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Coupling a minimal stochastic lattice gas model of a cloud system
to an atmospheric general circulation model
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We propose a strategy to couple a stochastic lattice gas model of a cloud system to a
rather general class of convective parametrization schemes. As proposed in similar models
recently presented in the literature, a cloud system in a grid box of a general circulation
model (GCM) is modelled as a subgrid lattice of N elements that can be in one of S
states, each corresponding to a different convective regime. The time evolution of each
element of the lattice is represented as a Markov process characterized by transition rates
dependent on large-scale fields and/or local interactions. In order to make application
to GCMs computationally feasible, we propose a reduction method leading to a system
of S − 1 stochastic differential equations with multiplicative noise. The accuracy of the
reduction method is tested in a minimal version of the model. The coupling to a convective
scheme is performed in such a way that, in the limit of space- and time-scale separation,
the modified stochastic parametrization converges to the original deterministic version of
the host scheme. Experiments with a real GCM are then performed, coupling the minimal
version of the stochastic model to the Betts–Miller scheme in an aquaplanet version of
the Planet Simulator. In this configuration, the stochastic extension of the parametrization
keeps the climatology of its deterministic limit but strongly impacts the statistics of the
extremes of daily convective precipitation.
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1. Introduction

Due to their nonlinear nature, atmospheric processes at different
space- and time-scales interact with each other. In a numerical
model of the atmosphere, the evolution equations are discretized
and therefore filtered in space and time by the size of the grid
and time step respectively. Thus, it is necessary to represent the
effect of the unresolved processes on the resolved scales. Under
the assumption of the existence of a separation between the active
unresolved and resolved scales, the unresolved processes can be
considered to be in statistical equilibrium once averaged over the
truncation scales and their mean effect can be represented at the
zeroth order as a deterministic function of the resolved variables
(parametrization).

For processes like organized convection, the scale separation
assumption is not realistic for applications to most of the scales
of interest, leading standard deterministic parametrizations to
misrepresent some of the statistical properties of the system.
In order to cure this problem, apart from drastic changes
in the approach to the representation of the unresolved
processes (superparametrization), first-order corrections can be
represented with the inclusion of stochastic terms, the statistical
properties of which will depend on the physics of the parametrized

processes and their interaction with the resolved dynamics
(stochastic parametrization).

In general, the idea of introducing stochastic terms into a
climate model in order to represent variability due to fast, unre-
solved processes dates back to the seminal work of Hasselmann
(1976). Since then, it has been applied to a number of geophysical
models. Chekroun et al. (2011) have recently provided an
introduction to random dynamical systems theory addressed to
the geophysical community, showing how concepts of classical
dynamical systems theory can be extended in order to provide
deeper insights into the statistical properties of nonlinear stochas-
tic–dynamical models. Most of the earlier studies were focused
on simplified, low-dimensional descriptions of the climate system
or specific climatic processes. Because of the increase in resolution
of operational numerical models of weather and climate, the
interest in introducing stochastic parametrizations in full general
circulation models (GCMs) in order to represent subgrid
variability due to unresolved processes (which could then feed
back through the nonlinearities of the system, with potentially
large impacts on the mean state and on the higher order statistics
of the system) has gained momentum in recent years, with par-
ticular attention devoted to the parametrization of atmospheric
convection (Neelin et al., 2008; Palmer and Williams, 2010).
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The representation of unresolved atmospheric convection in
GCMs is still one of the crucial problems of climate modelling
(Frank, 1983; Arakawa, 2004; Randall et al., 2007). Many different
parametrization schemes have been developed in the last decades.
Classically, they are divided into three families: moisture budget
schemes (Kuo, 1965, 1974), adjustment schemes (Manabe et al.,
1965; Betts and Miller, 1986) and mass-flux schemes developed
in different versions by many authors (Arakawa and Schubert,
1974; Bougeault, 1985; Tiedtke, 1989; Gregory and Rowntree,
1990; Kain and Fritsch, 1990; Gregory, 1997; Bechtold et al., 2001;
Kain, 2004), although with some theoretical issues in some of
these implementations (Plant, 2010). Despite being built starting
from different points of view and physical considerations, all
these schemes present similarities in their design and impact
on the dynamics (Arakawa, 2004) and to some extent can be
derived from a common approach (Fraedrich, 1973). The crucial
common feature of all these schemes is that they realize a negative
feedback, which efficiently dampens the vertical destabilization
of the atmosphere due to radiation, advection and surface fluxes,
in most cases by reducing a vertically integrated measure of the
buoyancy at an exponential rate (Yano et al., 2000).

This common property is introduced basically by design in
the first and second family (from this point of view, the Kuo
scheme can be interpreted as an adjustment scheme (Arakawa,
2004)), while in the third family it is realized by one of the
many possible implementations of the quasi-equilibrium (QE)
hypothesis originally introduced by Arakawa and Schubert (1974).
The general definition of QE is basically equivalent to the existence
of a time-scale separation between the large-scale dynamics and
the convective activity, allowing the effects of convection to be
parametrized as a response to the destabilization enslaved by the
large-scale dynamics. It can therefore be easily extended to include
the kind of justifications on which the adjustment (including Kuo)
schemes are based and thus it can be considered for the sake of
simplicity the conceptual basis of all the parametrization schemes
available. Part of the current debate on the parametrization of
convection is focused on giving a modern interpretation of the
QE principle (Neelin et al., 2008; Yano and Plant, 2012) at both
fundamental and operational levels.

At a fundamental level, Mapes (1997) introduced the concept of
activation control as opposite to the classical idea of equilibrium
control (basically a rephrasing of QE), indicating that the latter is
an adequate representation of the nature of tropical convection
only on global climate scales. Yano et al. (2001, 2004) showed
that the intermittent, pulse-like nature of tropical convective
activity leads to the presence of 1/f spectra for characteristic
quantities over a broad range of scales, so that the usual picture of
QE as a smooth adjustment based on a time-scale separation
is indeed questionable. A substantial body of observational
works (Peters et al., 2002, 2009, 2010; Peters and Neelin, 2006,
2009; Neelin et al., 2009) showed that convection in the Tropics
presents many features typical of systems undergoing a phase
transition or in a state of criticality, leading the authors to
propose the concept of self-organized criticality (SOC) to explain
the transition to precipitating convection (Neelin et al., 2008).
Although the proposed framework supports some aspects of the
QE idea, in the sense that a system featuring SOC indeed adjusts
itself to the neighbourhood of a critical point, thus dampening
deviations from it, the physical interpretation is radically different
and, if valid, would imply that important statistical properties
of convection are not captured by parametrizations based on
classical formulations of the QE principle. Despite the debate on
the validity of the QE hypothesis being ongoing for quite some
time, no substantial improvements have been made so far in
proposing a new conceptual framework robust enough to lead to
the definition of a new generation of parametrization schemes.

Less fundamental criticisms address the practical implementa-
tion of the QE principle, noting that the concept holds strictly only
in an ensemble average sense, integrating over an area hosting a
large number of independent convective events and over a time

interval larger than the typical length of their life cycle. That is,
even supposing that a scale separation exists, the concept is prac-
tically useful only if the truncation scales of the GCM are indeed
much larger than the characteristic scales of the parametrized
process, although one could note that the way space-scale sepa-
ration is involved in the QE principle is not as clear as time-scale
separation (see Yano, 1999; Adams and Renno, 2003). The typical
resolution of a state-of-the-art GCM for climatic applications is
100–200 km in space and 10–30 min in time. At these scales, only
a few active convective elements (clouds) are present in a grid box
and their life cycle (initiation, growth and dissipation) is far from
being exhausted in such a short period of time. This has led some
authors to suggest that convective parametrizations should at least
consider first-order corrections to the classical theory in order to
take into account finite size effects and aspects of the temporal
evolution of the ensemble of convective events. The first issue has
been basically ignored in the classical approaches to convective
parametrization, while, in order to address the second issue, some
prognostic schemes have been proposed in the literature (Randall
and Pan, 1993; Randall et al., 1997; Pan and Randall, 1998). In
addition, it has to be noted that atmospheric convection shows
features of spatial (Peters et al., 2009) and temporal (Mapes et
al., 2006) organization, both of which are thought to be involved
in determining properties of tropical variability from daily to
intraseasonal scales.

These issues were the basis for the suggestion of introducing
stochastic components into pre-existing convective parametriza-
tion schemes. First attempts to design a stochastic parametrization
of atmospheric convection were basically sensitivity studies
(Neelin et al., 2008). Buizza et al. (1999) developed a per-
turbed physics scheme to take into account model uncertainties
in the context of ensemble prediction. Lin and Neelin (2000,
2002) perturbed the heating term due to convective precipitation
with an AR1 process in the Betts–Miller (BM) scheme and in a
mass-flux scheme (Lin and Neelin, 2003), showing sensitivity of
the tropical activity to the autocorrelation time of the noise. A
different approach has been followed by Berner et al. (2005), who
introduced a stochastic forcing to the stream function of a GCM
with a spatial pattern given by a cellular automaton mimicking in
a simple way the organization of mesoscale convective systems.
Plant and Craig (2008) developed a stochastic parametrization
scheme coupling the deterministic Kain–Fritsch scheme (Kain
and Fritsch, 1990) to a probabilistic model for the distribu-
tion of the cloud-base mass flux based on equilibrium statistics
(Craig and Cohen, 2006), which had shown good agreement with
cloud-resolving models (Cohen and Craig, 2006). For a more
comprehensive review on the topic see Neelin et al. (2008) and
Palmer and Williams (2010).

