLAM: A case study of a convective event., Mon. Wea. Rev., 133, 2422 - 2435

Participation in specific model evaluation exercises

AQMEII
List experiments (AQMEII)
Cost728
List experiments (COST728)
HTAP
List experiments (HTAP)
MEGAPOLI
List experiments (MEGAPOLI)