Among these attempts, some attention has been devoted
recently to using subgrid stochastic lattice gas models in order to
describe the dynamics of a cloud population in a GCM grid box
(Majda and Khouider, 2002; Khouider et al., 2003, 2010; Frenkel
et al., 2012). A stochastic lattice gas model consists of a collection
of N elements spatially organized following a certain geometry
(for example, on a regular square lattice in which each site has four
first neighbours), each of which can be in one of S states. The time
evolution of each element on the set of the S states is determined
by probabilistic rules dependent on the state of the element and
its neighbours (in order to represent local interactions) and/or
on external fields. In applications to convective parametrization,
the N sites correspond to places in which convection may or
not occur, while the S states correspond to different convective
regimes or cloud types (Majda and Khouider, 2002; Khouider et
al., 2003, 2010; Frenkel et al., 2012). Considering a lattice model
nested in each grid box of a GCM, the stochastic model would
determine the fraction of each cloud type in the grid box, thus
modulating the amount of convective activity. In turn, the GCM
would provide the large-scale fields determining the transition
rates of the lattice model (e.g. CIN, CAPE, precipitable water),
realizing in this way a full two-way coupling (Khouider et al.,
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2010) between the small- and large-scale dynamics. The proposed
models were devised in order to represent finite size effects and
properties of the initiation and life cycle of tropical convection
(Mapes et al., 2006) and were coupled to simplified models of
the tropical dynamics. Recently, Stechmann and Neelin (2011)
have proposed a conceptual stochastic model for the transition to
strong convection, suggesting that it could be used to inform the
transition rules of similar models. On similar lines, Plant (2012)
has proposed a general framework for using subgrid individual-
level models (ILM) in the context of mass-flux parametrization,
making use of the van Kampen system size expansion approach
(van Kampen, 2007).

Despite some growing interest in this approach to stochastic
parametrization of atmospheric convection, no attempts have
been made so far regarding coupling to a full GCM. Here, we
derive a systematic way to treat such models in the context of
convective parametrization in real GCMs. Two ingredients are
then needed: (i) a numerically treatable, and possibly to some
extent analytically understandable, formulation of the evolution
of the lattice model and (ii) a robust coupling strategy in order to
include the stochastic model into a pre-existing parametrization.
In particular, the first problem has already been tackled by
previous works by means of a coarse-graining technique, reducing
the model to a system of S birth–death stochastic processes, which
are then simulated with the Gillespie method in Khouider et al.
(2003, 2010) and Frenkel et al. (2012), while Plant (2012) has
proposed using the van Kampen system size expansion approach.
This is in general a common problem in population dynamics
(McKane and Newman, 2004; Tome and de Oliveira, 2009; Black
and McKane, 2012, and references therein), where some standard
approaches have been developed that could also be used in the
convection community. Here we propose a method partially on
these lines that could be useful in order to extend this approach
to the ‘stochasticization’ of a convective parametrization to real
GCMs.

The first problem is due to the fact that, given the size of
a GCM grid box and the individual convective elements, N is
supposed to be quite large, so that a direct simulation of all N
processes in each grid box would be numerically burdensome.
Here we propose a reduction method leading to a system of
S − 1 stochastic differential equations for the evolution of the
macrostate of the lattice model in the limit of large N. Note
that N corresponds to the number of sites where convection can
occur and not to the actual number of active convective elements
or clouds, which in general will be a small fraction of it. The
reduction method therefore does not need a large ensemble of
clouds and makes it possible to deal with cases in which there are
a few clouds in a grid box, provided that individually they are
much smaller than the grid-box size. The intensity of the noise
scales with N−1/2, thus showing strong similarities with the van
Kampen system size expansion, but our derivation is formulated
in a way that could make the application to spatial models (i.e.
models featuring spatial interactions) more intuitive and results
to be equivalent in the final equations to strategies presented for
specific spatial predatory–prey models (Tome and de Oliveira,
2009).

The second problem stems from the fact that many
parametrization schemes do not feature the cloud or updraught
fraction explicitly in their formulation, so that it is not always
possible to introduce the cloud fraction provided by the stochastic
model into these schemes automatically. Here we suggest a way
to introduce the information given by the lattice model into
a generic pre-existing deterministic parametrization scheme,
in such a way that, in the limit of an infinite number of
convective elements and transition rates much faster than the
rate of change of the large-scale fields determining the transitions
themselves (i.e. perfect space- and time-scale separation phrased
for this particular description of unresolved convection), the
modified stochastic parametrization converges to the standard
deterministic version of the scheme. Our approach therefore

consists of introducing first-order corrections to the QE-based
implementation of a convective scheme and does not introduce a
fundamental change of perspective regarding the basic philosophy
of parametrizing convection (although, as discussed above, it is
likely that something in this direction will be needed in the
future).

According to the idea of defining a systematic way to introduce
this kind of model in a GCM, we perform first sensitivity
experiments in an environment as controlled as possible. We
set up the lattice model in its minimal version, a binary system
with only empty or occupied sites, no spatial interactions and
transition rates independent of the state of the large-scale
model. This version of the model will therefore introduce in
the parametrization only the effects coming from considering
a demographic description of the cloud system. In this simple
version, the model is treatable not only numerically but also
analytically, so that the role of its parameters in determining its
statistical properties is known. The stochastic model is coupled
to a simplified version of the BM scheme in the Planet Simulator
(Fraedrich et al., 2005; Fraedrich, 2012), an intermediate-
complexity GCM with a full set of physical parametrizations. The
model is set up in aquaplanet conditions with fixed sea-surface
temperature (SST) and no seasonal or diurnal cycle, following
Neale and Hoskins (2001), so that no time-dependent forcings
are acting on the system. This idealized set-up, together with the
good computational performances of the Planet Simulator, allows
for a robust exploration of the parameter space of the stochastic
model and a systematic investigation of its impact on the statistics
of the large-scale model. Particular attention is devoted to the
statistics of the extreme events of daily convective precipitation
in the Tropics.

The article is organized as follows. In section 2 we derive our
reduction method and analyze in detail the minimal version of
the model. In section 3 we propose a strategy to couple the general
version of the model to a generic parametrization scheme and
discuss as a practical example the coupling of the minimal version
of the model to the BM scheme. In section 4 we present the results
of the idealized aquaplanet experiments performed with the Planet
Simulator, in which the minimal model developed in section 2
is coupled to the BM parametrization scheme as described in
section 3. In section 5 we eventually present conclusions and
possible future lines of research.

2. Stochastic population dynamics on a subgrid lattice

Considering a grid-box size of order 100 km and typical sizes of
convective elements ranging from 100 m–10 km (from individual
cumulus clouds to mesoscale systems, depending on the definition
of the model), we expect N to be in the range 106 –102. Since
the full evolution of the stochastic model would require casting
an equivalent amount of random numbers at each time step for
each grid box of the GCM, it is clear that a direct simulation
of the system as the sum of all N individual processes would
be impractical even in the best case. The problem has already
been tackled in previous works by means of a coarse-graining
technique, reducing the model to a system of S birth–death
stochastic processes, which are then simulated with the Gillespie
method (Khouider et al., 2010; Frenkel et al., 2012). With a
different approach, Plant (2012) has applied the van Kampen
system size expansion approach to a joint model of the number
of clouds and the mass flux of the system, in the spirit of McKane
and Newman (2004). In this article, we present an alternative
method able to reduce the number of degrees of freedom of a
stochastic lattice gas model, leading to a treatable system of a few
stochastic differential equations.

2.1. Reduced stochastic model

Let us describe a cloud system as a collection of N elements or sites
that can be in one of S states, each identifying a different convective
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regime or cloud type. For the sake of simplicity, we can consider
them to be organized on a regular square lattice, even if this is not
crucial for the results developed in the following. Let us represent
the state of element n at time t with a S-dimensional vector σ nt ,
the components of which are the occupation numbers of the S
states, i.e. σ nt

s = 1 if element n is in state s at time t, σ nt
s = 0

otherwise. The time evolution of each element can be described
as in Khouider et al. (2010) as a Markov process characterized by
transition rates Rnt

ss′ , defined so that, for sufficiently small values
of the time increment dt,

pnt
ss′(dt) = Rnt

ss′ dt, (1)

where pnt
ss′(dt) is the conditional probability of finding element n

in state s at time t + dt, given that it was in state s′ at time t. It
is practical to introduce the transition or intensity matrix Rnt for
element n by defining

Rnt
ss = −

S∑
s′ �=s

Rnt
ss′ , (2)

so that the probability of remaining in the same state is
by definition (from now on avoiding showing explicitly the
dependence of the transition probabilities on dt)

pnt
ss = 1 −

S∑
s′ �=s

pnt
ss′ = 1 −

S∑
s′ �=s

Rnt
ss′dt = 1 + Rnt

ss dt. (3)

The transition matrix has been defined consistently with the
convention of right-hand matrix multiplication for the evolution
of the Markov process, so that the vector pnt , the components of
which are the absolute probabilities of finding the element n in
state s at time t, evolves according to the master equation

dpnt

dt
= Rntpnt . (4)

As suggested in previous works (Majda and Khouider, 2002;
Khouider et al., 2010; Stechmann and Neelin, 2011; Plant, 2012),
the coefficients of the transition matrix will depend in general on
some large-scale fields, like CIN, CAPE, measures of dryness of the
atmospheric column and/or precipitable water. This would reflect
the influence of the large-scale conditions on the probability of
activating convection: for example, we expect the probability
of having deep precipitating convection to increase with larger
CAPE and vice versa. The dependence of the transition rates on
these fields will therefore be the same for each element of the
lattice. In addition, we could imagine that the transition rates for
each element will also depend on the state of its neighbourhood,
due to the fact that the existence of a cloud at a certain point of
the lattice will activate processes influencing the probability of
having other clouds in the area nearby, in either a cooperative
or a competitive sense. Clustering effects are indeed observed in
studies of cumulus cloud life cycles, as a consequence of mesoscale
processes leading to positive near-neighbour feedbacks (Mapes,
1993; Redelsperger et al., 2000; Tompkins, 2001; Houze, 2004;
Moncrieff and Liu, 2006, and references therein). Let us in general
write the transition rate matrix for element n as

Rnt
(

xt , σ t
) = Ft

(
xt

) + Jnt
(
σ n′t ∈ �n

)
, (5)

where Ft
(

xt
)

is the same for each element of the lattice and
represents the effect of the large-scale conditions defined by the

GCM state vector xt , while Jnt
(
σ n′t ∈ �n

)
represents the effects

of possible interactions between the element n and the elements
of its neighbourhood �n, the range of which will depend on the
nature of the processes involved. Let us now define the cloud area

fraction vector as (Khouider et al., 2010; Stechmann and Neelin,
2011)

σ t = 1

N

N∑
n=1

σ nt . (6)

We would like to have an evolution equation for process σ t that
does not involve the computation of all individual processes σ nt .

This is a common problem in population dynamics, and some
common strategies are known in order to solve it (McKane and
Newman, 2004; Tome and de Oliveira, 2009; Black and McKane,
2012). The simplest approach is to neglect the details of the
spatial configuration of the lattice by taking an approximation,
similar to what is done in the simple (deterministic) mean-
field approximation (Tome and de Oliveira, 2009). Subsequently
one can apply an expansion method for large N (implying a
certain degree of space scale separation) like the one of the van
Kampen approach (van Kampen, 2007) in order to obtain a
first-order correction to the deterministic mean-field equations
in the form of a set of standard stochastic differential equations
(Tome and de Oliveira, 2009). The method presented here differs
in the second step but recovers the same final result and can be
considered equivalent to the one of Tome and de Oliveira (2009).

The mean-field approximation is a standard tool in statistical
mechanics and population dynamics and is based on the
assumption that, as long as we are interested in the properties of
a macroscopic quantity, the contributions due to the correlations
between the individual processes can be neglected, provided that
we can replace each local interaction term with a mean-field term
(constant over the lattice) that takes into account the collective
contribution of all the interactions. In practical terms, it consists
of neglecting the correlations between the individual processes

〈σ nt
s σ n′t

s′ 〉 ≈ 〈σ nt
s 〉〈σ n′t

s′ 〉 ∀s, s′, n �= n′, (7)

and of substituting in the interaction terms the state of the
individual processes σ nt with the average value over the lattice σ t ,
defining in this way a new mean-field interaction term J t

(
σ t

)
that

replaces each Jnt
(
σ n′t ∈ �n

)
. In this way, we obtain a mean-field

transition matrix

Rt
(

xt , σ t
) = Ft

(
xt

) + Jt
(
σ t

)
(8)

valid for each element of the lattice. In the thermodynamic limit
of infinite N, this allows us to represent the system with a set
of deterministic differential equations, known as the mean-field
equations of the system (McKane and Newman, 2004). The mean-
field approximation yields, of course, exact results in the trivial
case of a system of non-interacting elements (where it is not an
approximation at all); in general its applicability will depend on
the specific form of the interaction terms.

However, it is possible to derive a stochastic differential
equation for the time evolution of the cloud area fraction σ t

representing a first-order correction to the mean-field equations.
Let us suppose that we know the state of the system at time t. Given
the Markovian nature of the model, the statistical properties of
the increment dσ t from time t to time t + dt are then uniquely
determined. Since in the mean-field approximation the system
has been approximated as a collection of uncorrelated Markov
processes, each with the same transition matrix Rt , it is reasonable
to approximate the process dσ t with a Gaussian process if N is
sufficiently large, with fluctuations scaled by a factor N−1/2. For
example, a similar central limit argument for the properties of
the first-order fluctuations is taken in the van Kampen method
for expanding the master equation of the system. Taking this
approximation, the process dσ t is completely described by its
expectation value 〈dσ t〉 and its covariance matrix Ct and can be
written at each t as

dσ t = 〈dσ t〉 + εNηt , (9)
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where εN = N−1/2 and ηt is a Gaussian random vector with zero
expectation value and covariance matrix Ct . Again making use of
the mean-field approximation, one can show (see the Appendix at
the end of the article) that both 〈dσ t〉 and Ct scale with dt and can
be expressed as functions of Rt and σ t , namely 〈dσ t〉 = Rtσ tdt
and Ct = Dtdt, where

Dt
ss′ = −Rt

s′sσ
t
s − Rt

ss′σ
t
s′ + δss′

S∑
i=1

Rt
siσ

t
i . (10)

The process ηt can therefore be written as

ηt = GtdW t , (11)

where dW t = W t+dt − W t is the increment of a standard
multivariate Wiener process W t , so that it is a multivariate
Gaussian process with covariance matrix I dt and Gt is a suitable
matrix transforming the covariance matrix of the process in
Ct = Dt dt. From simple linear algebra considerations, we find

that it is sufficient to define Gt = Et
√

�t , where Et and �t refer
to the diagonal representation DtEt = Et�t . We can therefore
write the process dσ t as

dσ t = Rtσ t dt + εN Gt dW t . (12)

Equation (12) is the standard form of a stochastic differential
equation for the time evolution of the process σ t . Formally
dividing by dt, we can write it in the alternative form

dσ t

dt
= Rtσ t + εN Gtξ t , (13)

where ξ t = dW t/dt is the usual Gaussian white noise with

〈ξ t〉 = 0 and lagged covariance matrix 〈ξ tξ t′ 〉 = δ(t − t′)I.
Equation (13) consists of a system of S scalar stochastic
differential equations for the fraction of each cloud type, which are
reduced to S − 1 independent equations because of the constraint∑S

s=1 σ t
s = 1.

The Fokker–Planck equation related to Eq. (13), the solution
of which is the probability distribution function ρt of the process
σ t , is

∂ρt

∂t
= −

S∑
s=1

∂

∂σs

([
Rtσ t

]
s
ρt

)

+ ε2
N

2

S∑
s=1

S∑
s′=1

∂2

∂σs∂σs′

(
Dt

ss′ρ
t
)
.

(14)

The Fokker–Planck equation is totally equivalent to the one
obtained by Tome and de Oliveira (2009) for a specific spatial
predator–prey model, applying the van Kampen expansion to
the master equation of the system in order to build a first-order
stochastic correction of the mean-field description of the system.
Our approach (based on the crucial approximation (9)) gives the
same final equations, but is presented here in a more general form
and in a way that could be more intuitive for applications outside
the population dynamics community.

We have therefore derived an equation for the time evolution
of the macrostate of the lattice model for large N and interactions
suitable for describing in the mean-field approximation. In a
typical convective parametrization scheme, only a few cloud types
are considered, typically non-precipitating shallow convection
and precipitating deep convection. The computational burden of
the numerical integration of Eq. (13) is therefore several orders
of magnitudes smaller than the direct simulation of the lattice
model, which makes possible the inclusion of a real GCM in the
convective parametrization.

Comparing with the methods already proposed in the
literature, in terms of computational cost our method is equivalent
to the coarse-graining technique of Khouider et al. (2003, 2010).
Apart from this, the formulations of the two methods are rather
different. It has to be noted that the coarse-graining technique of
Khouider et al. (2003, 2010) does not require N to be large (while
still being able to represent local interactions, as in Khouider et
al. (2003)). Our method instead does require N to be large (as in
Plant, 2012), and therefore requires a certain degree of space-scale
separation that is not necessary in Khouider et al. (2003, 2010).
Moreover, the method of Khouider et al. (2003, 2010) conserves
the Hamiltonian dynamics of the lattice model, which is very
advantageous if the dependence of the transition rates on large-
scale fields and local interactions is formulated in that framework
(Khouider et al., 2003). However, while the method of Khouider
et al. (2003, 2010) results in a set of probabilistic rules for the
evolution of the process not represented in an analytical form,
our method has the attractiveness of providing a set of explicit
stochastic differential equations (SDE) for the cloud fractions.
This is quite an attractive feature, since it makes it possible to
derive some general properties of the process from the form of
Eq. (14), which may be useful in understanding to some extent
the impact it could have on the large-scale dynamics and in
performing experiments in a controlled and systematic way.

2.2. Minimal version of the model: binary system with fixed
transition rates

Let us consider the minimal case of a two-state system, so
that σ t = (σ1(t), σ2(t)), with fixed transition rates, without
any dependence on external fields and in the absence of local
interactions. We can interpret it as a model for an on/off
description of convection, with σ1(t) and σ2(t) representing
respectively sites that are convectively inactive (clear sky) and
active (clouds). In the perspective of applications to a real
convective parametrization, the assumption of constant transition
rates is clearly unrealistic, as in general we expect the birth and
death rates of deep convective clouds to depend on the state of the
atmospheric column. This simplification is, however, attractive
in a first, explorative phase of the study of the impact of this kind
of model on a convective parametrization, since it introduces
only the effects coming from a demographic description of the
cloud system and, as is shown in the following, it leads to a fully
analytically treatable form of the SDE, which will be useful in
order to perform experiments in a controlled way. More realistic
cases attempting to model the relationship between the state of
the atmospheric column and the onset of deep convection will be
the target of future works.

Under these assumptions, the transition matrix will in general
be (from now on dropping the time dependence in the notation)

R =
(−b d

b −d

)
, (15)

where b and d are, respectively, the (constant) birth and death rate
of the clouds or convective plumes quantified by σ2 (conversely
for σ1). In this specific, case the matrix D defined by Eq. (10)
becomes

D = D

(
1 −1

−1 1

)
, (16)

where D = σ1b + σ2d. The diagonalization yields

E = 1√
2

(
1 1
1 −1

)
,

� = D

(
0 0
0 2

)
, (17)

G = √
D

(
0 1
0 −1

)
.
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The resulting evolution equation is then

d

dt

(
σ1

σ2

)
=

(−b d
b −d

) (
σ1

σ2

)
+ εN

√
D

(
0 1
0 −1

) (
ξ1

ξ2

)
,

(18)

where ξ1 and ξ2 are independent Gaussian white noises. It is easy
to see that Eq. (18) satisfies the condition

d

dt
(σ1 + σ2) = 0, (19)

so that, setting σ1(0) + σ2(0) = 1, the constraint will be satisfied
at any following t. This comes from the structure of the matrix G,
specifically from the fact that the first column contains only zeros
and therefore ξ1 is not involved in the equations for σ1 and σ2

and that the the second column is such that ξ2 contribute to the
equations for σ1 and σ2 with the same magnitude and opposite
sign. Simplifying the notation to σ1 = 1 − σ , σ2 = σ , ξ2 = ξ ,
the system is fully described by the evolution equation for the
cloud area fraction σ , i.e.

dσ

dt
= (1 − σ )b − σd + εN

√
(1 − σ )b + σd ξ. (20)

The system can therefore be modelled by a single stochastic
differential equation with a linear deterministic drift term and a
multiplicative stochastic forcing, the intensity of which depends
on the size of the system.

In order to understand the properties of the solution of the
model, it is more convenient to express Eq. (20) in terms of the
parameters (σ0, τ ), where

σ0 = b

b + d
, (21)

τ = 1

b + d
. (22)

In this way, we have

dσ

dt
= σ0 − σ

τ
+ εN

√
σ0 + σ (1 − 2σ0)

τ
ξ. (23)

Defining the scaled drift and diffusion coefficients D′
1 =

τD1 = σ0 − σ and 2D′
2 = 2τD2 = ε2

N [σ0 + (1 − 2σ0)σ ], the
Fokker–Planck equation associated with Eq. (23) can be written
as

τ
∂ρ

∂t
= ∂ρD′

1

∂σ
+ ∂2ρD′

2

∂σ 2
. (24)

Since the scaled coefficients D′
1 and D′

2 do not depend on τ ,
the stationary solution ρs of Eq. (24), which corresponds to the
equilibrium probability distribution of the process σ , also does
not depend on τ , but only on σ0 and εN .

Following Risken (1989), if the variable σ has a lower bound
(in our case 0), ρs is given by

ρs ∝ 1

D′
2

exp

(∫ σ

0

D′
1

D′
2

dσ

)
, (25)

where the proportionality constant is set by the normalization
condition. In our case, this results in

ρs ∝ [σ0 + (1 − 2σ0)σ ]
4

ε2
N

σ0(1−σ0)

(1−2σ0)2 −1
exp

(
− 2

ε2
N

σ

1 − 2σ0

)
.

(26)

We see that ρs is strongly non-Gaussian. In particular, the upper
tail is exponential, so that large deviations from the equilibrium

value σ0 induced by the demographic noise are (relatively) likely
to be observed.

On the other hand, τ is the characteristic time-scale of the
process σ , since it disappears from the equations if taken as unity
by a rescaling of time, and it uniquely describes the memory of
the process: the (non-normalized) autocorrelation function of
the process σ is

r(t) = 〈σ t0σ t0+t〉 − 〈σ t0〉〈σ t0+t〉, (27)

where t0 can take any value. Taking the time derivative of Eq. (27)
and using Eq. (20), we have

dr

dt
= − r

τ
. (28)

Therefore, the autocorrelation function of a specific realization
of the process is an exponential decay on the time-scale τ ,
basically because of the linearity of the deterministic drift term
in Eq. (20). The process σ is therefore memoryless and has a
white spectrum. Note that, introducing interactions among the
lattice elements, the transition rates become functions of σ and
the deterministic drift term nonlinear, thus leading to (possibly)
more complicated memory properties, even in the absence of
time-dependent external fields.

2.3. Numerical test

To evaluate the accuracy of the reduction method, we take as
a test case the binary system with time-independent transition
rates described in the previous section. We compare, for different
values of the parameters σ0, τ and N, the stationary distributions
and correlation functions resulting from the direct simulation of
the full lattice model (DS) and the iteration of the correspondent
SDE with two approaches (M1 and M2, see below), as well as
the expected theoretical results derived in the previous section.
We perform 64 simulations with the following values of the
parameters: σ0 = (0.001, 0.01, 0.05, 0.1), τ = (3, 6, 12, 24) h and
N = (100, 225, 400, 1000). These values are compatible with
application to the description of a cloud system inside a GCM grid
box in the Tropics, where the typical value of the cloud fraction is
supposed to be small, typical time-scales of evolution of convective
events are of the order of a few hours and typical horizontal
length-scales of the individual cumulus clouds are of the order
of a few km. Considering a coarse, T42 resolution, equivalent to
tropical grid-box linear dimensions of about 300 km, the selected
values of N correspond to linear sizes of the convective elements
in the range 10–30 km. These are large numbers for observed
convection in the Tropics, but not totally unreasonable. Both
the direct simulations of the lattice model and the iterations of
the SDE are performed for a time period T = 3 yr with time
step 
t = 15 min, starting from the initial condition σ = σ0, so
that no transient behaviour has to be taken into account. The
SDE is integrated using the equivalent of the first-order Eulerian
integration scheme for SDEs.

For small values of σ0 and N, it is likely that a fluctuation of
the noise term could lead to a negative value of σ during the
iteration of the SDE. Those are cases in which we are at the edge of
the applicability of the reduction method. We can avoid negative
values of σ in two possible ways. In the first set of simulations
(M1), we set σ = 0 every time the iteration of the SDE would
lead to a negative value. In the second set of simulations (M2),
we recast the random number every time a fluctuation would
lead to a negative value, until σ ≥ 0. The first method has the
disadvantage of artificially increasing the probability of σ = 0,
while the second method has the disadvantage of increasing
the computational time required to iterate the SDE. The same
procedure is applied in order to avoid values larger than 1.

Figure 1 shows how the stationary distribution changes for
different values of N, keeping σ0 = 0.05 and τ = 3 h, with the
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Figure 1. Stationary distributions of the process σ for σ0 = 0.05, τ = 3 h and
different values of N, as the result of the direct simulation of the lattice model DS
(solid line) and of the iteration of the equivalent SDE with two different algorithms
M1 and M2 (dashed and dot–dashed lines). All the runs are performed for a
time period T = 3 years with time step 
t = 15 min, starting from the initial
condition σ = σ0, so that no transient behaviour has to be taken into account. The
distributions have been filtered with a window of length 1/N. The black solid lines
represent the expected behaviour following the solutions of the corresponding
Fokker–Planck equation.

direct simulation of the lattice model DS and the iteration of the
SDE with methods M1 and M2 (solid, dashed and dash–dotted
lines respectively). The distributions have been filtered with a
window of width 1/N (see below). In black, we have the expected
behaviour from the solution of the corresponding Fokker–Planck
equation.

In general, an important difference between the lattice model
and the SDE reduction is that in the first case σ belongs to
a discrete domain (the integer multiples of 1/N), while in the
second case it belongs to a continuous domain. This difference is
particularly strong when the system hosts few active elements, i.e.
for small values of σ0 and N. Still, if the distributions are filtered
by a factor 1/N we can see that the curve for the DS experiment
collapses on the curves for the M1 and M2 experiments (which
are almost indistinguishable from each other), as well as on the
theoretical one. The reduced model is therefore able to represent
the statistical properties of the lattice model, apart from the
digital nature of the signal in the full simulation. This deficiency
is in our opinion not of major concern in practical applications,
the reason being that this digitalization of the cloud fraction is
indeed an artefact of the representation of the cloud system as a
regular lattice model, in which all the convective elements have
exactly the same size (1/N in units of grid-box area). Instead, in
a real cloud system each element will have a different size. This
does not mean that the continuous version of the signal obtained
with the SDE is closer to reality, but at least the missing feature
is not a real physical property of the system. We can therefore
consider ourselves satisfied with the numerical performance of
our reduction method. We can also see that no appreciable
differences are present between methods M1 and M2, so that the
faster method M1 can be considered as our best candidate for
application in a GCM.

As expected, on increasing the size of the system, the range
of fluctuations around σ0 is reduced and vice versa. When the
distribution is broad enough to interact with the lower boundary,
the agreement between theory and numerical results becomes
worse, but is still acceptable for the range of values considered
here. For some reason, in these cases the iteration of the SDE
(with both M1 and M2) follows the DS experiment (which is the
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Figure 2. Stationary distributions of the process σ for N = 225 and different
values of σ0 and τ , as the result of the direct simulation of the lattice model. All
the runs are performed for a time period T = 3 years with time step 
t = 15 min,
starting from the initial condition σ = σ0, so that no transient behaviour has
to be taken into account. The distributions have been filtered with a window of
length 1/N. The black solid lines represent the expected behaviour following the
solutions of the corresponding Fokker–Planck equation.
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Figure 3. Autocorrelation functions of the process σ for N = 225 and different
values of σ0 and τ , as the result of the direct simulation of the lattice model. All
the runs are performed for a time period T = 3 years with time step 
t = 15 min,
starting from the initial condition σ = σ0, so that no transient behaviour has
to be taken into account. The distributions have been filtered with a window of
length 1/N. The black solid lines represent the expected behaviour following the
solutions of the corresponding Fokker–Planck equation.

‘true’ system we want to model) better than the theory, so that
this disagreement is of even less concern.

Figures 2 and 3 show the stationary distributions and
correlation functions obtained from the DS experiment and
the theory (the results from M1 and M2 do not give additional
information and are not shown), varying σ0 and τ and keeping
N = 225. We can see that the full lattice mode shows the
properties highlighted in the previous section: the stationary
distributions for different values of τ collapse on each other and
follow the expected form, as do the autocorrelation functions for
different values of σ0. In this range of values, changing σ0 both
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shifts the centre of the distribution and modifies its width, with
larger fluctuations for larger σ0.

These results show that our stochastic model is a good
representation of the original system (given the issues discussed
above) and can therefore be used in order to ‘stochasticize’
a convective parametrization with a minimal demographic
description of a cloud system. There are no theoretical reasons to
expect a worse numerical accuracy when considering cases with
more than two possible states and/or time-dependent transition
rates. On the contrary, the applicability and numerical accuracy of
the reduction method in the presence of interactions will depend
on the degree of applicability of the mean-field approximation
and will have to be considered case by case. In this case, of course,
the mean-field approximation plays no role, since there are no
interactions at all in the original system. Still, this simple model,
which stems simply from the fact of ‘counting’ the clouds (hence
the term ‘demographic’) and considering fixed characteristic
time-scales for their birth and death rates presents non-trivial
statistics, which could already have an interesting impact when
introduced in the convective parametrization of a GCM.

3. Coupling strategy

Once the geometry of the system and the nature of the transitions
are defined, Eq. (13) determines the cloud fraction of each cloud
type considered. The question is now how the cloud fractions
should enter into the description of unresolved convection in a
GCM. Since the aim of this article is partly to define a strategy as
general as possible to introduce the kind of model described in
the previous section in a GCM, we would like to define a coupling
strategy that is, as much as possible, independent of the specific
parametrization scheme used in the host GCM. We also have to
take into account the fact that many convective parametrization
schemes do not explicitly include the cloud or updraught fraction
in their formulations and therefore it is not possible in general to
substitute it directly with the cloud fraction given by the stochastic
model. In addition, we like to define a controlled environment
for testing the introduction of the stochastic model, in the sense
that we would like the modified parametrization to conserve its
skills in representing the bulk statistics of the convective activity,
while affecting mainly higher order properties.

3.1. Stochastic extension of host deterministic parametrization

We consider the general case described in section 2.1, in which
the stochastic model can have an arbitrary number of states and
the transition rates can depend on the large-scale conditions
and on local interactions. Again, let x be the state vector of
the resolved variables of a GCM (we do not show the time
dependence explicitly from now on). We can represent its time
evolution in general as ẋ = f(x, α̂), where α̂ is a vector containing
the parameters of the parametrizations of unresolved processes
present in the system.

The idea is that the stochastic model modifies the value of some
relevant parameters, so that in general

{
dx
dt = f(x, α(σ )),
dσ
dt = R(x, σ )σ + εN G(x, σ )ξ .

(29)

If the size of the grid box is much larger than the size
of the individual convective elements (N → ∞, space-scale
separation), εN → 0. If the length of the time step of the
GCM is much larger than the largest characteristic time-scale
of the transitions (
t min(Rij) → ∞, time-scale separation),
dσ/dt → 0. For these conditions, the equation of the stochastic
model reduces to Rσ = 0. In the case in which R does not depend
on σ then this is a linear system (where x takes the role of a
fixed set of parameters). Assuming that the matrix R is ergodic, so
that det(R) = 0, the system always has one and only one solution

different from the trivial one. Recalling Eq. (4), we see that this
solution σ̂ is the invariant distribution of the Markov process
defined by the mean-field transition matrix. In the case of the
two-state system described in the previous section, the solution
is σ̂ = (1 − σ0, σ0). In the case in which R depends on σ , the
equation for σ̂ becomes nonlinear, thus possibly leading to more
complicated stationary solutions, such as multiple fixed points or
limit cycles.

Avoiding these problematic cases, assuming the existence of
a single fixed point and in the limit of space- and time-scale
separation, the system becomes{

dx
dt = f(x, α(σ̂ )),

R(x, σ̂ )σ̂ = 0.
(30)

Since the original deterministic version of the parametrization
is supposed to be designed exactly in the case of perfect space-
and time-scale separation, we will require that in this limit the
modified stochastic parametrization converges to the original
version of the scheme. This can be obtained by defining the
functional form of the dependence of the parameters by the state
of the stochastic model, so that α(σ̂ ) = α̂. In this way, deviations
from the fixed point of the deterministic limit of the stochastic
model will correspond to first-order corrections to the original,
deterministic version of the host scheme already implemented
and tested.

As stated before, this strategy works only when it is possible
to identify a single stationary solution for the deterministic limit
of the stochastic model. When this is not the case, a different
coupling strategy would be needed. In contrast, the relation
α(σ̂ ) = α̂ is also well-defined when R depends on time through
the dependence on x, as we will simply have different values of α̂
at different times.

Note that this coupling strategy essentially results in a more
complex random-parameter approach. In more simple-minded
random-parameter approaches (Lin and Neelin, 2000; Bright and
Mullen, 2002; Bowler et al., 2008), a parameter is represented as
a first-order autoregression process, with prescribed mean value
and autocorrelation time (and often prescribed minimum and
maximum thresholds in order to avoid unphysical values). This
is quite similar to the final result of the approach described here,
with the important differences that in our case (i) the range,
distribution and autocorrelation function of the resulting process
are not prescribed but determined by the nature of the transition
rules, (ii) in the multidimensional case (more than one cloud
type) several parameters are perturbed in a mutually correlated
way, where the correlations again depend on the nature of the
transition rules, and (iii) there is potentially a coupling between
the statistical properties of the resulting process and the state of
the GCM.

3.2. Coupling the minimal model to the BM scheme

We now take as an example the coupling of the minimal version
of the stochastic model described in section 2.2 to the BM
parametrization. We recall the basic design of the BM scheme;
more details can be found in Betts and Miller (1986). In the usual
BM scheme, the state of the atmosphere is relaxed towards a
reference profile on a prescribed convective relaxation time-scale.
The tendencies due to convection for the temperature T and
moisture q are given respectively by the apparent heat source Q1

and apparent moisture sink Q2:{
Q1 = Cp

Tc−T
τ0

,

Q2 = L qc−q
τ0

,
(31)

where Cp is the heat capacity and L the latent heat. The reference
profiles Tc and qc are computed by an iterative algorithm (which
uses the pseudoadiabatic profile as a first guess) in order to
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guarantee the conservation of the vertically integrated moist
static energy, so that the vertical integral of Q1 + Q2 equals zero.
The vertical integral of Q1 (or −Q2) is proportional to the total
amount of convective precipitation produced by the convective
scheme, since it is the intensity of conversion of latent into sensible
heat through condensational heating. When the vertical integral
of Q1 turns out to be negative (which would then lead to negative
precipitation), convection is supposed to be of non-precipitating
shallow nature and the reference profiles are recomputed in order
to realize a mixing of T and q from the cloud base to a reference
pressure level. The relaxation time-scale τ0 is normally set to 1–2 h
for a deep convection case and 3–4 h for a shallow convection
case (the actual values depend on the resolution of the model).

For consistency with the formulation of the two-state stochastic
model, a simplified version of the BM scheme is considered in
which shallow convection is not allowed. The BM scheme, even if
not explicitly designed using a QE assumption, realizes in practice
an exponential decay of measure A = ∫ ∞

0 Cp(Tc − T) dz of the
vertically integrated buoyancy as defined by Tc (the equivalent of
the cloud work function of Arakawa and Schubert, 1974), i.e.

dA

dt
= − A

τ0
. (32)

The crucial parameter of the scheme is therefore the relaxation
time-scale τ0, which controls the intensity of the negative feedback
realized by unresolved convection on the growth of the instability
measured by A. A sensible way of introducing the stochastic model
into this parametrization is to define a new relaxation time-scale

τS = σ0

σ
τ0. (33)

Note that this definition is equivalent to the one in Lin and
Neelin (2000) and Khouider et al. (2010). This satisfies the
condition of convergence to the original parametrization in
the deterministic limit of the stochastic model and represents
the effect of convection being stronger when there are more active
convective elements than in the limit case and vice versa. Note that
in practical applications τS has to be larger than the time step in
order to avoid numerical instability (and physical inconsistency).
In order to avoid this problem, which does not occur in the
deterministic scheme, we simply truncate the range of possible
values of τS with the time step of the GCM as a lower bound.
This approach can easily be extended to the Kuo parametrization
(which, in its original formulation, is formally equivalent to
Eq. (31), with a different definition of the relaxation time-scales
and reference profiles) and to mass-flux schemes making use of a
CAPE-like closure.

4. Aquaplanet experiments

4.1. Experimental design

The numerical model applied for this study is the Planet Simulator
(Fraedrich et al., 2005; Fraedrich, 2012), an intermediate-
complexity GCM developed at the University of Hamburg and
freely available at http://www.mi.uni-hamburg.de/plasim. The
dynamical core is based on the Portable University Model of
the Atmosphere (PUMA: Fraedrich et al., 1998), which has
already been used in testing stochastic parametrization techniques
(Seiffert et al., 2006). The primitive equations are solved by
a spectral transform method (Eliasen et al., 1970; Orszag,
1970). Parametrizations include long- and short-wave radiation
(Sasamori, 1968; Lacis and Hansen, 1974) with interactive clouds
(Stephens, 1978; Stephens et al., 1984; Slingo and Slingo, 1991).
A horizontal diffusion according to Laursen and Eliasen (1989)
is applied. Formulations for boundary-layer fluxes of latent and
sensible heat and for vertical diffusion follow Louis (1979), Louis
et al. (1981) and Roeckner et al. (1992). Stratiform precipitation

is generated in supersaturated states. In the standard set-up, the
Kuo scheme (Kuo, 1965, 1974) is used for deep moist convection,
while shallow cumulus convection is parametrized as vertical
diffusion. In this work, we use instead the BM scheme for deep
convection as described in the previous section, so that shallow
convection is not considered. The deterministic relaxation time-
scale is τ0 = 2 h. Shallow convection is an important process in
determining the properties of tropical dynamics, but our aim here
is to check how the coupling with the stochastic model impacts
the basic statistics of the tropical activity in the simplest possible
conditions and we are not concerned about realism or specific
aspects of tropical dynamics, which remain the subjects of later
works.

As experimental settings, we run the model in aquaplanet
conditions with T42 horizontal resolution and 10 σ levels in the
vertical. The SST of the model is fixed following the same profile
as the CTRL scenario in Dahms et al. (2011), which follows the
control distribution of Neale and Hoskins (2001):

Ts(λ, φ) =
{

27
(

1 − sin2( 3φ
2 )

)
: −π

3 < φ < π
3 ,

0 : otherwise,
(34)

where λ and φ represent longitude and latitude, respectively.
The model is run under perpetual equinoctial conditions and
without a daily cycle, so that no time-dependent forcings act on
the dynamics. An important property of the Planet Simulator is
that the simulated circulation remains zonally symmetric if the
model is initialized in a zonally symmetric state and driven by
zonally symmetric boundary conditions. In each experiment, the
model is run for 30 years of integration and the analysis is limited
to the last 25 years in order to account for the spin-up. This is a
long spin-up time for an aquaplanet experiment with fixed SST,
but since, as stated in the Introduction, our analysis will focus on
changes in the statistics of extremes, we prefer to stay on the safe
side, given the delicate nature of the investigated properties.

The stochastic model has three parameters: σ0 and τ , which
depend on the the transition rates, and N, which depends on
the geometry of the system. The parametric exploration can
be simplified considering that the convective cloud fraction in
a GCM box (which will take values fluctuating around σ0) is
typically supposed to be small, of the order of a few percent.
The proposed coupling consists of multiplying the amount of
convective precipitation by the factor γ = σ/σ0. If σ0 � 1, the
evolution equation for γ can be approximated as

dγ

dt
≈ 1 − γ

τ
+ ε′

N

√
1 + γ

τ
ξ , (35)

where ε′
N = σ

−1/2
0 εN (i.e. the noise scales with the inverse of

the square root of the expected cloud number Nσ0). This means
that, in the regime σ0 � 1 (i.e. the physically interesting one
for us), changing σ0 is almost the same as modulating the noise
amplitude. Therefore, in testing the sensitivity of the model we
fix σ0 to a small value (σ0 = 0.05) in all experiments and tune
only τ and N. The values considered for the other parameters
are τ = (3, 6, 12, 24) h and N = (100, 225, 400, 1000). For T42
resolution, these values of N correspond to sizes of the convective
elements in the range 10–30 km, which are too large but not
totally unreasonable numbers for observed convection in the
Tropics.

In general, the chosen set-up configures a rather abstract and
simplified experiment, but at this stage we just want to perform a
sensitivity analysis of the coupling of the simplest possible version
of the model to a GCM, exploring its parameter space for ranges
of values compatible with the order of magnitudes observed for
tropical cloud systems, without any claim of realism. The analysis
of the impact of introducing the stochastic parametrization is
focused here only on the statistical properties of the convective
precipitation, which is the quantity directly modified by the
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stochastic term. We will consider changes in the climatology of
the convective precipitation, i.e. mean and standard deviation as
function of the latitude, well as changes in the extremes of its
daily values. Before showing the results, we recall the basics of
extreme value theory (EVT) and describe how we performed the
statistical analysis.

4.2. EVT analysis of daily extremes of convective precipitation

A particularly interesting aspect of stochastic parametrizations
is the impact that they could have on the statistics of the
extremes (Stechmann and Neelin, 2011) of a GCM. Deterministic
parametrizations currently in use in state-of-the-art GCMs are
more or less able to reproduce the climatology of the system
in terms of its bulk statistics, although with different levels
of geographical detail and performance, depending on the
complexity of the scheme and of the GCM itself. The extent
to which they are able to represent higher order statistics and
extremes in particular is less clear. This is an extremely important
topic, considering that one of the main concerns regarding the
climate-change problem is how the statistics of intense, extreme
events will change in a changing climate. A summary on the topic
of extreme-event analysis in a geophysical context can be found
in Ghil et al. (2011) and Sura (2011).

The most common approach to extreme-value analysis is the
so-called block-maxima approach. It consists of dividing a time
series of an observable into bins and picking the maximum value
in each of them. An asymptotic theorem due to Gnedenko (1943)
states that, under certain conditions, the sample of maxima
converges to the so called generalized extreme-value distribution
(GEV). The GEV distribution is a three-parameter distribution
with cumulative distribution function

F(x;μ, σ , ξ ) = exp

{
−

[
1 + ξ

(
x − μ

σ

)]−1/ξ
}

. (36)

The location and scale parameters μ and σ can be reduced
to 0 and 1 respectively by a rescaling of the data. The shape
parameter ξ is more fundamental and determines the domain of
the probability distribution function. Depending on the value of
ξ , the family of distributions is divided into three subfamilies.
When ξ=0, the distribution is of Gumbel or type I kind; when
ξ >0, the distribution is of the Frechét or type II kind; and
when ξ <0, the distribution is of the Weibull or type III kind.
Although less important from a mathematical point of view,
the location and scale parameters are extremely important in
practical applications, since they represent the typical value and
typical range of variability of the extreme events (in a loose
sense they are a type of ‘mean’ and ‘standard deviation’ of the
distribution of extreme events).

The estimation of the GEV parameters from a sample of data
is not trivial. The problem of convergence of the empirical
distribution of extremes obtained with the block-maximum
approach to the theoretical GEV distribution has been widely
explored (see Coles et al., 1999; Faranda et al., 2011, and references
therein). The main problem is that a reliable estimation of the
parameters of the asymptotic distribution requires a very large
amount of data and in any case the convergence properties differ
substantially from system to system. In order to increase the size of
our sample, we have taken advantage of the zonal and hemispheric
symmetry of the Planet Simulator in aquaplanet set-up. In this
condition, each grid point on the same latitudinal circle (in both
hemispheres) is statistically equivalent. We can therefore consider
the time series of daily convective precipitation in each grid point
on the same latitudinal circle as independent realizations of the
same process and put them together in order to increase the size
of the sample. Of course, we can do this only if the time series
are not correlated. Computing the spatial correlation function
of daily convective precipitation in the zonal direction shows
that picking one grid point in every four is sufficient to having

nearly uncorrelated time series. This is, of course, only a linear
correlation analysis, which does not contain all the information
on the mutual dependence of the time series, but it should be
sufficient for our purposes. In this way, our sample of data consists
of 576 000 daily values. Defining a block length of 720 days, we
have 800 maxima to perform a robust analysis.

4.3. Analysis of results

Figures 4 and 5 show the zonal mean and standard deviation
of daily convective precipitation over 25 years after five
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Figure 4. Mean of daily convective precipitation (climatology over 25 years) for
Aquaplanet experiments in the absence of a diurnal or seasonal cycle. Because of
the hemispheric and zonal symmetry of the dynamics, only the zonal quantities in
the Northern Hemisphere are shown. The black solid line represents the standard
deterministic case with the BM scheme without shallow convection, while the
other lines (coloured in the online article) represent the experiments coupling the
BM deep convection scheme with the two-state stochastic model, for σ0 = 0.05
and different values of τ and N.
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Figure 5. Standard deviation of daily convective precipitation (climatology over
25 years) for Aquaplanet experiments in the absence of a diurnal or seasonal cycle.
Because of the hemispheric and zonal symmetry of the dynamics, only the zonal
quantities in the Northern Hemisphere are shown. The black solid line represents
the standard deterministic case with the BM scheme without shallow convection,
while the other lines (coloured in the online article) represent the experiments
coupling the BM deep convection scheme with the two-state stochastic model, for
σ0 = 0.05 and different values of τ and N.
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Figure 6. Probability distribution function of daily convective precipitation at
1.4◦N for Aquaplanet experiments in the absence of a diurnal or seasonal cycle.
The black solid line represents the standard deterministic case with the BM scheme
without shallow convection, while the other lines (coloured in the online article)
represent the experiments coupling the BM deep convection scheme with the
two-state stochastic model, for σ0 = 0.05, N = 100 and different values of τ .

years of spin-up, for the standard deterministic run and for
the experiments with the stochastic model. Because of the
hemispheric and zonal symmetry of the dynamics, only the zonal
quantities in the Northern Hemisphere are shown. Surprisingly,
the introduction of the stochastic model does not affect the
climatology of daily convective precipitation. Instead, the impact
of the stochastic parametrization is concentrated on the higher
moments of precipitation.

Figure 6 shows the probability distribution function of the daily
convective precipitation at the closest grid point to the Equator
(ca. 1.4◦N), where convective precipitation is at its maximum.
The curves refer to the deterministic run and the stochastic
runs for N = 100 (the case with larger noise amplitude). We
can see that the distributions differ substantially only in the
upper tails, with larger values for larger autocorrelation times
of the stochastic forcing. Qualitatively, the same result (not
shown) is obtained fixing the autocorrelation time and tuning the
amplitude of the noise (of course with larger values for larger noise
amplitudes).

Figure 7 shows the GEV distributions for the same experiments.
The empirical distributions have been fitted with the maximum-
likelihood method, with good results. We can see that for larger
autocorrelation times the distributions of extreme values of
convective precipitation become broader and shift towards higher
values. We can also see that the range of the GEV distributions
coincides with the range over which the probability distribution
functions of Figure 6 differ substantially: it appears that only the
extreme values (in the proper statistical sense) are affected by the
introduction of the stochastic model.

In order to make the analysis more quantitative, Figures 8–10
show the estimates of the location, scale and shape parameters
as a function of the autocorrelation time, for different values of
the noise amplitude. We can see that larger autocorrelation times
lead to larger values of the location and scale parameters, with
more pronounced sensitivity with larger values of the noise. For
both parameters the increase is roughly logarithmic. The shape
parameter shows no sensitivity to changes in the parameters
among the uncertainties, so that the nature of the GEV is not
affected. Figures 8–10 represent a possible parametrization of
extremes of daily convective precipitation through the parameters
of our stochastic model.
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Figure 7. Probability distribution function of maxima of daily convective
precipitation at 1.4◦N for Aquaplanet experiments in the absence of a diurnal or
seasonal cycle. The black solid line represents the standard deterministic case with
the BM scheme without shallow convection, while the other solid lines (coloured
in the online article) represent the experiments coupling the BM deep convection
scheme with the two-state stochastic model, for σ0 = 0.05, N = 100 and different
values of τ . The maxima have been selected following the block maxima approach
as explained in the text. The dashed lines (coloured in the online article) represent
the best fit to a GEV distribution obtained with the maximum-likelihood method.
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Figure 8. Location parameter of the GEV distribution of maxima of daily
convective precipitation at 1.4◦N versus values of τ , for σ0 = 0.05 and different
values of N, for Aquaplanet experiments in the absence of a diurnal or seasonal
cycle. The point at τ = 0 represents the standard deterministic case with the BM
scheme without shallow convection. The maxima have been selected following
the block maxima approach, using the methodology explained in the text. The
dashed lines represent the 95% confidence interval of the estimate of the GEV
parameters obtained with the maximum-likelihood method.

5. Summary and discussion

In this article, we have presented a rather general framework to
include subgrid stochastic lattice gas models for the population
dynamics of an ensemble of convective events in a host
deterministic parametrization scheme. The proposed formalism
is along the lines of models previously presented in the literature
(Majda and Khouider, 2002; Khouider et al., 2010; Stechmann
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Figure 9. Scale parameter of the GEV distribution of maxima of daily convective
precipitation at 1.4◦N versus values of τ , for σ0 = 0.05 and different values of
N, for Aquaplanet experiments in the absence of a diurnal or seasonal cycle. The
point at τ = 0 represents the standard deterministic case with the BM scheme
without shallow convection. The maxima have been selected following the block
maxima approach, using the methodology explained in the text. The dashed lines
represent the 95% confidence interval of the estimate of the GEV parameters
obtained with the maximum-likelihood method.
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Figure 10. Shape parameter of the GEV distribution of maxima of daily convective
precipitation at 1.4◦N versus values of τ , for σ0 = 0.05 and different values of
N, for Aquaplanet experiments in the absence of a diurnal or seasonal cycle. The
point at τ = 0 represents the standard deterministic case with the BM scheme
without shallow convection. The maxima have been selected following the block
maxima approach, using the methodology explained in the text. The dashed lines
represent the 95% confidence interval of the estimate of the GEV parameters
obtained with the maximum-likelihood method.

and Neelin, 2011; Frenkel et al., 2012) and partially on the lines
of Plant (2012) and could be used in order to bridge those
approaches to the world of operational GCMs.

In order to to make the application to real GCMs numerically
treatable, we have derived a reduced model for the time evolution
of the macrostate (cloud fraction) of the lattice model. The
method consists of a first-order correction to the mean-field limit
of the system, in a fashion similar to Tome and de Oliveira (2009).

We have studied the properties of the minimal version of the
stochastic model, a binary system with fixed transition rates, in

some detail. In this formulation the stochastic model reduces to
a single SDE that is analytically treatable. The SDE corresponds
to an exponential decay to an equilibrium value forced by a
multiplicative noise term. The model has three parameters: the
intensity of the noise, which scales with the inverse of the square
root of the size of the system, and two parameters that depend on
the transition (birth and death) rates, which are the equilibrium
cloud fraction and the relaxation time-scale. Analysis of the
Fokker–Planck equation shows that the stationary distribution
of the model depends only on the intensity of the noise and the
equilibrium cloud fraction and is independent of the relaxation
time-scale. In contrast, the autocorrelation function of the process
depends uniquely on the relaxation time-scale and consists of an
exponential decay on the same time-scale. The process, therefore,
has no memory and a white spectrum. This analysis shows that it is
possible to tune the transition rates in order to tune independent
properties of the system, allowing for a systematic exploration of
the behaviour of the model in applications with a GCM.

We have analyzed the numerical accuracy of the reduction
method for the minimal version of the stochastic model,
comparing direct simulations of the lattice model with iterations
of the reduced SDE for different values of the parameters. The
parameter space of the model has been explored using a range of
values compatible with application to the representation of a cloud
system in a GCM grid box. We have shown that the reduction
method reproduces the properties of the system remarkably well,
even when tested close to the limits of its applicability. Regarding
more complex applications, there is no reason to expect a worse
numerical accuracy in systems featuring multiple states and/or
time-dependent transition rates. In the case of systems featuring
local interactions and, therefore, state-dependent transition rates,
the validity and accuracy of the reduction method depend on the
nature and strength of the interactions and have to be tested case
by case. Overall, the reduction method seems to be promising for
the kind of application we have in mind.

We have defined a coupling strategy in order to include
the stochastic model in a pre-existing, host deterministic
parametrization scheme. The state of the stochastic model
modifies a relevant parameter of the parametrization in such a
way that when perfect space- and time-scale separation is achieved
we retrieve the usual value used in the deterministic version of
the parametrization. In this way we define a robust coupling,
which introduces first-order corrections due to the finite size
and time evolution of the ensemble of convective events, around
the zeroth-order description given by the original deterministic
version of the parametrization. Simplified representations of the
conditional dependence of the activation and decay of convective
events on large-scale conditions and mutual interactions can be
added through the definition of the transition rates. The strategy
has been applied to the coupling of the minimal version of the
stochastic model to a simplified version of the BM scheme.

We have performed numerical experiments with an aquaplanet
version of the Planet Simulator, an intermediate complexity
atmospheric general circulation model (AGCM). The experi-
ments have been performed with a fixed zonally symmetric
distribution of the SST without seasonal and daily cycles, in
order to study the impact of the introduction of the stochastic
model on a zonally symmetric dynamics in the absence of time-
dependent forcings. The stochastic model is set up as a binary
system with fixed transition probabilities, coupled to the BM con-
vective scheme as described above. This formulation of the model
is minimal in the sense that it introduces into the GCM only the
effects coming from considering a demographic description of
the cloud system. We have performed a limited exploration of
the parameter space of the stochastic model, in ranges of values
compatible with the observed properties of tropical convection.
We have studied the sensitivity to changes of size of the lattice
model (which determines the intensity of the noise and the shape
of the stationary distribution, without affecting the memory of
the stochastic process) and to the intrinsic time-scale of the model

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 37–51 (2015)



Stochastic Lattice Gas Model Coupling 49

(which controls the memory of the process without affecting the
stationary distribution).

The analysis has focused on convective precipitation, which
is the quantity directly modified by the stochastic term. In
these settings, the stochastic extension of the parametrization
conserves the climatology of its deterministic limit, thus
confirming that the coupling has been defined in a robust way. The
analysis of the distribution of the daily convective precipitation
in tropical areas shows that the inclusion of the stochastic term
impacts only the upper tail of the distribution, without affecting
the bulk statistics. We have performed a detailed analysis of the
changes in the extreme statistics using EVT. The location and scale
parameters of the GEV distribution of tropical daily convective
precipitation turn out to be highly sensitive to both the noise
intensity and the autocorrelation time of the stochastic forcing.
They increase logarithmically with larger noise intensity and
larger autocorrelation time. This means larger and more spread
typical values for the daily extremes of convective precipitation.
In the limit of vanishing noise intensity and autocorrelation time,
the parameters converge to the values of the deterministic case.
The shape parameter seems to be insensitive to changes in any
parameter.

These findings suggest that the coupling behaves as expected
in terms of robustness. The bulk statistics of convection is not
affected by the introduction of the stochastic term and only
high-order moments are modified. The changes introduced in
the extreme statistics tend to zero, increasing the number of
convective elements and decreasing the characteristic time-scale
of the process, i.e. approaching space- and time-scale separation
respectively. While the increase in the typical value and range
of the extremes of daily convective precipitation with increasing
amplitude of fluctuations of the stochastic process is somehow
expected, the reason that these should increase with larger
autocorrelation times of the noise is less clear. Lin and Neelin
(2000, 2002, 2003) have already shown the sensitivity of tropical
variability to the autocorrelation time of a stochastic forcing,
although in a very different kind of analysis.

Our results also constitute an instructive example of the fact
that a parametrization calibrated on the climatology of a process
is not necessarily a good parametrization for studying the extreme
statistics of that process. We have given a practical example of
a parametrization that, for a large range of values of some of its
parameters, reproduces the same climatology of a characteristic
quantity, while showing large differences in the extremes for that
range of values. In our case, the parametrization is stochastic
and has been derived in order to represent specific features of
atmospheric convection, but the principle holds in general.

Starting from this work, several future lines of research can be
proposed. A first obvious experiment is to make the transition
rates dependent on the state of the large-scale model, in order
to realize an effective two-way coupling. Previous works have
introduced CIN, CAPE and measures of the dryness of the
atmosphere in order to characterize the transition rates (Majda
and Khouider, 2002; Khouider et al., 2003, 2010; Frenkel et
al., 2012). A promising alternative could be the proposal of
Stechmann and Neelin (2011) to make the transitions between
inactive and active convective states dependent on a critical value
of the precipitable water. The idea of making the activation
of convection dependent on a critical value of the moisture
content of the atmospheric column is indeed not new: in many
implementations of the Kuo-like moisture convergence closure,
it is common to introduce a critical value of the relative humidity
of the atmospheric column below which convection is shut down.
For example, Frierson et al. (2011) have shown that tuning
this critical value (corresponding to constraining the convective
activity differently) has an impact on the intraseasonal variability
of the model.

Another possibility could be to introduce multiple convective
regimes and the correspondent life cycle of convective events.
This will be needed in particular in the application to more

realistic convective parametrizations. Operational convective
parametrizations typically have at least two kinds of convective
states (shallow and deep convection), sometimes a few more. In
employing multiple convective regimes, it could be particularly
interesting to define the dependence of the transition rates on the
large-scale fields in order to capture preconditioning processes,
along the lines of Khouider et al. (2010) and Frenkel et al.
(2012), who already obtained promising results in applications
with simplified models of tropical dynamics.

Finally, it could be interesting to introduce simple interaction
rules for the lattice elements. As stated already, clustering of
convective events is indeed observed in studies of tropical
dynamics. The nature of the interactions between clouds is
nevertheless still unclear. Therefore, at this stage, tentative rules
for local interactions should be introduced in a very crude form,
without pretending to give a realistic, quantitative representation
of the phenomenon.

Acknowledgements

Thanks are due to referees and editor for their helpful comments.
The authors also thank Edilbert Kirk and Frank Sielmann for
technical support. FR acknowledges financial support from Clisap
and SICSS and is thankful to Salvatore Pascale for discussions on
the content of the article. FR and KF acknowledge support by a
fellowship of the Max Planck Society.

Appendix: Derivation of SDE reduction

In this Appendix we derive the relations 〈dσ t〉 = Rtσ t dt and
Ct = Dt dt, which are used in section 2 to derive the SDE
reduction. Knowing that the state of the system at time t is σ t

(and knowing the configuration of the lattice, i.e. the value of
each σ nt), the expectation value of dσ t is componentwise given
by (neglecting terms O(dt2))

〈dσs
t〉σ t = 1

N

N∑
n=1

〈dσ nt
s 〉σ t

= 1

N

N∑
n=1

S∑
i=1

(pnt
si − δsi)σ

nt
i = 1

N

N∑
n=1

S∑
i=1

Rnt
si σ

nt
i dt,

(A1)

where 〈•〉σ t represents the expectation value of a quantity
conditional on the knowledge of the state of the system at
time t (where by this we mean knowing the exact configuration
of the entire lattice, although we use the symbol σ t for simplicity
of notation). In the mean-field approximation, the transition
rates are constant over the entire lattice once we replace the local
interaction terms Rnt

si with the mean-field term Rt
si, so that

〈dσs
t〉σ t =

S∑
i=1

Rt
siσ

t
i dt (A2)

or, in vectorial notation,

〈dσ t〉σ t = Rtσ t dt. (A3)

The components of the covariance matrix Ct are, by definition,
given by

1

N
Ct

ss′ =〈dσ t
s dσ t

s′ 〉σ t − 〈dσ t
s 〉σ t 〈dσ t

s′ 〉σ t

= 1

N2

N∑
n=1

N∑
n′=1

[
〈dσ nt

s dσ n′t
s′ 〉σ t − 〈dσ nt

s 〉σ t 〈dσ n′t
s′ 〉σ t

]
.

(A4)
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Thanks to the mean-field approximation, for n �= n′ we have

〈dσ nt
s dσ n′t

s′ 〉σ t ≈ 〈dσ nt
s 〉σ t 〈dσ n′t

s′ 〉σ t , (A5)

so that we retain only the terms for which n = n′,

Ct
ss′ = 1

N

N∑
n=1

[〈dσ nt
s dσ nt

s′ 〉σ t − 〈dσ nt
s 〉σ t 〈dσ nt

s′ 〉σ t
]
. (A6)

Rearranging some terms, the first term in the sum is given by

〈dσ nt
s dσ nt

s′ 〉σ t =〈σ nt+dt
s σ nt+dt

s′ 〉σ t − 〈σ nt
s σ nt

s′ 〉σ t

− 〈σ nt
s dσ nt

s′ 〉σ t − 〈σ nt
s′ dσ nt

s 〉σ t .
(A7)

Using the fact that in general σ nt
s σ nt

s′ = δss′σ nt
s , where δss′ is the

usual Kronecker delta, for the first two terms we have the result

〈σ nt+dt
s σ nt+dt

s′ 〉σ t − 〈σ nt
s σ nt

s′ 〉σ t

= δss′ 〈σ nt+dt
s 〉σ t − δss′ 〈σ nt

s 〉σ t = δss′ 〈dσ nt
s 〉σ t . (A8)

It is easy to see that the second two terms are given by

〈σ nt
s dσ nt

s′ 〉σ t + 〈σ nt
s′ dσ nt

s 〉σ t = pnt
s′sσ

nt
s + pnt

ss′σ
nt
s′ . (A9)

Therefore, making use of Eq. (38) and Eq. (1),

〈dσ nt
s dσ nt

s′ 〉σ t

= −Rnt
s′sσ

nt
s dt − Rnt

ss′σ
nt
s′ dt + δss′

S∑
i=1

Rnt
si σ

nt
i dt. (A10)

Making use of Eq. (38), the second term of Eq. (42) can be
neglected, since

〈dσ nt
s 〉σ t 〈dσ nt

s′ 〉σ t

=
(

S∑
i=1

Rnt
si σ

nt
i dt

)⎛
⎝ S∑

j=1

Rnt
sj σ

nt
j dt

⎞
⎠ = O

(
dt2

)
(A11)

and the terms in Eq. (46) are O (dt). Therefore, we are left with

Ct
ss′ = dt

N

N∑
n=1

(
−Rnt

s′sσ
nt
s − Rnt

ss′σ
nt
s′ + δss′

S∑
i=1

Rnt
si σ

nt
i

)
(A12)

and, making use of the mean-field approximation, we can
eventually write

Ct = Dtdt, (A13)

defining the matrix Dt as

Dt
ss′ = −Rt

s′sσ
t
s − Rt

ss′σ
t
s′ + δss′

S∑
i=1

Rt
siσ

t
i , (A14)

as we have introduced it in Eq. (11) of section 2. We see therefore
that both 〈dσ t〉σ t and Ct scale with dt and can be written
as functions of Rt and σ t , thus leading to the SDE reduction
proposed in section 2.
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